Assessment of Atmospheric Correction Algorithms for Correcting Sunglint Effects in Sentinel-2 MSI Imagery: A Case Study in Clean Lakes
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Satellite Data and Data Matching
2.4. Atmospheric Correction Algorithms
2.5. Sunglint Image Statistics and Angle Information
2.6. Classification of Water Types
2.7. Accuracy Assessment
2.7.1. Statistical Metrics
2.7.2. Ranking Scores
3. Results
3.1. Bio-Optical Characteristics of Study Areas
3.2. Assessment of the Atmospheric Correction Algorithms
3.2.1. Single Bands
3.2.2. Band Ratios
3.2.3. Ranking
3.3. Capability of Sunglint Correction
3.3.1. Sunglint Image Statistics
3.3.2. Performance of Sunglint Correction
4. Discussion
4.1. Applicability of Atmospheric Correction Algorithms
4.2. Implications for MSI Sunglint Correction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, M.; Cao, Z.; Xue, K.; Liu, D.; Qi, T.; Ma, J.; Duan, H. Natural and human activities driving the spatiotemporal variability of water clarity in lakes across Eastern China. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103037. [Google Scholar] [CrossRef]
- Xue, K.; Ma, R.; Duan, H.; Shen, M.; Boss, E.; Cao, Z. Inversion of inherent optical properties in optically complex waters using sentinel-3A/OLCI images: A case study using China’s three largest freshwater lakes. Remote Sens. Environ. 2019, 225, 328–346. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W.; Tang, J. Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements. Remote Sens. Environ. 2011, 115, 841–854. [Google Scholar] [CrossRef]
- Wang, S.; Li, J.; Zhang, B.; Spyrakos, E.; Tyler, A.N.; Shen, Q.; Zhang, F.; Kuster, T.; Lehmann, M.K.; Wu, Y.; et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index. Remote Sens. Environ. 2018, 217, 444–460. [Google Scholar] [CrossRef]
- Qing, S.; Cui, T.; Lai, Q.; Bao, Y.; Diao, R.; Yue, Y.; Hao, Y. Improving remote sensing retrieval of water clarity in complex coastal and inland waters with modified absorption estimation and optical water classification using Sentinel-2 MSI. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102377. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.A.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Abbas, S.; Asim, M. Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring. Remote Sens. 2022, 14, 3155. [Google Scholar] [CrossRef]
- Li, P.; Chen, S.; Ji, H.; Ke, Y.; Fu, Y. Combining Landsat-8 and Sentinel-2 to investigate seasonal changes of suspended particulate matter off the abandoned distributary mouths of Yellow River Delta. Mar. Geol. 2021, 441, 106622. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Hà, N.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Shen, M.; Duan, H.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Huang, C.; Song, X. Sentinel-3 OLCI observations of water clarity in large lakes in eastern China: Implications for SDG 6.3. 2 evaluation. Remote Sens. Environ. 2020, 247, 111950. [Google Scholar] [CrossRef]
- IOCCG. Atmospheric Correction for Remotely-Sensed Ocean-Colour Products; Wang, M., Ed.; IOCCG: Dartmouth, NS, Canada, 2010; Volume 10. [Google Scholar]
- Cao, Y.; Zhang, W.; Wang, W. Spatial–temporal characteristics of haze and vertical distribution of aerosols over the Yangtze River Delta of China. J. Environ. Sci. 2018, 66, 12–19. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A global assessment of atmospheric correction methods for Landsat-8 and Sentinel-2 over lakes, rivers, and coastal waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Li, S.; Song, K.; Li, Y.; Liu, G.; Wen, Z.; Shang, Y.; Lyu, L.; Fang, C. Performances of Atmospheric Correction Processors for Sentinel-2 MSI Imagery Over Typical Lakes Across China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2065–2078. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M. Estimation of the sunglint radiance field from optical satellite imagery over open ocean: Multidirectional approach and polarization aspects. J. Geophys. Res. Ocean. 2013, 118, 76–90. [Google Scholar] [CrossRef]
- Harmel, T.; Chami, M.; Tormos, T.; Reynaud, N.; Danis, P.A. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sens. Environ. 2018, 204, 308–321. [Google Scholar] [CrossRef]
- Tavares, M.H.; Lins, R.C.; Harmel, T.; Fragoso Jr, C.R.; Martínez, J.-M.; Motta-Marques, D. Atmospheric and sunglint correction for retrieving chlorophyll-a in a productive tropical estuarine-lagoon system using Sentinel-2 MSI imagery. ISPRS J. Photogramm. Remote Sens. 2021, 174, 215–236. [Google Scholar] [CrossRef]
- Kay, S.; Hedley, J.; Lavender, S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and Near-Infrared Wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter. Josa 1954, 44, 838–850. [Google Scholar] [CrossRef]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Technical note: Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric correction in presence of sun glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Cox, C.; Munk, W. Statistics of the sea surface derived from sun glitter. J. Mar. Res. 1954, 13, 198–227. [Google Scholar]
- Wang, M.; Bailey, S.W. Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Appl. Opt. 2001, 40, 4790–4798. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Andrefouet, S.; Tyler, M.R. Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1724–1729. [Google Scholar] [CrossRef]
- Kutser, T.; Vahtmäe, E.; Praks, J. A sun glint correction method for hyperspectral imagery containing areas with non-negligible water leaving NIR signal. Remote Sens. Environ. 2009, 113, 2267–2274. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. The NIR-SWIR combined atmospheric correction approach for MODIS ocean color data processing. Opt. Express 2007, 15, 15722–15733. [Google Scholar] [CrossRef] [PubMed]
- Doerffer, R.; Schiller, H. The MERIS Case 2 water algorithm. Int. J. Remote Sens. 2007, 28, 517–535. [Google Scholar] [CrossRef]
- Wang, X.; Aji, D.; Tuoheti, S. Analysis of the Hydrochemical Characteristics and Genesis of Bosten Lake, China. Sustainability 2023, 15, 4139. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, J.; Zheng, L. Long-Term Change of Lake Water Storage and Its Response to Climate Change for Typical Lakes in Arid Xinjiang, China. Water 2023, 15, 1444. [Google Scholar] [CrossRef]
- Mueller, J.L.; Bidigare, R.; Trees, C.; Balch, W.; Dore, J.; Drapeau, D.; Karl, D.; Van Heukelem, L. Revision 5, Volume V: Biogeochemical and Bio-Optical Measurements and Data Analysis Protocols. In Ocean Optics Protocols For Satellite Ocean Color Sensor Validation; Goddard Space Flight Space Center: Greenbelt, MD, USA, 2003. [Google Scholar]
- Mobley, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Dall’Olmo, G.; Moses, W.; Rundquist, D.C.; Barrow, T.; Fisher, T.R.; Gurlin, D.; Holz, J. A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: Validation. Remote Sens. Environ. 2008, 112, 3582–3593. [Google Scholar] [CrossRef]
- Werdell, P.J.; Franz, B.A.; Bailey, S.W.; Feldman, G.C.; Boss, E.; Brando, V.E.; Dowell, M.; Hirata, T.; Lavender, S.J.; Lee, Z. Generalized ocean color inversion model for retrieving marine inherent optical properties. Appl. Opt. 2013, 52, 2019–2037. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Duan, H.; Loiselle, S.; Hu, C.; Zhang, G.; Li, J.; Yang, H.; Thompson, J.R.; Cao, Z.; Shen, M.; et al. Observations of water transparency in China’s lakes from space. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102187. [Google Scholar] [CrossRef]
- Duan, H.; Feng, L.; Ma, R.; Zhang, Y.; Loiselle, S.A. Variability of particulate organic carbon in inland waters observed from MODIS Aqua imagery. Environ. Res. Lett. 2014, 9, 084011. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Berthon, J.-F.; Mélin, F.; Zibordi, G.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric correction over coastal waters using multilayer neural networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, W. Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the US: Two case studies. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Siegel, D.A.; Wang, M.; Maritorena, S.; Robinson, W. Atmospheric correction of satellite ocean color imagery: The black pixel assumption. Appl. Opt. 2000, 39, 3582–3591. [Google Scholar] [CrossRef] [PubMed]
- Ruddick, K.G.; De Cauwer, V.; Park, Y.-J.; Moore, G. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef]
- Jamet, C.; Loisel, H.; Kuchinke, C.P.; Ruddick, K.; Zibordi, G.; Feng, H. Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements. Remote Sens. Environ. 2011, 115, 1955–1965. [Google Scholar] [CrossRef]
- Doron, M.; Bélanger, S.; Doxaran, D.; Babin, M. Spectral variations in the near-infrared ocean reflectance. Remote Sens. Environ. 2011, 115, 1617–1631. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Gons, H.J.; Rijkeboer, M.; Tilstone, G. Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties. Appl. Opt. 2001, 40, 3575–3585. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Klemm, J.F.J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef]
- Lenoble, J.; Herman, M.; Deuzé, J.L.; Lafrance, B.; Santer, R.; Tanré, D. A successive order of scattering code for solving the vector equation of transfer in the earth’s atmosphere with aerosols. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 479–507. [Google Scholar] [CrossRef]
- Ahmad, Z.; Fraser, R.S. An iterative radiative transfer code for ocean-atmosphere systems. J. Atmos. Sci. 1982, 39, 656–665. [Google Scholar] [CrossRef]
- Chami, M.; Lafrance, B.; Fougnie, B.; Chowdhary, J.; Harmel, T.; Waquet, F. OSOAA: A vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean. Opt. Express 2015, 23, 27829–27852. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, M.; Lu, Y.; Sun, S.; Zhang, M.; Mao, Z.; Shi, J.; Liu, Y. An alternative approach to determine critical angle of contrast reversal and surface roughness of oil slicks under sunglint. Int. J. Digit. Earth 2018, 11, 972–979. [Google Scholar] [CrossRef]
- Spyrakos, E.; O’donnell, R.; Hunter, P.D.; Miller, C.; Scott, M.; Simis, S.G.; Neil, C.; Barbosa, C.C.; Binding, C.E.; Bradt, S. Optical types of inland and coastal waters. Limnol. Oceanogr. 2018, 63, 846–870. [Google Scholar] [CrossRef]
- Liu, X.; Steele, C.; Simis, S.; Warren, M.; Tyler, A.; Spyrakos, E.; Selmes, N.; Hunter, P. Retrieval of Chlorophyll-a concentration and associated product uncertainty in optically diverse lakes and reservoirs. Remote Sens. Environ. 2021, 267, 112710. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Qin, P.; Simis, S.G.; Tilstone, G.H. Radiometric validation of atmospheric correction for MERIS in the Baltic Sea based on continuous observations from ships and AERONET-OC. Remote Sens. Environ. 2017, 200, 263–280. [Google Scholar] [CrossRef]
- Müller, D.; Krasemann, H.; Brewin, R.J.; Brockmann, C.; Deschamps, P.-Y.; Doerffer, R.; Fomferra, N.; Franz, B.A.; Grant, M.G.; Groom, S.B. The Ocean Colour Climate Change Initiative: I. A methodology for assessing atmospheric correction processors based on in-situ measurements. Remote Sens. Environ. 2015, 162, 242–256. [Google Scholar] [CrossRef]
- Alikas, K.; Kratzer, S. Improved retrieval of Secchi depth for optically-complex waters using remote sensing data. Ecol. Indic. 2017, 77, 218–227. [Google Scholar] [CrossRef]
- Kratzer, S.; Brockmann, C.; Moore, G. Using MERIS full resolution data to monitor coastal waters—A case study from Himmerfjärden, a fjord-like bay in the northwestern Baltic Sea. Remote Sens. Environ. 2008, 112, 2284–2300. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Lee, Z. Uncertainties of SeaWiFS and MODIS remote sensing reflectance: Implications from clear water measurements. Remote Sens. Environ. 2013, 133, 168–182. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC neural network for Sentinel 2 and 3 for the retrieval of ocean colour products in normal and extreme optically complex waters. Living Planet Symp. 2016, 740, 54. [Google Scholar]
- Toming, K.; Kutser, T.; Uiboupin, R.; Arikas, A.; Vahter, K.; Paavel, B. Mapping Water Quality Parameters with Sentinel-3 Ocean and Land Colour Instrument imagery in the Baltic Sea. Remote Sens. 2017, 9, 1070. [Google Scholar] [CrossRef]
- Shen, M.; Luo, J.; Cao, Z.; Xue, K.; Qi, T.; Ma, J.; Liu, D.; Song, K.; Feng, L.; Duan, H. Random forest: An optimal chlorophyll-a algorithm for optically complex inland water suffering atmospheric correction uncertainties. J. Hydrol. 2022, 615, 128685. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Surface-roughness considerations for atmospheric correction of ocean color sensors. 1: The Rayleigh-scattering component. Appl. Opt. 1992, 31, 4247–4260. [Google Scholar] [CrossRef]
- Wang, M.; Isaacman, A.; Franz, B.A.; McClain, C.R. Ocean-color optical property data derived from the Japanese Ocean Color and Temperature Scanner and the French Polarization and Directionality of the Earth’s Reflectances: A comparison study. Appl. Opt. 2002, 41, 974–990. [Google Scholar] [CrossRef]
- Chami, M.; Larnicol, M.; Minghelli, A.; Migeon, S. Influence of the Suspended Particulate Matter on the Satellite Radiance in the Sunglint Observation Geometry in Coastal Waters. Remote Sens. 2020, 12, 1445. [Google Scholar] [CrossRef]
- Quattrochi, D.A.; Goodchild, M.F. Scale in Remote Sensing and GIS; CRC press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Wu, X.; Lu, Y.; Jiao, J.; Ding, J.; Fu, W.; Qian, W. Using Sea Wave Simulations to Interpret the Sunglint Reflection Variation with Different Spatial Resolutions. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–4. [Google Scholar] [CrossRef]
Lake | MSI Image | Date | Number | Sunglint |
---|---|---|---|---|
Bosten | MSIL1C_20210917T045701T45TVG | 2021.9.17 | 11 | No |
MSIL1C_20210917T045701T45TWG | 2021.9.17 | 14 | Yes | |
MSIL1C_20220612T050659T45TVG | 2022.6.12 | 26 | Yes | |
Ulungur | MSIL1C_20210526T051651T45TWN | 2021.5.26 | 21 | Yes |
Algorithms | Algorithm Principles | |
---|---|---|
DSF (Acolite20211124) | Rayleigh LUT | 6SV [52] |
Aerosol | Dark target approach (area-based) | |
Sunglint | It estimates sunglint using estimations at a reference band (assuming zero ρw) reflectance and extrapolates it to other spectral bands. | |
C2RCC (SNAP 9.0) | Rayleigh LUT | NA |
Aerosol | SOS atmospheric parameters, O3, WV, NO2, O2, etc. | |
Sunglint | NA | |
POLYMER (v4.16) | Rayleigh LUT | SOS [53] |
Aerosol | Polynomial fitting (per-pixel) | |
Sunglint | The atmospheric component of this algorithm is a polynomial function used to derive the spectral reflectance of the atmosphere and sunglint. | |
MUMM (l2gen 9.5.1-V2021.1) | Rayleigh LUT | Ahmad and Fraser 1982 [54] |
Aerosol | NIR-SWIR band ratio (per-pixel) | |
Sunglint | According to the Cox and Munk model, sunglint is predicted using wind speed data and subtracted from radiance when it falls between two thresholds. | |
BP (l2gen 9.5.1-V2021.1) | Rayleigh LUT | Ahmad and Fraser 1982 [54] |
Aerosol | NIR-SWIR band ratio (per-pixel) | |
Sunglint | According to the Cox and Munk model, sunglint is predicted using wind speed data and subtracted from radiance when it falls between two thresholds. | |
GRS (V2.1) | Rayleigh LUT | OSOAA [55] |
Aerosol | Fitted to CAMS (area-based) | |
Sunglint | It estimates the bidirectional reflectance distribution function (BRDF) of the rough air–water interface from the SWIR bands (i.e., around 1610 and 2200 nm). The sunglint signal obtained in the SWIR is then propagated toward the NIR and visible bands. |
Lake | Number | SDD (m) | Chla (μg/L) | SPM (mg/L) | |||
---|---|---|---|---|---|---|---|
Min–Max | Mean ± Std | Min–Max | Mean ± Std | Min–Max | Mean ± Std | ||
Bosten | 51 | 1.50–6.80 | 3.38 ± 1.22 | 0.54–8.06 | 2.88 ± 2.08 | 0.20–5.20 | 2.30 ± 1.12 |
Ulungur | 21 | 0.95–1.90 | 1.49 ± 0.21 | 0.24–3.73 | 1.26 ± 0.73 | 4.21–10.31 | 5.33 ± 2.65 |
Algorithm | Band | R2 | RMSE (sr−1) | MAPE (%) | N | Algorithm | Band | R2 | RMSE (sr−1) | MAPE (%) | N |
---|---|---|---|---|---|---|---|---|---|---|---|
DSF | 443 | 0.57 | 0.0069 | 41.82 | 69 | MUMM | 443 | 0.86 | 0.0026 | 28.20 | 72 |
490 | 0.76 | 0.0057 | 28.35 | 72 | 490 | 0.94 | 0.0024 | 16.32 | 72 | ||
560 | 0.83 | 0.0046 | 19.91 | 72 | 560 | 0.94 | 0.0024 | 14.50 | 72 | ||
665 | 0.46 | 0.0019 | 48.62 | 72 | 665 | 0.65 | 0.0013 | 45.56 | 72 | ||
705 | 0.20 | 0.0016 | 61.48 | 70 | 705 | 0.17 | 0.0016 | 62.32 | 67 | ||
C2RCC | 443 | 0.61 | 0.0069 | 42.59 | 72 | BP | 443 | 0.30 | 0.0034 | 51.02 | 62 |
490 | 0.79 | 0.0069 | 34.74 | 72 | 490 | 0.67 | 0.0061 | 38.47 | 72 | ||
560 | 0.85 | 0.0054 | 23.12 | 72 | 560 | 0.79 | 0.0044 | 20.73 | 72 | ||
665 | 0.64 | 0.0018 | 36.82 | 72 | 665 | 0.31 | 0.0024 | 47.12 | 58 | ||
705 | 0.47 | 0.0014 | 38.52 | 72 | 705 | 0.32 | 0.0016 | 48.43 | 48 | ||
POLYMER | 443 | 0.86 | 0.0032 | 22.78 | 72 | GRS | 443 | 0.47 | 0.0057 | 72.68 | 72 |
490 | 0.91 | 0.0035 | 18.61 | 72 | 490 | 0.72 | 0.0050 | 42.19 | 72 | ||
560 | 0.91 | 0.0038 | 15.81 | 72 | 560 | 0.80 | 0.0044 | 24.23 | 72 | ||
665 | 0.74 | 0.0012 | 30.68 | 72 | 665 | 0.44 | 0.0021 | 71.94 | 70 | ||
705 | 0.42 | 0.0014 | 38.44 | 72 | 705 | 0.19 | 0.0019 | 93.07 | 69 |
Algorithm | Ratio | R2 | RMSE | MAPE (%) | Algorithm | Ratio | R2 | RMSE | MAPE (%) |
---|---|---|---|---|---|---|---|---|---|
DSF | 443/560 | 0.01 | 0.342 | 40.8 | MUMM | 443/560 | 0.01 | 0.132 | 20.5 |
490/560 | 0.21 | 0.174 | 15.0 | 490/560 | 0.44 | 0.098 | 9.4 | ||
665/490 | 0.11 | 0.094 | 31.4 | 665/490 | 0.02 | 0.088 | 26.5 | ||
665/560 | 0.03 | 0.081 | 35.4 | 665/560 | 0.05 | 0.076 | 32.4 | ||
C2RCC | 443/560 | 0.32 | 0.219 | 35.9 | BP | 443/560 | 0.31 | 0.256 | 37.1 |
490/560 | 0.33 | 0.217 | 26.8 | 490/560 | 0.65 | 0.222 | 25.4 | ||
665/490 | 0.02 | 0.061 | 18.3 | 665/490 | 0.08 | 0.107 | 33.9 | ||
665/560 | 0.12 | 0.056 | 25.5 | 665/560 | 0.07 | 0.087 | 35.7 | ||
POLYMER | 443/560 | 0.46 | 0.093 | 14.4 | GRS | 443/560 | 0.28 | 0.266 | 43.4 |
490/560 | 0.71 | 0.080 | 9.0 | 490/560 | 0.02 | 0.144 | 16.9 | ||
665/490 | 0.08 | 0.052 | 17.0 | 665/490 | 0.01 | 0.097 | 29.6 | ||
665/560 | 0.05 | 0.049 | 22.2 | 665/560 | 0.10 | 0.101 | 45.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Liu, H.; Wang, D.; Li, D.; Liu, W.; Si, Y.; Liu, Y.; Li, J.; Duan, H.; Shen, M. Assessment of Atmospheric Correction Algorithms for Correcting Sunglint Effects in Sentinel-2 MSI Imagery: A Case Study in Clean Lakes. Remote Sens. 2024, 16, 3060. https://doi.org/10.3390/rs16163060
Wang Q, Liu H, Wang D, Li D, Liu W, Si Y, Liu Y, Li J, Duan H, Shen M. Assessment of Atmospheric Correction Algorithms for Correcting Sunglint Effects in Sentinel-2 MSI Imagery: A Case Study in Clean Lakes. Remote Sensing. 2024; 16(16):3060. https://doi.org/10.3390/rs16163060
Chicago/Turabian StyleWang, Qingyu, Hao Liu, Dian Wang, Dexin Li, Weixin Liu, Yunrui Si, Yuan Liu, Junli Li, Hongtao Duan, and Ming Shen. 2024. "Assessment of Atmospheric Correction Algorithms for Correcting Sunglint Effects in Sentinel-2 MSI Imagery: A Case Study in Clean Lakes" Remote Sensing 16, no. 16: 3060. https://doi.org/10.3390/rs16163060