Fast Robust Point Cloud Registration Based on Compatibility Graph and Accelerated Guided Sampling
Abstract
:1. Introduction
- Constructing a compatibility graph based on the compatibility between inliers and proposing a minimum subset sampling method combining graph edge sampling and graph vertex sampling to reduce the influence of outliers on the registration results.
- Introducing a preference-based accelerated guided sampling strategy that utilizes the hypothetical model generated during the iterative process to guide the subsequent samples to be biased toward the inliers, achieving efficient and robust point cloud registration.
- Compared to many existing state-of-the-art methods, the proposed algorithm is able to cope with a very high outlier ratio (outlier ratio > 99%) and strikes a remarkable balance between registration accuracy and efficiency.
2. Related Works
3. Methods
3.1. Problem Formulation
3.2. Correspondence Compatibility Graph Construction
3.3. Minimum Compatible Subset Sampling
3.4. Preference-Based Guided Sampling Strategy
3.5. Complete Registration Algorithm
Algorithm 1. Proposed Method | |
4. Experimental Results
4.1. Synthetic Data Experiment
4.2. Challenging Real-World Data Experiments
4.3. Low-Overlap Point Cloud Registration Experiments
4.4. Outdoor Scene Registration Experiments
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, T.; Zhang, R.; Kan, J.; Dong, R.; Zhao, X.; Yao, S. A Point Cloud Registration Framework with Color Information Integration. Remote Sens. 2024, 16, 743. [Google Scholar] [CrossRef]
- Chen, Y.; Mei, Y.; Yu, B.; Xu, W.; Wu, Y.; Zhang, D.; Yan, X. A Robust Multi-Local to Global with Outlier Filtering for Point Cloud Registration. Remote Sens. 2023, 15, 5641. [Google Scholar] [CrossRef]
- Miao, Y.; Liu, Y.; Ma, H.; Jin, H. The Pose Estimation of Mobile Robot Based on Improved Point Cloud Registration. Int. J. Adv. Robot. Syst. 2016, 13, 52. [Google Scholar] [CrossRef]
- Hu, K.; Chen, Z.; Kang, H.; Tang, Y. 3D Vision Technologies for a Self-Developed Structural External Crack Damage Recognition Robot. Autom. Constr. 2024, 159, 105262. [Google Scholar] [CrossRef]
- Szabó, S.; Enyedi, P.; Horváth, M.; Kovács, Z.; Burai, P.; Csoknyai, T.; Szabó, G. Automated Registration of Potential Locations for Solar Energy Production with Light Detection And Ranging (LiDAR) and Small Format Photogrammetry. J. Clean. Prod. 2016, 112, 3820–3829. [Google Scholar] [CrossRef]
- Choi, S.; Zhou, Q.-Y.; Koltun, V. Robust Reconstruction of Indoor Scenes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 5556–5565. [Google Scholar]
- Wan, S.; Guan, S.; Tang, Y. Advancing bridge structural health monitoring: Insights into knowledge-driven and data-driven approaches. J. Data Sci. Intell. Syst. 2023, 2, 129–140. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Y.; Xiong, W.; Cai, C.S. Point Cloud Registration Methods for Long-Span Bridge Spatial Deformation Monitoring Using Terrestrial Laser Scanning. Struct. Control Health Monit. 2023, 2023, 2629418. [Google Scholar] [CrossRef]
- Du, G.; Wang, K.; Lian, S.; Zhao, K. Vision-Based Robotic Grasping From Object Localization, Object Pose Estimation to Grasp Estimation for Parallel Grippers: A Review. Artif. Intell. Rev. 2021, 54, 1677–1734. [Google Scholar] [CrossRef]
- Kim, P.; Chen, J.; Cho, Y.K. SLAM-Driven Robotic Mapping and Registration of 3D Point Clouds. Autom. Constr. 2018, 89, 38–48. [Google Scholar] [CrossRef]
- Yang, J.; Li, H.; Campbell, D.; Jia, Y. Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 2241–2254. [Google Scholar] [CrossRef]
- Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009. [Google Scholar]
- Guo, Y.; Sohel, F.; Bennamoun, M.; Lu, M.; Wan, J. Rotational Projection Statistics for 3D Local Surface Description and Object Recognition. Int. J. Comput. Vis. 2013, 105, 63–86. [Google Scholar] [CrossRef]
- Zhao, B.; Le, X.; Xi, J. A Novel SDASS Descriptor for Fully Encoding the Information of a 3D Local Surface. Inf. Sci. 2019, 483, 363–382. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Bustos, A.P.; Chin, T.-J. Guaranteed Outlier Removal for Point Cloud Registration with Correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2868–2882. [Google Scholar] [CrossRef] [PubMed]
- Hu, E.; Sun, L. VODRAC: Efficient and Robust Correspondence-Based Point Cloud Registration with Extreme Outlier Ratios. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 38–55. [Google Scholar] [CrossRef]
- Sun, L. RANSIC: Fast and Highly Robust Estimation for Rotation Search and Point Cloud Registration Using Invariant Compatibility. IEEE Robot. Autom. Lett. 2022, 7, 143–150. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, K.; Yang, F.; Guo, L.; Tao, W. SC2-PCR++: Rethinking the Generation and Selection for Efficient and Robust Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12358–12376. [Google Scholar] [CrossRef]
- Rusu, R.B.; Marton, Z.C.; Blodow, N.; Beetz, M. Persistent Point Feature Histograms for 3D Point Clouds. In Proceedings of the 10th International Conference on Intelligent Autonomous Systems, Baden-Baden, Germany, 23–25 July 2008; pp. 119–128. [Google Scholar]
- Salti, S.; Tombari, F.; Di Stefano, L. SHOT: Unique Signatures of Histograms for Surface and Texture Description. Comput. Vis. Image Underst. 2014, 125, 251–264. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Q.; Xiao, Y.; Cao, Z. TOLDI: An Effective and Robust Approach for 3D Local Shape Description. Pattern Recognit. 2017, 65, 175–187. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Guo, B.; Guo, C.; Zhang, S. KDD: A Kernel Density Based Descriptor for 3D Point Clouds. Pattern Recognit. 2021, 111, 107691. [Google Scholar] [CrossRef]
- Deng, H.; Birdal, T.; Ilic, S. PPFNet: Global Context Aware Local Features for Robust 3D Point Matching. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 195–205. [Google Scholar]
- Deng, H.; Birdal, T.; Ilic, S. PPF-FoldNet: Unsupervised Learning of Rotation Invariant 3D Local Descriptors. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 602–618. [Google Scholar]
- Gojcic, Z.; Zhou, C.; Wegner, J.D.; Wieser, A. The Perfect Match: 3D Point Cloud Matching with Smoothed Densities. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5545–5554. [Google Scholar]
- Ao, S.; Hu, Q.; Yang, B.; Markham, A.; Guo, Y. SpinNet: Learning a General Surface Descriptor for 3D Point Cloud Registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11753–11762. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; Schindler, K. PREDATOR: Registration of 3D Point Clouds with Low Overlap. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4267–4276. [Google Scholar]
- Yu, H.; Li, F.; Saleh, M.; Busam, B.; Ilic, S. CoFiNet: Reliable Coarse-to-Fine Correspondences for Robust Point Cloud Registration. Adv. Neural Inf. Process. Syst. 2021, 34, 23872–23884. [Google Scholar]
- Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; Xu, K. Geometric Transformer for Fast and Robust Point Cloud Registration. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 11143–11152. [Google Scholar]
- Li, J.; Hu, Q.; Ai, M. Point Cloud Registration Based on One-Point RANSAC and Scale-Annealing Biweight Estimation. IEEE Trans. Geosci. Remote Sens. 2021, 59, 9716–9729. [Google Scholar] [CrossRef]
- Yang, H.; Shi, J.; Carlone, L. TEASER: Fast and Certifiable Point Cloud Registration. IEEE Trans. Robot. 2020, 37, 314–333. [Google Scholar] [CrossRef]
- Li, J.; Zhong, R.; Hu, Q.; Ai, M. Feature-Based Laser Scan Matching and Its Application for Indoor Mapping. Sensors 2016, 16, 1265. [Google Scholar] [CrossRef]
- Zhou, Q.-Y.; Park, J.; Koltun, V. Fast Global Registration. In Computer Vision–ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2016; Volume 9906, pp. 766–782. [Google Scholar]
- Li, J.; Zhao, P.; Hu, Q.; Ai, M. Robust Point Cloud Registration Based on Topological Graph and Cauchy Weighted l q -Norm. ISPRS J. Photogramm. Remote Sens. 2020, 160, 244–259. [Google Scholar] [CrossRef]
- Lusk, P.C.; Fathian, K.; How, J.P. CLIPPER: A Graph-Theoretic Framework for Robust Data Association. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13828–13834. [Google Scholar]
- Yang, H.; Carlone, L. A Quaternion-Based Certifiably Optimal Solution to the Wahba Problem With Outliers. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1665–1674. [Google Scholar]
- Zhang, X.; Yang, J.; Zhang, S.; Zhang, Y. 3D Registration with Maximal Cliques. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 17745–17754. [Google Scholar]
- Li, J. A Practical O(N2) Outlier Removal Method for Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3926–3939. [Google Scholar]
- Yao, R.; Du, S.; Cui, W.; Ye, A.; Wen, F.; Zhang, H.; Tian, Z.; Gao, Y. Hunter: Exploring High-Order Consistency for Point Cloud Registration With Severe Outliers. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 14760–14776. [Google Scholar] [CrossRef]
- Yan, L.; Wei, P.; Xie, H.; Dai, J.; Wu, H.; Huang, M. A New Outlier Removal Strategy Based on Reliability of Correspondence Graph for Fast Point Cloud Registration. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 7986–8002. [Google Scholar]
- Li, R.; Yuan, X.; Gan, S.; Bi, R.; Gao, S.; Luo, W.; Chen, C. An Effective Point Cloud Registration Method Based on Robust Removal of Outliers. IEEE Trans. Geosci. Remote Sens. 2024, 62, 1–16. [Google Scholar] [CrossRef]
- Chum, O.; Matas, J.; Kittler, J. Locally Optimized RANSAC. In Pattern Recognition; Michaelis, B., Krell, G., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2781, pp. 236–243. [Google Scholar]
- Barath, D.; Matas, J.; Noskova, J. MAGSAC: Marginalizing Sample Consensus. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 10189–10197. [Google Scholar]
- Cavalli, L.; Barath, D.; Pollefeys, M.; Larsson, V. Consensus-Adaptive RANSAC. arXiv 2023, arXiv:2307.14030. [Google Scholar]
- Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis. Image Underst. 2000, 78, 138–156. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, Q.; Ma, W.; Gong, M.; Wang, S. PSOSAC: Particle Swarm Optimization Sample Consensus Algorithm for Remote Sensing Image Registration. IEEE Geosci. Remote Sensing Lett. 2018, 15, 242–246. [Google Scholar] [CrossRef]
- Li, J.; Hu, Q.; Ai, M. GESAC: Robust Graph Enhanced Sample Consensus for Point Cloud Registration. ISPRS J. Photogramm. Remote Sens. 2020, 167, 363–374. [Google Scholar] [CrossRef]
- Sun, L. ICOS: Efficient and Highly Robust Rotation Search and Point Cloud Registration with Correspondences. arXiv 2021, arXiv:2104.14763. [Google Scholar]
- Cheng, Y.; Huang, Z.; Quan, S.; Cao, X.; Zhang, S.; Yang, J. Sampling Locally, Hypothesis Globally: Accurate 3D Point Cloud Registration with a RANSAC Variant. Vis. Intell. 2023, 1, 20. [Google Scholar] [CrossRef]
- Gentner, M.; Kumar Murali, P.; Kaboli, M. GMCR: Graph-Based Maximum Consensus Estimation for Point Cloud Registration. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May 2023; pp. 4967–4974. [Google Scholar]
- Chung, K.-L.; Chang, W.-T. Centralized RANSAC-Based Point Cloud Registration With Fast Convergence and High Accuracy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 5431–5442. [Google Scholar] [CrossRef]
- Horn, B.K.P. Closed-Form Solution of Absolute Orientation Using Unit Quaternions. J. Opt. Soc. Am. A 1987, 4, 629. [Google Scholar] [CrossRef]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-d point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 5, 698–700. [Google Scholar] [CrossRef]
- Han, W.; Tat-Jun, C.; Suter, D. Simultaneously Fitting and Segmenting Multiple-Structure Data with Outliers. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1177–1192. [Google Scholar]
- Lai, T.; Wang, H.; Yan, Y.; Chin, T.-J.; Zheng, J.; Li, B. Accelerated Guided Sampling for Multistructure Model Fitting. IEEE Trans. Cybern. 2020, 50, 4530–4543. [Google Scholar] [CrossRef] [PubMed]
- Zeng, A.; Song, S.; Niessner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 199–208. [Google Scholar]
- Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark Suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 3354–3361. [Google Scholar]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-D Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Krishnamurthy, V.; Levoy, M. Fitting smooth surfaces to dense polygon meshes. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 313–324. [Google Scholar]
- Wei, P.; Yan, L.; Xie, H.; Huang, M. Automatic Coarse Registration of Point Clouds Using Plane Contour Shape Descriptor and Topological Graph Voting. Autom. Constr. 2022, 134, 104055. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, Y.; Cao, Z.; Yang, W. Ranking 3D Feature Correspondences via Consistency Voting. Pattern Recognit. Lett. 2019, 117, 1–8. [Google Scholar] [CrossRef]
- Sipiran, I.; Bustos, B. Harris 3D: A Robust Extension of the Harris Operator for Interest Point Detection on 3D Meshes. Vis. Comput. 2011, 27, 963–976. [Google Scholar] [CrossRef]
- Bai, X.; Luo, Z.; Zhou, L.; Chen, H.; Li, L.; Hu, Z.; Fu, H.; Tai, C.-L. PointDSC: Robust Point Cloud Registration Using Deep Spatial Consistency. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 15854–15864. [Google Scholar]
- Choy, C.; Park, J.; Koltun, V. Fully Convolutional Geometric Features. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 8957–8965. [Google Scholar]
Method | Parameters |
---|---|
RANSAC | Maximum number of iterations: 105; inlier threshold: 6pr |
GORE | Lower bound: 0; repeat: true; consistent threshold: 6pr |
One-Point RANSAC | Confidence: 0.99; subset size: 1; Maximum number of iterations: 105; step size: 1.3 |
GROR | reliable set size: 800; inlier threshold: 6pr |
RANSIC | Maximum number of iterations: 105; Confidence: 0.99 |
VODRAC | Maximum number of iterations: 105; Confidence: 0.99; inlier threshold: 6pr |
Ours | Maximum number of iterations: 105; inlier threshold: 6pr P1 = P2 = 0.99; b = 20; max_up = 3; δ = 10pr; ξ = 10−6 |
Kitchen | Home1 | Home2 | Hotel1 | Hotel2 | Hotel3 | Studyroom | Lab | |
---|---|---|---|---|---|---|---|---|
Mean outlier ratio | 98.55% | 98.74% | 98.70% | 98.96% | 98.93% | 98.83% | 98.69% | 98.74% |
Mean Rotation Error (°) | ||||||||
RANSAC | 60.854 | 70.984 | 86.465 | 60.237 | 72.172 | 70.028 | 86.584 | 71.358 |
GORE | 56.389 | 62.745 | 65.342 | 42.885 | 38.998 | 47.645 | 42.732 | 89.329 |
One-Point RANSAC | 50.128 | 65.939 | 79.379 | 44.533 | 45.151 | 45.930 | 45.533 | 72.256 |
GROR | 14.382 | 6.920 | 19.685 | 9.135 | 0.943 | 7.842 | 24.886 | 12.356 |
RANSIC | 1.794 | 1.173 | 1.189 | 1.133 | 0.984 | 1.029 | 1.079 | 1.022 |
VODRAC | 1.395 | 1.040 | 1.004 | 0.842 | 0.949 | 1.047 | 1.194 | 1.142 |
Ours | 1.147 | 0.909 | 0.999 | 0.737 | 0.933 | 0.931 | 1.122 | 0.921 |
Mean Translation Error (m) | ||||||||
RANSAC | 1.4804 | 1.8729 | 1.9635 | 1.8119 | 1.7625 | 1.7233 | 2.1161 | 2.8324 |
GORE | 1.5556 | 2.1000 | 2.1068 | 1.7491 | 1.8869 | 1.8829 | 1.4261 | 2.5204 |
One-Point RANSAC | 1.1090 | 1.6728 | 2.1970 | 1.1921 | 0.9329 | 1.0032 | 1.4640 | 1.8214 |
GROR | 0.2562 | 0.2826 | 0.5506 | 0.2687 | 0.0316 | 0.2386 | 0.6235 | 0.3536 |
RANSIC | 0.0472 | 0.0469 | 0.0494 | 0.0490 | 0.0406 | 0.0417 | 0.0463 | 0.0540 |
VODRAC | 0.0327 | 0.0321 | 0.0333 | 0.0302 | 0.0315 | 0.0357 | 0.0386 | 0.0461 |
Ours | 0.0201 | 0.0327 | 0.0339 | 0.0304 | 0.0326 | 0.0327 | 0.0362 | 0.0407 |
Mean Time Cost (s) | ||||||||
RANSAC | 3.398 | 4.967 | 6.426 | 8.389 | 7.457 | 8.276 | 4.134 | 11.439 |
GORE | 0.469 | 1.697 | 1.867 | 0.921 | 0.494 | 1.370 | 1.618 | 2.154 |
One-Point RANSAC | 0.299 | 0.354 | 0.364 | 0.434 | 0.432 | 0.430 | 0.283 | 0.446 |
GROR | 2.778 | 3.554 | 3.332 | 4.069 | 3.828 | 3.857 | 2.829 | 3.494 |
RANSIC | 69.001 | 57.093 | 151.787 | 182.039 | 183.542 | 119.140 | 116.414 | 326.279 |
VODRAC | 1.983 | 2.643 | 2.773 | 3.300 | 3.246 | 3.260 | 2.013 | 2.989 |
Ours | 0.759 | 1.129 | 1.121 | 0.948 | 1.155 | 0.826 | 0.804 | 2.001 |
Method | (°) | (m) | RR (%) |
---|---|---|---|
LGR | 2.992 | 0.0867 | 77.50 |
RANSAC | 4.516 | 0.1385 | 61.93 |
GROR | 3.186 | 0.1012 | 80.85 |
RANSIC | 3.549 | 0.1143 | 79.79 |
Ours | 2.967 | 0.0962 | 80.91 |
Method | (°) | RR (%) | |
---|---|---|---|
LGR | 0.378 | 0.0693 | 99.10 |
RANSAC | 0.803 | 0.1861 | 98.38 |
GROR | 0.505 | 0.1287 | 97.84 |
RANSIC | 0.385 | 0.0872 | 99.10 |
Ours | 0.341 | 0.0804 | 99.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Zheng, Z.; Zha, B.; Li, H. Fast Robust Point Cloud Registration Based on Compatibility Graph and Accelerated Guided Sampling. Remote Sens. 2024, 16, 2789. https://doi.org/10.3390/rs16152789
Wang C, Zheng Z, Zha B, Li H. Fast Robust Point Cloud Registration Based on Compatibility Graph and Accelerated Guided Sampling. Remote Sensing. 2024; 16(15):2789. https://doi.org/10.3390/rs16152789
Chicago/Turabian StyleWang, Chengjun, Zhen Zheng, Bingting Zha, and Haojie Li. 2024. "Fast Robust Point Cloud Registration Based on Compatibility Graph and Accelerated Guided Sampling" Remote Sensing 16, no. 15: 2789. https://doi.org/10.3390/rs16152789