Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data
Abstract
:1. Introduction
2. Study Area and Data Processing
2.1. Study Area
2.2. Landsat-8 OLI Data and Pre-Processing
2.3. Reference Data
2.4. Image Difference Threshold Selection and Accuracy Assessment
3. Results
3.1. Unique Phenological Behaviour of Rubber Trees Observed from Multi-Temporal Landsat 8 OLI Images
3.2. Map of Rubber Plantation Derived from Image Differencing
Class | Reference Data | Classified Pixels | User’s Accuracy | ||
---|---|---|---|---|---|
Rubber | Non-Rubber | ||||
NDVI differencing method | |||||
Classified data | Rubber | 8973 | 370 | 9343 | 96% |
Non-rubber | 1027 | 9630 | 10,657 | 90% | |
Reference pixels | 10,000 | 10,000 | |||
Producer’s accuracy | 90% | 96% | |||
EVI differencing method | |||||
Classified data | Rubber | 8947 | 193 | 9140 | 98% |
Non-rubber | 1053 | 9807 | 10,860 | 90% | |
Reference pixels | 10,000 | 10,000 | |||
Producer’s accuracy | 89% | 98% | |||
ARVI differencing method | |||||
Classified data | Rubber | 9290 | 123 | 9413 | 99% |
Non-rubber | 710 | 9877 | 10,587 | 93% | |
Reference pixels | 10,000 | 10,000 | |||
Producer’s accuracy | 93% | 99% | |||
NDMI differencing method | |||||
Classified data | Rubber | 9406 | 177 | 9583 | 98% |
Non-rubber | 594 | 9823 | 10,417 | 94% | |
Reference pixels | 10,000 | 10,000 | |||
Producer’s accuracy | 94% | 98% | |||
TCG differencing method | |||||
Classified data | Rubber | 8694 | 342 | 9036 | 96% |
Non-rubber | 1306 | 9658 | 10,964 | 88% | |
Reference pixels | 10,000 | 10,000 | |||
Producer’s accuracy | 87% | 97% |
4. Discussion
4.1. Phenology of Rubber Trees and Its Potential for Mapping Rubber Plantations
4.2. Uncertainties of Rubber Plantation Areas Estimated by Phenology-Based Vegetation Index Differencing
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chapman, E.C. The expansion of rubber in southern Yunnan, China. Geogr. J. 1991, 157, 36–44. [Google Scholar] [CrossRef]
- Ziegler, A.D.; Fox, J.M.; Xu, J. The rubber juggernaut. Science 2009, 324, 1024–1025. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Fox, J.M. Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl. Geogr. 2012, 32, 420–432. [Google Scholar] [CrossRef]
- Guardiola-Claramonte, M.; Troch, P.A.; Ziegler, A.D.; Giambelluca, T.W.; Durcik, M.; Vogler, J.B.; Nullet, M.A. Hydrologic effects of the expansion of rubber (Hevea brasiliensis) in a tropical catchment. Ecohydrology 2010, 3, 306–314. [Google Scholar] [CrossRef]
- Fu, Y.; Brookfield, H.; Guo, H.; Chen, J.; Chen, A.; Cui, J. Smallholder rubber plantation expansion and its impact on local livelihoods, land use and agrobiodiversity, a case study from Daka, Xishuangbanna, southwestern China. Int. J. Sustain. Dev. World Ecol. 2009, 16, 22–29. [Google Scholar] [CrossRef]
- Xiao, H.F.; Tian, Y.H.; Zhou, H.P.; Ai, X.S.; Yang, X.D.; Schaefer, D.A. Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, southwest China. Soil Biol. Biochem. 2014, 76, 161–169. [Google Scholar] [CrossRef]
- Hu, H.; Liu, W.; Cao, M. Impact of land use and land cover changes on ecosystem services in Menglun, Xishuangbanna, Southwest China. Environ. Monit. Assess. 2008, 146, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Hu, H.; Ma, Y.; Li, H. Environmental and socioeconomic impacts of increasing rubber plantations in menglun township, Southwest China. Mt. Res. Dev. 2006, 26, 245–253. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, Y.; Song, Q.; Liu, W.; Deng, X.; Tang, J.; Deng, Y.; Zhou, W.; Yang, L.; Yu, G.; et al. Rubber plantations act as water pumps in tropical China. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping rubber plantations and natural forests in Xishuangbanna (Southwest China) using multi-spectral phenological metrics from MODIS time series. Remote Sens. 2013, 5, 2795–2812. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Chen, B.Q.; Torbick, N.; Jin, C.; Zhang, G.L.; Biradar, C. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens. Environ. 2013, 134, 392–402. [Google Scholar] [CrossRef]
- Dong, J.W.; Xiao, X.M.; Sheldon, S.; Biradar, C.; Xie, G.S. Mapping tropical forests and rubber plantations in complex landscapes by integrating PALSAR and MODIS imagery. Int. J. Photogramm. Remote Sens. 2012, 74, 20–33. [Google Scholar] [CrossRef]
- Baban, S.M.J.; Wan Yusof, K. Mapping land use/cover distribution on a mountainous tropical island using remote sensing and GIS. Int. J. Remote Sens. 2001, 22, 1909–1918. [Google Scholar] [CrossRef]
- Li, H.; Aide, T.M.; Ma, Y.; Liu, W.; Cao, M. Demand for rubber is causing the loss of high diversity rain forest in SW China. Biodivers. Conserv. 2007, 16, 1731–1745. [Google Scholar] [CrossRef]
- Li, H.; Ma, Y.; Aide, T.M.; Liu, W. Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics. For. Ecol. Manag. 2008, 255, 16–24. [Google Scholar] [CrossRef]
- Li, Z.; Fox, J.M. Integrating Mahalanobis typicalities with a neural network for rubber distribution mapping. Remote Sens. Lett. 2010, 2, 157–166. [Google Scholar] [CrossRef]
- Tan, Z.; Yang, X.; Ou, Z.; Sun, H.; Chen, H.; Xi, G. The extraction of rubber spatial distributing information in hainan province based on FY-3a satellite data. In Proceedings of the World Automation Congress (WAC), Kobe, Japan, 19–23 September 2010; pp. 25–29.
- Wang, L.; Silvan-Cardenas, J.L.; Sousa, W.P. Neural network classification of mangrove species from multi-seasonal ikonos imagery. Photogramm. Eng. Remote Sens. 2008, 74, 921–927. [Google Scholar] [CrossRef]
- Prishchepov, A.V.; Radeloff, V.C.; Dubinin, M.; Alcantara, C. The effect of Landsat ETM/ETM plus image acquisition dates on the detection of agricultural land abandonment in Eastern Europe. Remote Sens. Environ. 2012, 126, 195–209. [Google Scholar] [CrossRef]
- Salni, M.; Christian, B.; Joshi, N.; Vyas, D.; Marpu, P.; Krishnayya, N.S.R. Hyperspectral data dimensionality reduction and the impact of multi-seasonal Hyperion EO-1 Imagery on classification accuracies of tropical forest species. Photogramm. Eng. Remote Sens. 2014, 80, 773–784. [Google Scholar] [CrossRef]
- Mickelson, J.G.; Civco, D.L.; Silander, J. Delineating forest canopy species in the northeastern United States using multi-temporal TM imagery. Photogramm. Eng. Remote Sens. 1998, 64, 891–904. [Google Scholar]
- Dymond, C.C.; Mladenoff, D.J.; Radeloff, V.C. Phenological differences in Tasseled Cap indices improve deciduous forest classification. Remote Sens. Environ. 2002, 80, 460–472. [Google Scholar] [CrossRef]
- Nitze, I.; Barrett, B.; Cawkwell, F. Temporal optimisation of image acquisition for land cover classification with Random Forest and MODIS time-series. Int. J. Appl. Earth Obs. Geoinf. 2015, 34, 136–146. [Google Scholar] [CrossRef]
- Goodenough, D.G.; Bhogal, A.S.; Hao, C.; Dyk, A. Comparison of methods for estimation of Kyoto protocol products of forests from multitemporal Landsat. In Proceedings of the IEEE 2001 International Geoscience and Remote Sensing Symposium, IGARSS 2001, Sydney, NSW, Australia, 9–13 July 2001; pp. 764–767.
- Fan, H.; He, D. Identifying phenological characteristics of highland and mountain forests in Yunnan Using MODIS EVI time-series data. J. Mt. Sci. 2012, 30, 16–23. (In Chinese) [Google Scholar]
- Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [Google Scholar] [CrossRef]
- Xishuangbanna Bureau of Statistics. The 2013 Xishuangbanna Economic and Social Development Statistics Bulletin. 2013. Available online: http://dq.xxgk.yn.gov.cn/Z_M_012/Info_Detail.aspx?DocumentKeyID=3A7E2A1D5B1C4588A5D63133E846A41A (accessed on 22 October 2014). [Google Scholar]
- Lu, D. A preliminary analysis on the seasonal structure and biological rhythm of tropical rainforest regions in Southern Yunnan. J. Ecol. 1985, 3, 10–15. (In Chinese) [Google Scholar]
- Zhu, H. Forest vegetation of Xishuangbanna, south China. For. Stud. China 2006, 8, 1–27. [Google Scholar]
- The USGS National Center for Earth Resources Observation and Science (EROS). Available online: http://earthexplorer.usgs.gov/ (accessed on 7 September 2014).
- Roy, D.P.; Borak, J.S.; Devadiga, S.; Wolfe, R.E.; Zheng, M.; Descloitres, J. The MODIS Land product quality assessment approach. Remote Sens. Environ. 2002, 83, 62–76. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- The USGS National Center for Earth Resources Observation and Science (EROS). Using the USGS Landsat 8 Product. Available online: http://landsat.usgs.gov/Landsat8_Using_Product.php (accessed on 21 September 2014).
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the 2002 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2002, Toronto, ON, Canada, 24–28 June 2002; pp. 1414–1418.
- Exelis Visual Information Solutions. Atmospheric Correction Module: QUAC and FLAASH User’s Guide. Available online: http://www.exelisvis.com/portals/0/pdfs/envi/Flaash_Module.pdf (accessed on 12 November 2014).
- Lu, D.S.; Ge, H.L.; He, S.Z.; Xu, A.J.; Zhou, G.M.; Du, H.Q. Pixel-based minnaert correction method for reducing topographic effects on a Landsat 7 ETM+ image. Photogramm. Eng. Remote Sens. 2008, 74, 1343–1350. [Google Scholar] [CrossRef]
- Matsushita, B.; Yang, W.; Chen, J.; Onda, Y.; Qiu, G.Y. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to topographic effects: A case study in high-density cypress forest. Sensors 2007, 7, 2636–2651. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D. Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From AVHRR to EOS-MODIS. Remote Sens. Environ. 1996, 55, 65–79. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; C.E., W.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. A physically-based transformation of thematic mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, GE-22, 256–263. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Rosin, P.L. Thresholding for change detection. Comput. Vis. Image Underst. 2002, 86, 79–95. [Google Scholar] [CrossRef]
- Rosin, P.L.; Ioannidis, E. Evaluation of global image thresholding for change detection. Pattern Recognit. Lett. 2003, 24, 2345–2356. [Google Scholar] [CrossRef]
- Morisette, J.T.; Khorram, S. Accuracy assessment curves for satellite-based change detection. Photogramm. Eng. Remote Sens. 2000, 66, 875–880. [Google Scholar]
- Lunetta, R.S.; Ediriwickrema, J.; Johnson, D.M.; Lyon, J.G.; McKerrow, A. Impacts of vegetation dynamics on the identification of land-cover change in a biologically complex community in North Carolina, USA. Remote Sens. Environ. 2002, 82, 258–270. [Google Scholar] [CrossRef]
- Im, J.; Rhee, J.; Jensen, J.R.; Hodgson, M.E. An automated binary change detection model using a calibration approach. Remote Sens. Environ. 2007, 106, 89–105. [Google Scholar] [CrossRef]
- Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Xin, Q.C.; Olofsson, P.; Zhu, Z.; Tan, B.; Woodcock, C.E. Toward near real-time monitoring of forest disturbance by fusion of MODIS and Landsat data. Remote Sens. Environ. 2013, 135, 234–247. [Google Scholar] [CrossRef]
- Xu, J.; Grumbine, R.E.; Beckschäfer, P. Landscape transformation through the use of ecological and socioeconomic indicators in Xishuangbanna, Southwest China, Mekong Region. Ecol. Indic. 2014, 36, 749–756. [Google Scholar] [CrossRef]
- Liu, X.N.; Feng, Z.M.; Jiang, L.G.; Peng, L.; Liao, C.H.; Yang, Y.Z.; You, Z. Rubber plantation and its relationship with topographical factors in the border region of China, Laos and Myanmar. J. Geogr. Sci. 2013, 23, 1019–1040. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, H.; Fu, X.; Zhang, Z.; Wu, Q. Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sens. 2015, 7, 6041-6058. https://doi.org/10.3390/rs70506041
Fan H, Fu X, Zhang Z, Wu Q. Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sensing. 2015; 7(5):6041-6058. https://doi.org/10.3390/rs70506041
Chicago/Turabian StyleFan, Hui, Xiaohua Fu, Zheng Zhang, and Qiong Wu. 2015. "Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data" Remote Sensing 7, no. 5: 6041-6058. https://doi.org/10.3390/rs70506041
APA StyleFan, H., Fu, X., Zhang, Z., & Wu, Q. (2015). Phenology-Based Vegetation Index Differencing for Mapping of Rubber Plantations Using Landsat OLI Data. Remote Sensing, 7(5), 6041-6058. https://doi.org/10.3390/rs70506041