Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Long Time Series InSAR for Joint Multi-Platform Satellites
3.1.1. TS-InSAR for Single Satellite Platforms
3.1.2. Fusion the Deformation Results Obtained from Multi-Platform Satellites
3.2. Principal Component Analysis
- D is centralized and standardized to obtain ;
- The covariance matrix C of matrix is calculated by the following equation:
- By applying eigen-decomposition to C, it can obtain the eigenvalue matrix denoted as ∧ and the corresponding orthogonal eigenvector matrix P, which satisfied . The eigenvectors, also known as coefficients or loadings, represent the contribution of each original variable to each principal component (PC). The eigenvalue quantifies the proportion of variance in the original data that is captured by each PC. The eigenvalues are usually arranged in a descending order, and this implies that the first principal component (PC), which has the highest variance contribution, serves as the primary explainer of the dataset’s variability. The variance contribution (VC) of each PC can be calculated by the following equation:
- Automated determination of the best number of PCs is carried out [32]. This process involves utilizing a Scree plot, which graphs the eigenvalues against the component count, identifying the optimal number of PCs by locating the “elbow” point on the curve.
3.3. K-Means Clustering
- The centroids (k = 1, 2, …, K) of the K desired clusters were initialized randomly. The quantity of clusters, K, is autonomously set based on the ideal count of PCs. Performing PCA prior to K-means clustering can mitigate the issue of Euclidean space inflation and enhance computational efficiency [31].
- Each data sample was allocated to the nearest cluster centroid , i.e., with the the smallest Euclidean distance which is defined by the following equation:
- The cluster centroids were adjusted to the average values of their respective associated data samples:
- Iterative steps 2 and 3 until the centroids and the assignment of measurement points remain unchanged.
4. Results and Discussion
4.1. Deformation Monitoring Results of TS-InSAR
4.1.1. LOS Deformation Result from Single Satellite Platform
4.1.2. Long-Term Vertical Deformation Result from Multi-Platform Satellite
4.1.3. Verification of Deformation Results from TS-InSAR
4.2. Quantitative Analysis of Driving Factors for Subsidence at Pudong International Airport Based on PCA
4.3. Classification Results of Time Series Deformation Patterns Based on K-Means Clustering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rigamonti, S.G.; Frattini, D.P.; Crosta, G.B. A Multivariate Time Series Analysis of Ground Deformation Using Persistent Scatterer Interferometry. Remote Sens. 2023, 15, 3082. [Google Scholar] [CrossRef]
- Wang, R.; Yang, T.; Yang, M.; Liao, M.; Lin, J. A safety analysis of elevated highways in Shanghai linked to dynamic load using long-term time-series of InSAR stacks. Remote Sens. Lett. 2019, 10, 1133–1142. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Liang, H.; Wang, C.; Ding, X.; Zhang, L. Detecting the Deformation Anomalies Induced by Underground Construction Using Multiplatform MT-InSAR: A Case Study in To Kwa Wan Station, Hong Kong. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9803–9814. [Google Scholar] [CrossRef]
- Zheng, Y.; Peng, J.; Chen, X.; Huang, C.; Chen, P.; Li, S.; Su, Y. Spatial and Temporal Evolution of Ground Subsidence in the Beijing Plain Area Using Long Time Series Interferometry. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 153–165. [Google Scholar] [CrossRef]
- Berardino, P.G.; Lanari, F.R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Raucoules, D.B.; Michele, B.M.; Cozannet, G.L.; Closset, L.; Veldkamp, B.H.; Bateson, T.L.; Crosetto, M.; Agudo, M.; Engdahl, M. Validation and intercomparison of persistent scatterers interferometry: PSIC4 project results. J. Appl. Geophys. 2009, 68, 335–347. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Yang, M.; Li, M.; Huang, C.; Zhang, R.; Liu, R. Exploring the InSAR Deformation Series Using Unsupervised Learning in a Built Environment. Remote Sens. 2024, 16, 1375. [Google Scholar] [CrossRef]
- Zhang, J.; Ke, C.; Shen, X.; Lin, J.; Wang, R. Monitoring Land Subsidence along the Subways in Shanghai on the Basis of Time-Series InSAR. Remote Sens. 2023, 15, 908. [Google Scholar] [CrossRef]
- Dai, K.; Liu, G.; Li, Z.; Li, T.; Yu, B.; Wang, X. Extracting Vertical Displacement Rates in Shanghai (China) with Multi-Platform SAR Images. Remote Sens. 2015, 7, 9542–9562. [Google Scholar] [CrossRef]
- Dong, S.; Samsonov, S.; Yin, H.; Ye, S.; Cao, Y. Time-series analysis of subsidence associated with rapid urbanization in Shanghai, China measured with SBAS InSAR method. Environ. Earth Sci. 2014, 72, 677–691. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.; Lin, H. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed persistent scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Qin, X.; Yang, T.; Yang, M.; Zhang, L.; Liao, M. Health Diagnosis of Major Transportation Infrastructures in Shanghai Metropolis Using High-Resolution Persistent Scatterer Interferometry. Sensors 2017, 17, 2270. [Google Scholar] [CrossRef]
- An, B.; Jiang, Y.; Wang, C.; Shen, P.; Song, T.; Hu, C.; Liu, K. Ground Infrastructure Monitoring in Coastal Areas Using Time-Series inSAR Technology: The Case Study of Pudong International Airport, Shanghai. Int. J. Digit. Earth. 2023, 16, 355–374. [Google Scholar] [CrossRef]
- Zhao, Q.; Pepe, A.; Gao, Z.; Lu, M.; Bonano, M.; Wang, H.; Tang, X. A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean-Reclaimed Lands in Shanghai. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1763–1781. [Google Scholar] [CrossRef]
- Haghighi, M.H.; Motagh, M. Ground surface response to continuous compaction of aquifer system in Tehran, Iran: Results from a long-term multi-sensor InSAR analysis. Remote Sens. Environ. 2019, 221, 534–550. [Google Scholar] [CrossRef]
- Yastika, P.E.; Shimizu, N.; Abidin, H.Z. Monitoring of long-term land subsidence from 2003 to 2017 in coastal area of Semarang, Indonesia by SBAS DInSAR analyses using Envisat-ASAR, ALOS-PALSAR, and Sentinel-1A SAR data. Adv Space Res. 2019, 63, 1719–1736. [Google Scholar] [CrossRef]
- Zhang, B.; Chang, L.; Stein, A. A model-backfeed deformation estimation method for revealing 20-year surface dynamics of the Groningen gas field using multi-platform SAR imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102847. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, G.; Wang, Q.; Yang, T.; Liu, M.; Gao, W.; Falabella, F.; Mastro, P.; Pepe, A. Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS J. Photogramm. Remote Sens. 2019, 154, 10–27. [Google Scholar] [CrossRef]
- Wang, B.; Zhao, C.; Zhang, Q.; Lu, Z.; Pepe, A. Long-term continuously updated deformation time series from multisensor InSAR in Xi’an, China from 2007 to 2021. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7297–7309. [Google Scholar] [CrossRef]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The use of C-/X-band time-gapped SAR data and geotechnical models for the study of Shanghai’s ocean-reclaimed lands through the SBAS-DInSAR technique. Remote Sens. 2016, 8, 911. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Zhang, W. 40-Year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Sci. Bull. 2019, 64, 756–763. [Google Scholar] [CrossRef]
- Zebker, H.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, Q.; Liu, Y.; Li, X.; Gao, L. The Optimum Selection of Common Master Image for Series of Differential SAR Processing to Estimate Long and Slow Ground Deformation. In Proceedings of the IGARSS 2005—2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 25–29 July 2005; pp. 4586–4589. [Google Scholar]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volca’n Alcedo, Gala´pagos. J. Geophys. Res. Solid Earth 2007, 112, B07407. [Google Scholar] [CrossRef]
- Yu, L.; Yang, T.L.; Zhao, Q.; Liu, M.; Pepe, A. The 2015–2016 Ground Displacements of the Shanghai Coastal Area Inferred from a Combined COSMO-SkyMed/Sentinel-1 DInSAR Analysis. Remote Sens. 2017, 9, 1194. [Google Scholar] [CrossRef]
- Yang, P.; Tang, Y.; Zhou, N.; Wang, J. Consolidation settlement of Shanghai dredger fill under self-weight using centrifuge modeling test. J. Cent. S. Univ. Technol. 2008, 39, 862–866. (In Chinese) [Google Scholar]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Festa, D.; Novellino, A.; Hussain, E.; Bateson, L.; Casagli, N.; Confuorto, P.; Soldato, M.D.; Raspini, F. Unsupervised detection of InSAR time series patterns based on PCA and K-means clustering. Int. J. Appl. Earth Obs. Geoinf. 2023, 118, 103276. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Chaussard, E.; Bürgmann, R.; Shirzaei, M.; Fielding, E.J.; Baker, B. Predictability of hydraulic head changes and characterization of aquifer-system and fault properties from InSAR-derived ground deformation. J. Geophys. Res. Solid Earth. 2014, 119, 6572–6590. [Google Scholar] [CrossRef]
- Gaddes, M.E.; Hooper, A.; Bagnardi, M.; Inman, H.; Albino, F. Blind Signal Separation Methods for InSAR: The Potential to Automatically Detect and Monitor Signals of Volcanic Deformation. J. Geophys. Res. Solid Earth. 2018, 123, 10226–10251. [Google Scholar] [CrossRef]
- Ebmeier, S.K. Application of independent component analysis to multitemporal InSAR data with volcanic case studies. J. Geophys. Res. Solid Earth. 2016, 121, 8970–8986. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, K.; Yan, S.; Zhang, K.; Zhang, H.; Liu, X.; Li, H.; Sun, Y. Monitoring land surface displacement over Xuzhou (China) in 2015-2018 through PCA-based correction Applied to SAR interferometry. Remote Sens. 2019, 11, 1494. [Google Scholar] [CrossRef]
- Richman, M.B. Rotation of principal components. J. Climatol. 1986, 6, 293–335. [Google Scholar] [CrossRef]
- Wang, G.; Li, P.; Li, Z.; Liang, C.; Wang, H. Coastal subsidence detection and characterization caused by brine mining over the Yellow River Delta using time series InSAR and PCA. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103077. [Google Scholar] [CrossRef]
- MacQueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21–18 June 1965 and 27 December 1965–7 January 1966; pp. 281–297. [Google Scholar]
- Taravatrooy, N.; Nikoo, M.R.; Sadegh, M.; Parvinnia, M. A hybrid clustering-fusion methodology for land subsidence estimation. Nat. Hazards 2018, 94, 905–926. [Google Scholar] [CrossRef]
- Izumi, Y.; Nico, G.; Sato, M. Time-Series Clustering Methodology for Estimating Atmospheric Phase Screen in Ground-Based InSAR Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5206309. [Google Scholar] [CrossRef]
- Abdullahi, S.; Schardt, M.; Pretzsch, H. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data—A case study in complex temperate forest stands. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 36–48. [Google Scholar] [CrossRef]
- Peng, M.; Motagh, M.; Lu, Z.; Xia, Z.; Guo, Z.; Zhao, C.; Liu, Q. Characterization and Prediction of InSAR-Derived Ground Motion with ICA-Assisted LSTM Model. Remote Sens. Environ. 2024, 301, 113923. [Google Scholar] [CrossRef]
- Wei, M.; Sandwell, D. Decorrelation of L-Band and C-Band Interferometry Over Vegetated Areas in California. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2942–2952. [Google Scholar] [CrossRef]
- Morishita, Y.; Hanssen, R. Temporal Decorrelation in L-, C-, and X-band Satellite Radar Interferometry for Pasture on Drained Peat Soils. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1096–1104. [Google Scholar] [CrossRef]
- Chong, Y.; Zeng, Q.; Long, J. The Influence of SAR Image Resolution, Wavelength and Land Cover Type on Characteristics of Persistent Scatterer. PFG–J. Photogramm. Remote Sens. Geoinf. Sci. 2024, 92, 271–290. [Google Scholar] [CrossRef]
- Huang, S.; Zebker, H. Persistent Scatterer Density by Image Resolution and Terrain Type. IEEE J. Sel. Top. Appl. Earth Obs.Remote Sens. 2019, 12, 2069–2079. [Google Scholar] [CrossRef]
- Shi, Y.; Yan, X.; Chen, D. Construction of engineering geological structure and geological condition evaluation of Shanghai sea-land body. Hydrogeol. Eng. Geol. 2017, 44, 96–101. (In Chinese) [Google Scholar]
Satellite | Polarization | Mode | Orbit Direction | Number of Image | Acquisition Span |
---|---|---|---|---|---|
ALOS-1 PALSAR | HH | FBD | Ascending | 19 | January 2007 to September 2010 |
ENVISAT ASAR | VV | IMS | Ascending | 22 | February 2007 to September 2010 |
Sentinel-1A | VV | IW | Ascending | 20 | April 2015 to May 2018 |
Geologic Time | Soil Layer Name | Burial Depth (m) | Genetic Type | Compactness |
---|---|---|---|---|
Holocene Q4-3 | Dredger fill | 0 | Labor | Loose |
Holocene Q4-3 | Brown-yellow clay | 0.5–2 | Littoral estuary | Plasticity |
Holocene Q4-2 | Gray silty clay | 3–7 | Coastal–shallow sea | Rheoplastic |
Pleistocene Q3-2 | Dark green clay | 15–32 | Estuary–lake | Plastic–hard plastic |
Pleistocene Q3-2 | Grass yellow-gray silty sand | 20–35 | Estuarine–coastal | Medium–dense |
Pleistocene Q3-2 | Gray fine sand | 35–40 | Littoral estuary | Dense |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chong, Y.; Zeng, Q. Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering. Remote Sens. 2024, 16, 4188. https://doi.org/10.3390/rs16224188
Chong Y, Zeng Q. Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering. Remote Sensing. 2024; 16(22):4188. https://doi.org/10.3390/rs16224188
Chicago/Turabian StyleChong, Yahui, and Qiming Zeng. 2024. "Long-Term Ground Deformation Monitoring and Quantitative Interpretation in Shanghai Using Multi-Platform TS-InSAR, PCA, and K-Means Clustering" Remote Sensing 16, no. 22: 4188. https://doi.org/10.3390/rs16224188