Monitoring Coastal Water Turbidity Using Sentinel2—A Case Study in Los Angeles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Water-Quality Data Collection
2.3. Satellite Image Acquisition
2.3.1. Atmospheric Correction Methodologies
2.3.2. Data Processing
2.4. Statistical Analysis
3. Results
3.1. Result of In Situ Measurements
3.2. Analysis and Validation of Satellite Data
3.2.1. Simple Linear Regression
3.2.2. Machine Learning Algorithm Development and Validation
3.3. Spatiotemporal Variation in Water Turbidity and the Impact of Precipitation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed]
- Giannini, F.; Hunt, B.P.V.; Jacoby, D.; Costa, M. Performance of OLCI Sentinel-3A Satellite in the Northeast Pacific Coastal Waters. Remote Sens. Environ. 2021, 256, 112317. [Google Scholar] [CrossRef]
- Ahn, J.H.; Grant, S.B.; Surbeck, C.Q.; DiGiacomo, P.M.; Nezlin, N.P.; Jiang, S. Coastal Water Quality Impact of Stormwater Runoff from an Urban Watershed in Southern California. Environ. Sci. Technol. 2005, 39, 5940–5953. [Google Scholar] [CrossRef] [PubMed]
- CALIFORNIA: 2020 Census; U.S. Census Bureau: Suitland-Silver Hill, MD, USA, 2021.
- Gierach, M.M.; Holt, B.; Trinh, R.; Jack Pan, B.; Rains, C. Satellite Detection of Wastewater Diversion Plumes in Southern California. Estuar. Coast. Shelf Sci. 2017, 186, 171–182. [Google Scholar] [CrossRef]
- Akbar, T.A.; Hassan, Q.K.; Achari, G. A Remote Sensing based Framework for Predicting Water Quality of Different Source Waters. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 34, 1–4. [Google Scholar]
- Xu, M.; Barnes, B.B.; Hu, C.; Carlson, P.R.; Yarbro, L.A. Water Clarity Monitoring in Complex Coastal Environments: Leveraging Seagrass Light Requirement toward More Functional Satellite Ocean Color Algorithms. Remote Sens. Environ. 2023, 286, 113418. [Google Scholar] [CrossRef]
- Garg, V.; Aggarwal, S.P.; Chauhan, P. Changes in Turbidity along Ganga River Using Sentinel-2 Satellite Data during Lockdown Associated with COVID-19. Geomat. Nat. Hazards Risk 2020, 11, 1175–1195. [Google Scholar] [CrossRef]
- Gordon, H.R.; Clark, D.K.; Mueller, J.L.; Hovis, W.A. Phytoplankton Pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with Surface Measurements. Science 1980, 210, 63–66. [Google Scholar] [CrossRef]
- Hovis, W.A.; Clark, D.K.; Anderson, F.; Austin, R.W.; Wilson, W.H.; Baker, E.T.; Ball, D.; Gordon, H.R.; Mueller, J.L.; El-Sayed, S.Z.; et al. Nimbus-7 Coastal Zone Color Scanner: System Description and Initial Imagery. Science 1980, 210, 60–63. [Google Scholar] [CrossRef]
- Goodin, D.G. Analysis of Suspended Solids in Water Using Remotely Sensed High Resolution Derivative Spectra. Photogramm. Eng. Remote Sens. 1993, 59, 505–510. [Google Scholar]
- Zheng, Z.; Ren, J.; Li, Y.; Huang, C.; Liu, G.; Du, C.; Lyu, H. Remote Sensing of Diffuse Attenuation Coefficient Patterns from Landsat 8 OLI Imagery of Turbid Inland Waters: A Case Study of Dongting Lake. Sci. Total Environ. 2016, 573, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Tzortziou, M.; Hu, C.; Mannino, A.; Fichot, C.G.; Del Vecchio, R.; Najjar, R.G.; Novak, M. Remote Sensing Retrievals of Colored Dissolved Organic Matter and Dissolved Organic Carbon Dynamics in North American Estuaries and Their Margins. Remote Sens. Environ. 2018, 205, 151–165. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Faux, R.N.; McIntosh, B.A.; Poage, N.J.; Norton, D.J. Airborne Thermal Remote Sensing for Water Temperature Assessment in Rivers and Streams. Remote Sens. Environ. 2001, 76, 386–398. [Google Scholar] [CrossRef]
- Le, C.; Hu, C.; Cannizzaro, J.; English, D.; Muller-Karger, F.; Lee, Z. Evaluation of Chlorophyll-a Remote Sensing Algorithms for an Optically Complex Estuary. Remote Sens. Environ. 2013, 129, 75–89. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. GOCI, the World’s First Geostationary Ocean Color Observation Satellite, for the Monitoring of Temporal Variability in Coastal Water Turbidity: Goci for Coastal Water Turbidity. J. Geophys. Res. 2012, 117, C09004. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.-M.; Castaing, P.; Babin, M. Dynamics of the Turbidity Maximum Zone in a Macrotidal Estuary (the Gironde, France): Observations from Field and MODIS Satellite Data. Estuar. Coast. Shelf Sci. 2009, 81, 321–332. [Google Scholar] [CrossRef]
- Ma, Y.; Song, K.; Wen, Z.; Liu, G.; Shang, Y.; Lyu, L.; Du, J.; Yang, Q.; Li, S.; Tao, H.; et al. Remote Sensing of Turbidity for Lakes in Northeast China Using Sentinel-2 Images With Machine Learning Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9132–9146. [Google Scholar] [CrossRef]
- Magrì, S.; Ottaviani, E.; Prampolini, E.; Federici, B.; Besio, G.; Fabiano, B. Application of Machine Learning Techniques to Derive Sea Water Turbidity from Sentinel-2 Imagery. Remote Sens. Appl. Soc. Environ. 2023, 30, 100951. [Google Scholar] [CrossRef]
- Potes, M.; Costa, M.J.; Salgado, R. Satellite Remote Sensing of Water Turbidity in Alqueva Reservoir and Implications on Lake Modelling. Hydrol. Earth Syst. Sci. 2012, 16, 1623–1633. [Google Scholar] [CrossRef]
- Huovinen, P.; Ramírez, J.; Caputo, L.; Gómez, I. Mapping of Spatial and Temporal Variation of Water Characteristics through Satellite Remote Sensing in Lake Panguipulli, Chile. Sci. Total Environ. 2019, 679, 196–208. [Google Scholar] [CrossRef]
- Sent, G.; Biguino, B.; Favareto, L.; Cruz, J.; Sá, C.; Dogliotti, A.I.; Palma, C.; Brotas, V.; Brito, A.C. Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal. Remote Sens. 2021, 13, 1043. [Google Scholar] [CrossRef]
- Kieu, H.T.; Pak, H.Y.; Trinh, H.L.; Pang, D.S.C.; Khoo, E.; Law, A.W.-K. UAV-Based Remote Sensing of Turbidity in Coastal Environment for Regulatory Monitoring and Assessment. Mar. Pollut. Bull. 2023, 196, 115482. [Google Scholar] [CrossRef] [PubMed]
- Sòria-Perpinyà, X.; Vicente, E.; Urrego, P.; Pereira-Sandoval, M.; Tenjo, C.; Ruíz-Verdú, A.; Delegido, J.; Soria, J.M.; Peña, R.; Moreno, J. Validation of Water Quality Monitoring Algorithms for Sentinel-2 and Sentinel-3 in Mediterranean Inland Waters with In Situ Reflectance Data. Water 2021, 13, 686. [Google Scholar] [CrossRef]
- Nezlin, N.P.; DiGiacomo, P.M.; Jones, B.H.; Reifel, K.M.; Warrick, J.A.; Johnson, S.C.; Mengel, M.J. MODIS Imagery as a Tool for Synoptic Water Quality Assessments in the Southern California Coastal Ocean. In Optical Engineering + Applications; Frouin, R.J., Ed.; SPIE: San Diego, CA, USA, 2007; p. 66800T. [Google Scholar]
- Laureano-Rosario, A.E.; Duncan, A.P.; Symonds, E.M.; Savic, D.A.; Muller-Karger, F.E. Predicting Culturable Enterococci Exceedances at Escambron Beach, San Juan, Puerto Rico Using Satellite Remote Sensing and Artificial Neural Networks. J. Water Health 2019, 17, 137–148. [Google Scholar] [CrossRef]
- Bengoufa, S.; Niculescu, S.; Mihoubi, M.K.; Belkessa, R.; Rami, A.; Rabehi, W.; Abbad, K. Machine Learning and Shoreline Monitoring Using Optical Satellite Images: Case Study of the Mostaganem Shoreline, Algeria. J. Appl. Rem. Sens. 2021, 15, 026509. [Google Scholar] [CrossRef]
- Chang, N.-B.; Bai, K.; Chen, C.-F. Integrating Multisensor Satellite Data Merging and Image Reconstruction in Support of Machine Learning for Better Water Quality Management. J. Environ. Manag. 2017, 201, 227–240. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.; Ho, H.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef]
- Krishnaraj, A.; Honnasiddaiah, R. Remote Sensing and Machine Learning Based Framework for the Assessment of Spatio-Temporal Water Quality in the Middle Ganga Basin. Environ. Sci. Pollut. Res. 2022, 29, 64939–64958. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Mauzole, Y.L.; Torres, H.S.; Fu, L.-L. Patterns and Dynamics of SST Fronts in the California Current System. JGR Ocean. 2020, 125, e2019JC015499. [Google Scholar] [CrossRef]
- Pauly, D.; Christensen, V. Primary Production Required to Sustain Global Fisheries. Nature 1995, 374, 255–257. [Google Scholar] [CrossRef]
- Standard Methods for the Examination of Water and Wastewater. 2540 SOLIDS. Available online: https://www.standardmethods.org/doi/10.2105/SMWW.2882.030 (accessed on 17 December 2024).
- Zhang, S.; Wang, D.; Gong, F.; Xu, Y.; He, X.; Zhang, X.; Fu, D. Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters. Remote Sens. 2023, 15, 2353. [Google Scholar] [CrossRef]
- Maciel, F.P.; Pedocchi, F. Evaluation of ACOLITE Atmospheric Correction Methods for Landsat-8 and Sentinel-2 in the Río de La Plata Turbid Coastal Waters. Int. J. Remote Sens. 2022, 43, 215–240. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry. Opt. Express 2020, 28, 29948. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Dogliotti, A.I.; Ruddick, K.G.; Nechad, B.; Doxaran, D.; Knaeps, E. A Single Algorithm to Retrieve Turbidity from Remotely-Sensed Data in All Coastal and Estuarine Waters. Remote Sens. Environ. 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Cira, M.; Bafna, A.; Lee, C.M.; Kong, Y.; Holt, B.; Ginger, L.; Cawse-Nicholson, K.; Rieves, L.; Jay, J.A. Turbidity and Fecal Indicator Bacteria in Recreational Marine Waters Increase Following the 2018 Woolsey Fire. Sci. Rep. 2022, 12, 2428. [Google Scholar] [CrossRef]
- Kong, Y.; Jay, J. Monitoring the Coastal Water Quality of Santa Monica Bay Area, Los Angeles, California Using Sentinel-2. Master’s Thesis, University of California, Los Angeles, CA, USA, 2021. [Google Scholar]
- Chen, Z.-S.; Zhu, B.; He, Y.-L.; Yu, L.-A. A PSO Based Virtual Sample Generation Method for Small Sample Sets: Applications to Regression Datasets. Eng. Appl. Artif. Intell. 2017, 59, 236–243. [Google Scholar] [CrossRef]
- Li, D.-C.; Fang, Y.-H. A Non-Linearly Virtual Sample Generation Technique Using Group Discovery and Parametric Equations of Hypersphere. Expert Syst. Appl. 2009, 36, 844–851. [Google Scholar] [CrossRef]
- Arslan, M.; Guzel, M.; Demirci, M.; Ozdemir, S. SMOTE and Gaussian Noise Based Sensor Data Augmentation. In Proceedings of the 2019 4th International Conference on Computer Science and Engineering (UBMK), Samsun, Turkey, 11–15 September 2019; pp. 1–5. [Google Scholar]
- EL Bilali, A.; Taleb, A.; Bahlaoui, M.A.; Brouziyne, Y. An Integrated Approach Based on Gaussian Noises-Based Data Augmentation Method and AdaBoost Model to Predict Faecal Coliforms in Rivers with Small Dataset. J. Hydrol. 2021, 599, 126510. [Google Scholar] [CrossRef]
- Downing, J. Twenty-Five Years with OBS Sensors: The Good, the Bad, and the Ugly. Cont. Shelf Res. 2006, 26, 2299–2318. [Google Scholar] [CrossRef]
- Wu, J.-L.; Ho, C.-R.; Huang, C.-C.; Srivastav, A.; Tzeng, J.-H.; Lin, Y.-T. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids. Sensors 2014, 14, 22670–22688. [Google Scholar] [CrossRef] [PubMed]
- Park, G.S. The Role and Distribution of Total Suspended Solids in the Macrotidal Coastal Waters of Korea. Environ. Monit Assess 2007, 135, 153–162. [Google Scholar] [CrossRef]
- Rajaee, T.; Jafari, H. Two Decades on the Artificial Intelligence Models Advancement for Modeling River Sediment Concentration: State-of-the-Art. J. Hydrol. 2020, 588, 125011. [Google Scholar] [CrossRef]
- Nagayama, K.; Tonooka, H. Prediction of the Area of High-Turbidity Water in the Yatsushiro Sea, Japan, Using Machine Learning with Satellite, Meteorological, and Oceanographic Data. Remote Sens. 2023, 15, 1652. [Google Scholar] [CrossRef]
- Brown, J.S.; Stein, E.D.; Ackerman, D.; Dorsey, J.H.; Lyon, J.; Carter, P.M. Metals and Bacteria Partitioning to Various Size Particles in Ballona Creek Storm Water Runoff. Environ. Toxicol. Chem. 2013, 32, 320–328. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, F.; Chen, S.; Wang, C.; Chen, J.; Zhou, H.; Xue, Y. Remote Sensing Evaluation of Total Suspended Solids Dynamic with Markov Model: A Case Study of Inland Reservoir across Administrative Boundary in South China. Sensors 2020, 20, 6911. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, D.; Yang, Q.; Pan, S.; Gai, Y.; Cheng, W.; Liu, X.; Tang, S. Variations of Water Transparency and Impact Factors in the Bohai and Yellow Seas from Satellite Observations. Remote Sens. 2021, 13, 514. [Google Scholar] [CrossRef]
- Gayol, M.P.; Dogliotti, A.I.; Lagomarsino, L.; Zagarese, H.E. Temporal and Spatial Variability of Turbidity in a Highly Productive and Turbid Shallow Lake (Chascomús, Argentina) Using a Long Time-Series of Landsat and Sentinel-2 Data. Hydrobiologia 2024, 851, 4177–4199. [Google Scholar] [CrossRef]
- Lau, S.; Han, Y.; Kang, J.; Kayhanian, M.; Stenstrom, M.K. Characteristics of Highway Stormwater Runoff in Los Angeles: Metals and Polycyclic Aromatic Hydrocarbons. Water Environ. Res. 2009, 81, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Surbeck, C.Q.; Jiang, S.C.; Ahn, J.H.; Grant, S.B. Flow Fingerprinting Fecal Pollution and Suspended Solids in Stormwater Runoff from an Urban Coastal Watershed. Environ. Sci. Technol. 2006, 40, 4435–4441. [Google Scholar] [CrossRef] [PubMed]
- Tilburg, C.E.; Jordan, L.M.; Carlson, A.E.; Zeeman, S.I.; Yund, P.O. The Effects of Precipitation, River Discharge, Land Use and Coastal Circulation on Water Quality in Coastal Maine. R. Soc. Open Sci. 2015, 2, 140429. [Google Scholar] [CrossRef] [PubMed]
- James, I.D. Modelling Pollution Dispersion, the Ecosystem and Water Quality in Coastal Waters: A Review. Environ. Model. Softw. 2002, 17, 363–385. [Google Scholar] [CrossRef]
- Chomicki, K.M.; Taylor, W.D.; Brown, C.J.M.; Dove, A.; Bowen, G.S.; Mohamed, M.N. Seasonal Variation in the Influence of Environmental Drivers on Nearshore Water Quality along an Urban Northern Lake Ontario Shoreline. J. Great Lakes Res. 2022, 48, 914–926. [Google Scholar] [CrossRef]
- Huyer, A. Coastal Upwelling in the California Current System. Prog. Oceanogr. 1983, 12, 259–284. [Google Scholar] [CrossRef]
- Chavez, F.P.; Messié, M. A Comparison of Eastern Boundary Upwelling Ecosystems. Prog. Oceanogr. 2009, 83, 80–96. [Google Scholar] [CrossRef]
- Van Kemenade, Z.R.; Erdem, Z.; Hopmans, E.C.; Sinninghe Damsté, J.S.; Rush, D. Loss of Nitrogen via Anaerobic Ammonium Oxidation (Anammox) in the California Current System during the Late Quaternary. Biogeosciences 2024, 21, 1517–1532. [Google Scholar] [CrossRef]
- Lin, X.; Wu, M.; Shao, X.; Li, G.; Hong, Y. Water Turbidity Dynamics Using Random Forest in the Yangtze River Delta Region, China. Sci. Total Environ. 2023, 903, 166511. [Google Scholar] [CrossRef]
- He, L.-M.; He, Z.-L. Water Quality Prediction of Marine Recreational Beaches Receiving Watershed Baseflow and Stormwater Runoff in Southern California, USA. Water Res. 2008, 42, 2563–2573. [Google Scholar] [CrossRef]
- Dwight, R.H.; Caplan, J.S.; Brinks, M.V.; Catlin, S.N.; Buescher, G.; Semenza, J.C. Influence of Variable Precipitation on Coastal Water Quality in Southern California. Water Environ. Res. 2011, 83, 2121–2130. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.W. A Current Review of Empirical Procedures of Remote Sensing in Inland and Near-Coastal Transitional Waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Yu, X.; Lee, Z.; Shen, F.; Wang, M.; Wei, J.; Jiang, L.; Shang, Z. An Empirical Algorithm to Seamlessly Retrieve the Concentration of Suspended Particulate Matter from Water Color across Ocean to Turbid River Mouths. Remote Sens. Environ. 2019, 235, 111491. [Google Scholar] [CrossRef]
- Ouma, Y.O.; Noor, K.; Herbert, K. Modelling Reservoir Chlorophyll-a, TSS, and Turbidity Using Sentinel-2A MSI and Landsat-8 OLI Satellite Sensors with Empirical Multivariate Regression. J. Sens. 2020, 2020, 1–21. [Google Scholar] [CrossRef]
- Viani, A.; Orusa, T.; Borgogno-Mondino, E.; Orusa, R. A One Health Google Earth Engine Web-GIS Application to Evaluate and Monitor Water Quality Worldwide. Euro-Mediterr. J. Environ. Integr. 2024, 9, 1873–1886. [Google Scholar] [CrossRef]
- Gohin, F.; Bryère, P.; Lefebvre, A.; Sauriau, P.-G.; Savoye, N.; Vantrepotte, V.; Bozec, Y.; Cariou, T.; Conan, P.; Coudray, S.; et al. Satellite and In Situ Monitoring of Chl-a, Turbidity, and Total Suspended Matter in Coastal Waters: Experience of the Year 2017 along the French Coasts. JMSE 2020, 8, 665. [Google Scholar] [CrossRef]
- Mumuni, A.; Mumuni, F. Data Augmentation: A Comprehensive Survey of Modern Approaches. Array 2022, 16, 100258. [Google Scholar] [CrossRef]
- Jay, S.; Guillaume, M.; Minghelli, A.; Deville, Y.; Chami, M.; Lafrance, B.; Serfaty, V. Hyperspectral Remote Sensing of Shallow Waters: Considering Environmental Noise and Bottom Intra-Class Variability for Modeling and Inversion of Water Reflectance. Remote Sens. Environ. 2017, 200, 352–367. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, J.; Sun, F.; Wang, S. Spatial-Temporal Evolution and Influencing Factors Analysis of Ecosystem Services Value: A Case Study in Sunan Canal Basin of Jiangsu Province, Eastern China. Remote Sens. 2022, 15, 112. [Google Scholar] [CrossRef]
Training Dataset | Test Dataset | |||||||
---|---|---|---|---|---|---|---|---|
MSE (NTU2) | RMSE (NTU) | MAE (NTU) | R2 | MSE (NTU2) | RMSE (NTU) | MAE (NTU) | R2 | |
RR | 4.865 | 2.206 | 1.482 | 0.461 | 2.908 | 1.705 | 1.367 | 0.344 |
GBR | 2.629 | 1.621 | 1.081 | 0.708 | 1.9 | 1.378 | 1.134 | 0.571 |
RF | 1.133 | 1.065 | 0.603 | 0.874 | 1.632 | 1.277 | 0.944 | 0.632 |
SVR | 4.632 | 2.152 | 1.071 | 0.486 | 2.294 | 1.515 | 1.009 | 0.482 |
SLR | 4.865 | 2.206 | 1.481 | 0.461 | 2.92 | 1.709 | 1.368 | 0.341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Jimenez, K.; Lee, C.M.; Winter, S.; Summers-Evans, J.; Cao, A.; Menczer, M.; Han, R.; Mills, C.; McCarthy, S.; et al. Monitoring Coastal Water Turbidity Using Sentinel2—A Case Study in Los Angeles. Remote Sens. 2025, 17, 201. https://doi.org/10.3390/rs17020201
Kong Y, Jimenez K, Lee CM, Winter S, Summers-Evans J, Cao A, Menczer M, Han R, Mills C, McCarthy S, et al. Monitoring Coastal Water Turbidity Using Sentinel2—A Case Study in Los Angeles. Remote Sensing. 2025; 17(2):201. https://doi.org/10.3390/rs17020201
Chicago/Turabian StyleKong, Yuwei, Karina Jimenez, Christine M. Lee, Sophia Winter, Jasmine Summers-Evans, Albert Cao, Massimiliano Menczer, Rachel Han, Cade Mills, Savannah McCarthy, and et al. 2025. "Monitoring Coastal Water Turbidity Using Sentinel2—A Case Study in Los Angeles" Remote Sensing 17, no. 2: 201. https://doi.org/10.3390/rs17020201
APA StyleKong, Y., Jimenez, K., Lee, C. M., Winter, S., Summers-Evans, J., Cao, A., Menczer, M., Han, R., Mills, C., McCarthy, S., Blatzheim, K., & Jay, J. A. (2025). Monitoring Coastal Water Turbidity Using Sentinel2—A Case Study in Los Angeles. Remote Sensing, 17(2), 201. https://doi.org/10.3390/rs17020201