Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse Regularization in Multi-Channel Predictive Deconvolution
Abstract
:1. Introduction
2. Methods
2.1. Background
2.1.1. Multi-Channel Predictive Deconvolution
2.1.2. The Sparse Representation Theory for Seismic Signals
2.2. Sparse Representation Method Based on Shearlet Transform
2.3. Sparse Regularization Optimization in Multi-Channel Prediction Deconvolution
3. Results
3.1. Synthetic Data
3.2. Field Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cai, L.; Hu, Q.; Qiu, Z.; Yin, J.; Zhang, Y.; Zhang, X. Study on the Impact of Offshore Wind Farms on Surrounding Water Environment in the Yangtze Estuary Based on Remote Sensing. Remote Sens. 2023, 15, 5347. [Google Scholar] [CrossRef]
- Spanier, R.; Kuenzer, C. Marine Infrastructure Detection with Satellite Data-A Review. Remote Sens. 2024, 16, 1675. [Google Scholar] [CrossRef]
- Jensen, J.B.; Gravesen, P.; Lomholt, S. Geology of outer Horns Rev, Danish North Sea. Geol. Surv. Den. Greenl. Bull. 2008, 15, 41–44. [Google Scholar] [CrossRef]
- Liu, J.; Lu, W. An improved predictive deconvolution based on maximization of non-Gaussianity. Appl. Geophys. 2008, 5, 189–196. [Google Scholar] [CrossRef]
- Liu, L.; Lu, W. A Fast L1 Linear Estimator and Its Application on Predictive Deconvolution. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1056–1060. [Google Scholar] [CrossRef]
- Kim, G.; Ku, B.; Li, Y.; Min, J.; Lee, J.; Ko, H. Convolutional recurrent neural networks for earthquake epicentral distance estimation using single-channel seismic waveform. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Electr Network, Waikoloa, HI, USA, 26 Sepetember–2 October 2020; pp. 6619–6622. [Google Scholar]
- Santos, L.A.; Policarpo Neves, E.H.; Menezes Freire, A.F.; Cetale Santos, M.A.; Matsumoto, R.; Ajus, C.M.I. Diffraction velocity analysis in a single-channel seismic survey in the Joetsu Basin. Geophysics 2020, 85, U47–U53. [Google Scholar] [CrossRef]
- Bashilov, I.P.; Vereshchagin, A.A.; Zagorskiy, L.S.; Zagorskiy, D.L.; Ryazantsev, Y.V.; Chervinchuk, S.Y.; Yudochkin, N.P. Single channel seismic sounding in geological engineering survey (Review). Mining Informational and Analytical Bulletin 2019, 141–150. [Google Scholar] [CrossRef]
- Nasıf, A. Processing and joint interpretation of multi-resolution marine seismic datasets. J. Appl. Geophys. 2024, 227, 105429. [Google Scholar] [CrossRef]
- Zheng, J.; Li, L.; Xie, J.; Yan, T.; Jiang, B.; Huang, X.; Hui, G.; Li, T.; Wen, M.; Huang, Y. The application of a homemade boomer source in offshore seismic survey: From field data acquisition to post-processing. J. Appl. Geophys. 2023, 210, 104945. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, Z.C.; Lu, W.K. Multichannel predictive deconvolution based on the fast iterative shrinkage-thresholding algorithm. Geophysics 2016, 81, V17–V30. [Google Scholar] [CrossRef]
- Lai, S.-Y.; Lin, Y.N.; Hsu, H.-H. Efficient 2D multiple attenuation using SRME with curvelet-domain subtraction. Mar. Geophys. Res. 2022, 43, 1. [Google Scholar] [CrossRef]
- Liu, Z.; Zhao, W.; Zhu, Z. Multiple attenuation using multichannel predictive deconvolution in radial domain. In SEG International Exposition and Annual Meeting; SEG: Houston, TX, USA, 2012. [Google Scholar]
- Nose-Filho, K.; Lopes, R.; Brotto, R.D.B.; Senna, T.C.; Romano, J.M.T. Algorithms for Sparse Multichannel Blind Deconvolution. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5905307. [Google Scholar] [CrossRef]
- Sun, W.; Sacchi, M.D.; Gu, Y.J. Multichannel Sparse Deconvolution of Teleseismic Receiver Functions with f − x Preconditioning. J. Geophys. Res.-Solid Earth 2023, 128, e2022JB025625. [Google Scholar] [CrossRef]
- Tan, F.; Bao, C.; Zhou, J. Effective Dereverberation with a Lower Complexity at Presence of the Noise. Appl. Sci. 2022, 12, 11819. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, G.; Chen, T.; Liu, Y.; Shen, B.; Liang, J.; Hu, G. Data and model dual-driven seismic deconvolution via error-constrained joint sparse representation. Geophysics 2023, 88, V345–V359. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, G.; Li, C.; Shi, L.; Wang, Z. Random noise attenuation of 3D multicomponent seismic data using a fast adaptive prediction filter. Geophysics 2024, 89, V263–V280. [Google Scholar] [CrossRef]
- Zhang, D.; Tsingas, C.; Almubarak, M.S.; Liang, H. Generalized internal multiple prediction for low relief structures. Geophysics 2024, 89, V13–V23. [Google Scholar] [CrossRef]
- Verschuur, D.J. Seismic Multiple Removal Techniques: Past, Present and Future; EAGE: Dubai, United Arab Emirate, 2006. [Google Scholar]
- Guillemoteau, J.; Vignoli, G.; Barreto, J.; Sauvin, G. Sparse laterally constrained inversion of surface-wave dispersion curves via minimum gradient support regularization. Geophysics 2022, 87, R281–R289. [Google Scholar] [CrossRef]
- Ma, X.; Li, G.; Li, H.; Yang, W. Multichannel absorption compensation with a data-driven structural regularization. Geophysics 2020, 85, V71–V80. [Google Scholar] [CrossRef]
- Feng, F.; Wang, D.-L.; Zhu, H.; Cheng, H. Estimating primaries by sparse inversion of the 3D curvelet transform and the L1-norm constraint. Appl. Geophys. 2013, 10, 201–209. [Google Scholar] [CrossRef]
- Wu, T.; Xu, Y. Inverting Incomplete Fourier Transforms by a Sparse Regularization Model and Applications in Seismic Wavefield Modeling. J. Sci. Comput. 2022, 92, 48. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Y.; Lin, H.B.; Yang, B.J.; Wu, N. Adaptive Threshold Based Shearlet Transform Noise Attenuation Method for Surface Microseismic Data. In Proceedings of the 77th EAGE Conference and Exhibition 2015, Madrid, Spain, 1–4 June 2015. [Google Scholar] [CrossRef]
- Zhang, C.; van der Baan, M. Multicomponent microseismic data denoising by 3D shearlet transform. Geophysics 2018, 83, A45–A51. [Google Scholar] [CrossRef]
- Liu, C.; Wang, D.; Hu, B.; Wang, T. Seismic deconvolution with shearlet sparsity constrained inversion. J. Seism. Explor. 2016, 25, 433–445. [Google Scholar]
- Liu, J.; Gu, Y.; Chou, Y.; Gu, J. Seismic Random Noise Reduction Using Adaptive Threshold Combined Scale and Directional Characteristics of Shearlet Transform. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1637–1641. [Google Scholar] [CrossRef]
- Easley, G.; Labate, D.; Lim, W.-Q. Sparse directional image representations using the discrete shearlet transform. Appl. Comput. Harmon. Anal. 2008, 25, 25–46. [Google Scholar] [CrossRef]
- Guo, K.; Labate, D. Optimally Sparse Multidimensional Representation Using Shearlets. SIAM J. Math. Anal. 2007, 39, 298–318. [Google Scholar] [CrossRef]
- Treitel, S. Predictive deconvolution-theory and practice. Geophysics 1969, 34, 155–169. [Google Scholar] [CrossRef]
- Donno, D. Improving multiple removal using least-squares dip filters and independent component analysis. Geophysics 2011, 76, V91–V104. [Google Scholar] [CrossRef]
- Guitton, A.; Verschuur, D.J. Adaptive subtraction of multiples using the L1-norm. Geophys. Prospect. 2004, 52, 27–38. [Google Scholar] [CrossRef]
- Rosenberger, A.; Meyer, H.; Buttkus, B. A multichannel approach to long-period multiple prediction and attenuation. Geophys. Prospect. 1999, 47, 903–921. [Google Scholar] [CrossRef]
- Taner, M.T. Long period sea-floor multiples and their suppression. Geophys. Prospect. 1980, 28, 30–48. [Google Scholar] [CrossRef]
- Taner, M.T.; O’Doherty, R.F. Conjugate Gradient X-T Deconvolution. In SEG Technical Program Expanded Abstracts 1990; SEG: Houston, TX, USA, 1990. [Google Scholar]
- Taner, M.T.; O’Doherty, R.F.; Koehler, F. Long-period multiple suppression by predictive deconvolution in the x-t domain. IEEE Trans. Geosci. Remote Sens. 1995, 43, 433–468. [Google Scholar] [CrossRef]
- Liu, N.; Lei, Y.; Liu, R.; Yang, Y.; Wei, T.; Gao, J. Sparse Time-Frequency Analysis of Seismic Data: Sparse Representation to Unrolled Optimization. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5915010. [Google Scholar] [CrossRef]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic Signal Denoising and Decomposition Using Deep Neural Networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef]
- Qin, S. Simple algorithm for L1-norm regularisation-based compressed sensing and image restoration. Iet Image Process. 2020, 14, 3405–3413. [Google Scholar] [CrossRef]
- Duijndam, A.J.W.; Schonewille, M.A.; Hindriks, C.O.H. Reconstruction of band-limited signals, irregularly sampled along one spatial direction. Geophysics 1999, 64, 524–538. [Google Scholar] [CrossRef]
- Zwartjes, P.; Gisolf, A. Fourier reconstruction of marine-streamer data in four spatial coordinates. Geophysics 2006, 71, V171–V186. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Langston, C.A.; Horton, S.P. Automatic microseismic denoising and onset detection using the synchrosqueezed continuous wavelet transform. Geophysics 2016, 81, V341–V355. [Google Scholar] [CrossRef]
- Hennenfent, G.; Herrmann, F.J. Simply denoise: Wavefield reconstruction via jittered undersampling. Geophysics 2008, 73, V19–V28. [Google Scholar] [CrossRef]
- Liang, X.; Li, Y.; Zhang, C. Noise suppression for microseismic data by non-subsampled shearlet transform based on singular value decomposition. Geophys. Prospect. 2018, 66, 894–903. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, H.; Liu, H.; Xu, Z.; Sun, Z.; Liu, Z.; Zhang, M. Seismic data reconstruction combining discrete cosine transform and shearlet. J. Seism. Explor. 2023, 32, 301–314. [Google Scholar]
- Wang, Y.; Zhang, G.; Li, H.; Yang, W.; Wang, W. The high-resolution seismic deconvolution method based on joint sparse representation using logging-seismic data. Geophys. Prospect. 2022, 70, 1313–1326. [Google Scholar] [CrossRef]
- Shimelevich, M.I.; Obornev, E.A.; Obornev, I.E.; Rodionov, E.A. The Neural Network Approximation Method for Solving Multidimensional Nonlinear Inverse Problems of Geophysics. Izv.-Phys. Solid Earth 2017, 53, 588–597. [Google Scholar] [CrossRef]
- Lin, K.; Zhao, L.; Wen, X.; Zhang, Y. Time-frequency mixed domain multi-trace simultaneous inversion method. Geoenergy Sci. Eng. 2023, 230, 212164. [Google Scholar] [CrossRef]
- Wu, M.; Fu, L.; Fang, W.; Cao, J. Sparse prior-net: A sparse prior-based deep network for seismic data interpolation. Geophysics 2024, 89, V37–V47. [Google Scholar] [CrossRef]
- Shao, O.; Wang, L.; Hu, X.; Long, Z. Seismic denoising via truncated nuclear norm minimization. Geophysics 2021, 86, V153–V169. [Google Scholar] [CrossRef]
- Zhang, W.; Fu, L.; Zhang, M.; Cheng, W. 2-D Seismic Data Reconstruction via Truncated Nuclear Norm Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6336–6343. [Google Scholar] [CrossRef]
Number | Layer Bottom Elevation (m) | Layer Bottom Depth (m) |
---|---|---|
1 | −23.76 | 3.8 |
2 | −26.16 | 6.2 |
3 | −33.06 | 13.1 |
4 | −53.96 | 34.0 |
5 | −70.06 | 50.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, D.; Hu, B.; Zhang, J.; Gong, X.; Chen, Y. Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse Regularization in Multi-Channel Predictive Deconvolution. Remote Sens. 2024, 16, 2935. https://doi.org/10.3390/rs16162935
Zhang Y, Wang D, Hu B, Zhang J, Gong X, Chen Y. Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse Regularization in Multi-Channel Predictive Deconvolution. Remote Sensing. 2024; 16(16):2935. https://doi.org/10.3390/rs16162935
Chicago/Turabian StyleZhang, Yang, Deli Wang, Bin Hu, Junming Zhang, Xiangbo Gong, and Yifei Chen. 2024. "Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse Regularization in Multi-Channel Predictive Deconvolution" Remote Sensing 16, no. 16: 2935. https://doi.org/10.3390/rs16162935
APA StyleZhang, Y., Wang, D., Hu, B., Zhang, J., Gong, X., & Chen, Y. (2024). Enhanced Offshore Wind Farm Geophysical Surveys: Shearlet-Sparse Regularization in Multi-Channel Predictive Deconvolution. Remote Sensing, 16(16), 2935. https://doi.org/10.3390/rs16162935