Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method
Abstract
:1. Introduction
- Improve the cross calibration method to produce accurate radiometric calibration coefficients for Gaofen-1 WFV instruments, where the calibration sites were selected objectively and the spectral response differences between the two sensors were considered.
- Estimate the associated uncertainties of the cross-calibrated coefficients and assess their performance for the calibrated reflectance.
2. Sensor Comparison and Data Selection
3. Method
3.1. Cross Calibration
- Find sufficient calibration sites (e.g., WFV–OLI matching windows) to establish a statistically meaningful linear fit.
- Determine the spectral band adjustment factor .
3.2. Calibration Sites Selection
- The WFV–OLI image pairs were clipped into the same geographic area with an exclusion of clouds and cloud shadows.
- For each data pair, more than 100,000 random points were generated within the Landsat-8 OLI reflectance image. The random points were based on various combinations of latitudes and longitudes. Then, 4 × 3 windows centered at these points were selected, where the CV were calculated for each window.
- For OLI windows with CV < 1%, the corresponding 5 × 4 windows at the same location were found in the raw WFV image. If the CV for the WFV window is also <1%, the corresponding windows in WFV and OLI were selected as a ROI for further analysis.
3.3. Adjustment of the Spectral Band Differences
4. Results and Validations
4.1. Results of cross Calibration
4.2. Validations
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hu, X.; Liu, J.; Sun, L.; Rong, Z.; Li, Y.; Zhang, Y.; Zheng, Z.; Wu, R.; Zhang, L.; Gu, X. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors. Can. J. Remote Sens. 2010, 36, 566–582. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 Ali sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Xiong, X.; Barnes, W. An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci. 2006, 23, 69–79. [Google Scholar] [CrossRef]
- Hu, Z.; Ge, G.; Liu, C.; Chen, F.; Li, S. Structure of Poyang lake wetland plants ecosystem and influence of lake water level for the structure. Resour. Environ. Yangtze Basin 2010, 19, 597–605. [Google Scholar]
- Gregg, W.W.; Casey, N.W. Global and regional evaluation of the SeaWiFS chlorophyll data set. Remote Sens. Environ. 2004, 93, 463–479. [Google Scholar] [CrossRef]
- Han, X.; Chen, X.; Feng, L. Four decades of winter wetland changes in Poyang lake based on Landsat observations between 1973 and 2013. Remote Sens. Environ. 2015, 156, 426–437. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.; Chen, X.; Zhao, X. Dramatic inundation changes of China’s two largest freshwater lakes linked to the Three Gorges Dam. Environm. Sci. Technol. 2013, 47, 9628–9634. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, M.G. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 2005, 86, 225–233. [Google Scholar] [CrossRef]
- Hooker, S.B.; Esaias, W.E.; Feldman, G.C.; Gregg, W.W.; McClain, C.R. An Overview of SeaWiFS and Ocean Color; National Aeronautics and Space Administration, Goddard Space Flight Center: Greenbelt, MD, USA, 1992. [Google Scholar]
- Chander, G.; Meyer, D.J.; Helder, D.L. Cross calibration of the Landsat-7 ETM+ and EO-1 Ali sensor. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2821–2831. [Google Scholar] [CrossRef]
- Shang, G.-P.; Shang, J.-C. Causes and control countermeasures of eutrophication in Chaohu lake, China. Chin. Geogr. Sci. 2005, 15, 348–354. [Google Scholar] [CrossRef]
- Teillet, P.; Barker, J.; Markham, B.; Irish, R.; Fedosejevs, G.; Storey, J. Radiometric cross-calibration of the Landsat-7 ETM+ and Landsat-5 TM sensors based on tandem data sets. Remote Sens. Environ. 2001, 78, 39–54. [Google Scholar] [CrossRef]
- Yang, G.; Ma, R.; Zhang, L.; Jiang, J.; Wei, S.; Zhang, M.; Zeng, H. Lake status, major problems and protection strategy in China. J. Lake Sci. 2010, 22, 799–810. [Google Scholar]
- Doerffer, R.; Schiller, H. The MERIS case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Barsi, J.A.; Markham, B.L. Early Radiometric Performance Assessment of the Landsat-8 Operational Land Imager (OLI). In Proceedings of the SPIE Optical Engineering + Applications; International Society for Optics and Photonics, San Diego, CA, USA, 26–29 AUG 2013.
- Odongo, V.O.; Hamm, N.A.S.; Milton, E.J. Spatio-temporal assessment of Tuz Gölü, Turkey as a potential radiometric vicarious calibration site. Remote Sens. 2014, 6, 2494–2513. [Google Scholar] [CrossRef]
- Schaepman-Strub, G.; Schaepman, M.; Painter, T.; Dangel, S.; Martonchik, J. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. A chlorophyll-retrieval algorithm for satellite imagery (medium resolution imaging spectrometer) of inland and coastal waters. J. Plankton Res. 2002, 24, 947–951. [Google Scholar] [CrossRef]
- Thuillier, G.; Hersé, M.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.; Mandel, H. The solar spectral irradiance from 200 to 2400 nm as measured by the solspec spectrometer from the atlas and EURECA missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Chander, G.; Coan, M.J.; Scaramuzza, P.L. Evaluation and comparison of the IRS-P6 and the Landsat sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 209–221. [Google Scholar] [CrossRef]
- Thome, K. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- Teillet, P.; Barsi, J.; Chander, G.; Thome, K.J. Prime Candidate Earth Targets for the Post-Launch Radiometric Calibration of Space-Based Optical Imaging Instruments; Optical Engineering Applications; International Society for Optics and Photonics: San Diego, CA, USA, 2007. [Google Scholar]
- Kneubühler, M.; Schaepman, M.; Thome, K.J. Long-term vicarious calibration efforts of meris at railroad valley playa (NV)—An update. In Proceedings of the 4th Workshop on Imaging Imaging Spectroscopy-New Quality in Environmental Studies, Warsaw, Poland, 27–29 April 2005; pp. 617–626.
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1267–1281. [Google Scholar] [CrossRef]
- Henry, P.; Chander, G.; Fougnie, B.; Thomas, C.; Xiong, X. Assessment of spectral band impact on intercalibration over desert sites using simulation based on EO-1 hyperion data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1297–1308. [Google Scholar] [CrossRef]
- Luo, D.; Wu, X.; Li, S.; Hu, C.; Zhou, W. Investigate study on tp pollution load of Poyang lake by water and salt balance. J. Lake Sci. 2011, 47, 336–343. [Google Scholar]
- Feng, L.; Hu, C.; Chen, X.; Cai, X.; Tian, L.; Gan, W. Assessment of inundation changes of Poyang lake using MODIS observations between 2000 and 2010. Remote Sens. Environ. 2012, 121, 80–92. [Google Scholar] [CrossRef]
- Hu, C.M.; Muller-Karger, F.E.; Andrefouet, S.; Carder, K.L. Atmospheric correction and cross-calibration of Landsat-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS. Remote Sens. Environ. 2001, 78, 99–107. [Google Scholar] [CrossRef]
- Hamm, N.A.S.; Atkinson, P.M.; Milton, E.J. A per-pixel, non-stationary mixed model for empirical line atmospheric correction in remote sensing. Remote Sens. Environ. 2012, 124, 666–678. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Gong, J.; Wang, M. Development, application, and prospects for Chinese land observation satellites. Geo-Spat. Inf. Sci. 2014, 17, 102–109. [Google Scholar] [CrossRef]
- Feng, L.; Li, J.; Gong, W.; Zhao, X.; Chen, X.; Pang, X. Radiometric cross-calibration of Gaofen-1 WFV cameras using Landsat-8 OLI images: A solution for large view angle associated problems. Remote Sens. Environ. 2016, 174, 56–68. [Google Scholar] [CrossRef]
GF-1 WFV | Landsat8 OLI | ||
---|---|---|---|
Band (µm) | Blue | 0.45–0.52 | 0.45–0.51 |
Green | 0.52–0.59 | 0.53–0.59 | |
Red | 0.63–0.69 | 0.64–0.67 | |
NIR | 0.77–0.89 | 0.85–0.88 | |
Resolution (m) | 16 × 24 | 30 × 30 | |
Quantization (bits) | 10 | 12 1 | |
Swath (km) | 800 | 180 | |
Re-visiting period (days) | 4 | 16 |
Date | Sensor | Location 1 | Time (GMT) | Sun Elevation (°) | |
---|---|---|---|---|---|
Calibration 2 | 2013-9-30 | WFV3 | E128.1/N45.5 | 2:43:06 A.M. | 41.06 |
OLI | 118/028 | 2:22:54 A.M. | 39.47 | ||
2013-11-11 | WFV3 | E116.5/N42.2 | 3:23:41 A.M. | 29.86 | |
OLI | 124/030 | 3:00:38 A.M. | 28.07 | ||
2013-12-12 | WFV3 | E100.1/N37.3 | 4:29:27 A.M. | 28.82 | |
OLI | 133/034 | 3:57:41 A.M. | 27.13 | ||
2014-1-7 | WFV3 | E88.9/N32.3 | 5:10:43 A.M. | 33.55 | |
OLI | 139/038 | 4:36:06 A.M. | 31.71 | ||
2014-1-28 | WFV3 | E85.1/N32.3 | 5:27:08 A.M. | 37.17 | |
OLI | 142/038 | 4:54:26 A.M. | 34.83 | ||
Validation 2 | 2013-7-23 | WFV3 | E131.3/N47.2 | 2:29:42 A.M. | 60.91 |
OLI | 115/027 | 2:04:02 A.M. | 58.71 | ||
2013-9-30 | WFV3 | E126.9/N42.2 | 2:44:01 A.M. | 44.13 | |
OLI | 118030 | 2:23:41 A.M. | 41.91 | ||
2013-11-11 | WFV3 | E117.0/N43.9 | 3:23:13 A.M. | 28.28 | |
OLI | 124030 | 3:00:38 A.M. | 28.07 |
Sensor | Band | New Gain | New Offset | Old Gain | Old Offset | Gain Ratio 1 | Offset | |
---|---|---|---|---|---|---|---|---|
Difference 2 | DN 3 | |||||||
WFV1 | Blue | 0.1611 | −0.3075 | 0.1709 | −0.0039 | 0.94 | 0.3036 | 1.9 |
Green | 0.1400 | −4.8499 | 0.1398 | −0.0047 | 1.00 | 4.8452 | 34.6 | |
Red | 0.1192 | −0.6033 | 0.1195 | −0.0030 | 1.00 | 0.6003 | 5.0 | |
NIR | 0.1369 | −2.2004 | 0.1338 | −0.0274 | 1.02 | 2.1730 | 15.9 | |
WFV2 | Blue | 0.1840 | −1.2455 | 0.1588 | 5.5303 | 1.16 | 6.7758 | 36.8 |
Green | 0.1548 | −6.9623 | 0.1515 | −13.6420 | 1.02 | 6.6797 | 43.2 | |
Red | 0.1317 | −4.7976 | 0.1251 | −15.3820 | 1.05 | 10.5844 | 80.4 | |
NIR | 0.1699 | −11.3110 | 0.1209 | −7.9850 | 1.41 | 3.3260 | 19.6 | |
WFV3 | Blue | 0.1828 | −0.8439 | 0.1556 | 12.2800 | 1.17 | 13.1239 | 71.8 |
Green | 0.1595 | −1.6577 | 0.1700 | −7.9336 | 0.94 | 6.2759 | 39.3 | |
Red | 0.1376 | 0.4252 | 0.1392 | −7.0310 | 0.99 | 7.4562 | 54.2 | |
NIR | 0.1560 | −0.7951 | 0.1354 | −4.3578 | 1.15 | 3.5627 | 22.8 | |
WFV4 | Blue | 0.1862 | −1.1885 | 0.1819 | 3.6469 | 1.02 | 4.8354 | 26.0 |
Green | 0.1727 | −5.2595 | 0.1762 | −13.5400 | 0.98 | 8.2805 | 47.9 | |
Red | 0.1501 | 0.3948 | 0.1463 | −10.9980 | 1.03 | 11.3928 | 75.9 | |
NIR | 0.1755 | −7.7135 | 0.1522 | −12.1420 | 1.15 | 4.4285 | 25.2 |
Reflectance Range | New (%) | Old (%) | Improvement (%) | |||
---|---|---|---|---|---|---|
Mean | Stdev | Mean | Stdev | |||
Blue | 0–0.1 | 0.71 | 0.51 | 27.19 | 0.73 | 26.66 |
0.1–0.2 | 2.61 | 1.79 | 16.77 | 4.04 | 14.41 | |
0.2–0.3 | 1.89 | 1.07 | 3.00 | 1.90 | 1.30 | |
0.3–0.4 | 0.91 | 2.31 | 4.61 | 2.03 | 3.36 | |
>0.4 | 3.94 | 2.74 | 10.01 | 3.00 | 6.75 | |
Green | 0–0.1 | 3.41 | 2.15 | 21.58 | 4.43 | 17.61 |
0.1–0.2 | 2.54 | 1.96 | 12.16 | 3.29 | 8.75 | |
0.2–0.3 | 2.42 | 2.91 | 4.68 | 2.97 | 0.72 | |
0.3–0.4 | 4.87 | 4.15 | 8.17 | 4.72 | 0.03 | |
>0.4 | 3.83 | 3.25 | 3.59 | 2.97 | 0.82 | |
Red | 0–0.1 | 29.56 | 11.87 | 61.37 | 23.67 | 27.33 |
0.1–0.2 | 3.26 | 2.30 | 20.38 | 2.60 | 16.78 | |
0.2–0.3 | 4.43 | 3.63 | 15.90 | 4.48 | 9.05 | |
0.3–0.4 | 6.86 | 1.70 | 19.82 | 2.00 | 13.14 | |
>0.4 | 5.20 | 3.02 | 15.08 | 4.41 | 8.69 | |
NIR | 0–0.1 | 10.69 | 40.00 | 39.41 | 50.50 | 34.09 |
0.1–0.2 | 7.33 | 5.68 | 24.43 | 4.13 | 16.55 | |
0.2–0.3 | 4.29 | 2.52 | 26.47 | 2.26 | 21.89 | |
0.3–0.4 | 3.75 | 2.89 | 23.04 | 3.57 | 18.03 | |
>0.4 | 4.33 | 1.85 | 22.71 | 2.60 | 18.11 |
CHAPTER 1 | Blue | Green | Red | NIR | ||||
---|---|---|---|---|---|---|---|---|
max | min | max | min | max | min | max | min | |
A | 1.0278 | 0.9842 | 1.1892 | 0.9684 | 1.3432 | 0.9482 | 1.0070 | 0.9023 |
C | 1.0080 | 0.9991 | 1.0583 | 0.9495 | 1.0255 | 1.0005 | 1.0219 | 0.9800 |
L | 1.0136 | 0.9951 | 1.0161 | 0.9616 | 1.0178 | 0.9669 | 1.0187 | 1.0006 |
M | 1.0236 | 0.9830 | 1.0783 | 0.9363 | 1.0498 | 0.9554 | 1.1225 | 0.9386 |
S | 1.0146 | 0.9998 | 1.0165 | 0.9430 | 1.0179 | 0.9856 | 1.0133 | 0.9884 |
V | 1.1185 | 0.9624 | 1.3117 | 0.8908 | 1.3929 | 0.9657 | 1.0367 | 0.9831 |
all | 1.1185 | 0.9624 | 1.3117 | 0.8908 | 1.3929 | 0.9482 | 1.1225 | 0.9023 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Feng, L.; Pang, X.; Gong, W.; Zhao, X. Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method. Remote Sens. 2016, 8, 411. https://doi.org/10.3390/rs8050411
Li J, Feng L, Pang X, Gong W, Zhao X. Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method. Remote Sensing. 2016; 8(5):411. https://doi.org/10.3390/rs8050411
Chicago/Turabian StyleLi, Juan, Lian Feng, Xiaoping Pang, Weishu Gong, and Xi Zhao. 2016. "Radiometric cross Calibration of Gaofen-1 WFV Cameras Using Landsat-8 OLI Images: A Simple Image-Based Method" Remote Sensing 8, no. 5: 411. https://doi.org/10.3390/rs8050411