Spatial Variations of Late Quaternary Slip Rates along the Ganzi–Xianshuihe Fault Zone in the Eastern Tibet
Abstract
:1. Introduction
2. Tectonic Setting
3. Methods
3.1. Fault Mapping
3.2. Displacement Measurement
3.3. Dating
4. Results
4.1. Manigango Segment
4.2. Ganzi Segment
4.3. Luhuo Segment
4.4. Daofu Segment
5. Discussion
5.1. Ganzi–Xianshuihe Fault Late Quaternary Slip Rates
5.2. Spatial Variation of Late Quaternary Slip Rates of the Ganzi–Xianshuihe Fault
6. Conclusions
- The slip rates of each section of the Ganzi–Xianshuihe Fault Zone are limited, respectively. The Manigango section is 9.2 ± 0.75 mm/yr, the Ganzi section is 9.59 ± 1.7 mm/yr, the Luhuo section is 4.23 ± 0.66 mm/yr, and the Daofu section is 7.69 ± 0.76 mm/yr.
- The late Quaternary deformation of the Ganzi–Xianshui Fault Zone exhibits a consistent pattern of slip rates, indicating that this fault zone, as a major boundary fault, controls the clockwise rotational movement along the southeastern of the Tibetan Plateau.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise and growth of the Tibet plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Peizhen, Z.; Molnar, P.; Burchfiel, B.C.; Royden, L.; Yipeng, W.; Qidong, D.; Fangmin, S.; Weiqi, Z.; Decheng, J. Bounds on the Holocene Slip Rate of the Haiyuan Fault, North-Central China. Quat. Res. 1988, 30, 151–164. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Min, W.; Chu, Q. Basic characteristics of active tectonics of China. Sci. China Ser. D Earth Sci. 2003, 46, 356–372. [Google Scholar] [CrossRef]
- Xu, X.; Wang, F.; Zheng, R.; Chen, W.; Ma, W.; Yu, G.; Chen, G.; Tapponnier, P.; Van Der Woerd, J.; Meriaux, A.S.; et al. Late Quaternary sinistral slip rate along the Altyn Tagh fault and its structural transformation model. Sci. China Ser. D Earth Sci. 2005, 48, 384–397. [Google Scholar] [CrossRef]
- Ren, Z.; Lin, A.; Rao, G. Late Pleistocene–Holocene activity of the Zemuhe Fault on the southeastern margin of the Tibetan Plateau. Tectonophysics 2010, 495, 324–336. [Google Scholar] [CrossRef]
- Li, C.; Zhang, P.-Z.; Yin, J.; Min, W. Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics 2009, 28, TC5010. [Google Scholar] [CrossRef]
- Cowgill, E. Impact of riser reconstructions on estimation of secular variation in rates of strike–slip faulting: Revisiting the Cherchen River site along the Altyn Tagh Fault, NW China. Earth Planet. Sci. Lett. 2007, 254, 239–255. [Google Scholar] [CrossRef]
- Cowgill, E.; Gold, R.D.; Chen, X.H.; Wang, X.F.; Arrowsmith, J.R.; Southon, J. Low Quaternary slip rate reconciles geodetic and geologic rates along the Altyn Tagh fault, northwestern Tibet. Geology 2009, 37, 647–650. [Google Scholar] [CrossRef]
- Gold, R.D.; Cowgill, E.; Arrowsmith, J.R.; Friedrich, A.M. Pulsed strain release on the Altyn Tagh fault, northwest China. Earth Planet. Sci. Lett. 2017, 459, 291–300. [Google Scholar] [CrossRef]
- Li, H.B.; Yang, J.S.; Shi, R.D.; Wu, C.L.; Tapponnier, P.; Wan, Y.S.; Zhang, J.X.; Meng, F.C. Determination of the Altyn Tagh strike-slip fault basin and its relationship with mountains. Chin. Sci. Bull. 2002, 47, 572–577. [Google Scholar] [CrossRef]
- Zhang, H.-p.; Zhang, P.-z.; Zheng, D.-W.; Zheng, W.-J.; Chen, Z.-W.; Wang, W.-T. Transforming the Miocene Altyn Tagh fault slip into shortening of the north-western Qilian Shan: Insights from the drainage basin geometry. Terra Nova 2014, 26, 216–221. [Google Scholar] [CrossRef]
- Van der Woerd, J.; Ryerson, F.J.; Tapponnier, P.; Meriaux, A.S.; Gaudemer, Y.; Meyer, B.; Finkel, R.C.; Caffee, M.W.; Zhao, G.G.; Xu, Z.Q. Uniform Slip-Rate along the Kunlun Fault: Implications for seismic behaviour and large-scale tectonics. Geophys. Res. Lett. 2000, 27, 2353–2356. [Google Scholar] [CrossRef]
- Van Der Woerd, J.; Tapponnier, P.; Ryerson, F.J.; Meriaux, A.S.; Meyer, B.; Gaudemer, Y.; Finkel, R.C.; Caffee, M.W.; Zhao, G.G.; Xu, Z.Q. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys. J. Int. 2002, 148, 356–388. [Google Scholar] [CrossRef]
- Zhang, P.-Z. A review on active tectonics and deep crustal processes of the Western Sichuan region, eastern margin of the Tibetan Plateau. Tectonophysics 2013, 584, 7–22. [Google Scholar] [CrossRef]
- Chen, G.; Xu, X.; Wen, X.; Chen, Y.-G. Late Quaternary Slip-rates and Slip Partitioning on the Southeastern Xianshuihe Fault System, Eastern Tibetan Plateau. Acta Geol. Sin. Engl. Ed. 2016, 90, 537–554. [Google Scholar] [CrossRef]
- Xu, X.W.; Wen, X.Z.; Zheng, R.Z.; Ma, W.T.; Song, F.M.; Yu, G.H. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2003, 46, 210–226. [Google Scholar] [CrossRef]
- Allen, C.R.; Zhuoli, L.; Hong, Q.; Xueze, W.; Huawei, Z.; Weishi, H. Field study of a highly active fault zone: The Xianshuihe fault of southwestern China. Geol. Soc. Am. Bull. 1991, 103, 1178–1199. [Google Scholar] [CrossRef]
- Honglin, H.E.; Hongliu, R.A.N.; Ikeda, Y. Uniform Strike-Slip Rate along the Xianshuihe-Xiaojiang Fault System and Its Implications for Active Tectonics in Southeastern Tibet. Acta Geol. Sin. Engl. Ed. 2006, 80, 376–386. [Google Scholar] [CrossRef]
- Wen, X.; Xu, X.; Zheng, R.; Xie, Y.; Wan, C. Average slip-rate and recent large earthquake ruptures along the Garzê-Yushu fault. Sci. China Ser. D Earth Sci. 2003, 46, 276–288. [Google Scholar] [CrossRef]
- Qiao, X.; Zhou, Y.; Zhang, P. Along-strike variation in fault structural maturity and seismic moment deficits on the Yushu-Ganzi-Xianshuihe fault system revealed by strain accumulation and regional seismicity. Earth Planet. Sci. Lett. 2022, 596, 117799. [Google Scholar] [CrossRef]
- Bai, M.; Chevalier, M.L.; Leloup, P.H.; Li, H.; Pan, J.; Replumaz, A.; Wang, S.; Li, K.; Wu, Q.; Liu, F.; et al. Spatial Slip Rate Distribution Along the SE Xianshuihe Fault, Eastern Tibet, and Earthquake Hazard Assessment. Tectonics 2021, 40, e2021TC006985. [Google Scholar] [CrossRef]
- Zhou, R.; Ma, S.; Cai, C. Late Quaternary Active Features of the Ganzi-Yushu Fault Zone. Earthq. Res. China 1996, 12, 250–260. [Google Scholar]
- Liang, M.; Chen, L.; Ran, Y.; Li, Y.; Gao, S.; Han, M.; Lu, L. Abnormal Accelerating Stress Release Behavior on the Luhuo Segment of the Xianshuihe Fault, Southeastern Margin of the Tibetan Plateau, During the Past 3000 Years. Front. Earth Sci. 2020, 8, 274. [Google Scholar] [CrossRef]
- Chevalier, M.-L.; Leloup, P.H.; Replumaz, A.; Pan, J.; Métois, M.; Li, H. Temporally constant slip rate along the Ganzi fault, NW Xianshuihe fault system, eastern Tibet. GSA Bull. 2017, 130, 396–410. [Google Scholar] [CrossRef]
- Shi, F.; He, H.; Densmore, A.L.; Li, A.; Yang, X.; Xu, X. Active tectonics of the Ganzi–Yushu fault in the southeastern Tibetan Plateau. Tectonophysics 2016, 676, 112–124. [Google Scholar] [CrossRef]
- Peng, H.; Ma, X.M.; Bai, J.Q.; Du, D. Characteristics of quaternary activities of the Garze-Yushu fault zone. J. Geomech. 2006, 12, 295. [Google Scholar]
- Zhang, Y.; Yao, X.; Yu, K.; Du, G.; Guo, C. Late-Quaternary Slip Rate and Seismic Activity of the Xianshuihe Fault Zone in Southwest China. Acta Geol. Sin. Engl. Ed. 2016, 90, 525–536. [Google Scholar]
- Qian, H.; Allen, C.R.; Luo, Z.; Wen, X.; Zhou, H.; Huang, W. The Active Characteristics of Xianshuihe Fault in Holocene. Earthq. Res. China 1988, 2, 11–20. [Google Scholar]
- Zhiqin, X.; Guangwei, L.; Zeming, Z.; Haibing, L.; Yuejun, W.; Miao, P.; Xiumian, H.; Zhiyu, Y.; Bihai, Z. Review ten key geological issues of the Tibetan Plateau—Commemoration of the centennial anniversary of Acta Geologica Sinica. Acta Geol. Sin. 2022, 96, 65–94. [Google Scholar]
- Zhang, P.; Wang, W.; Gan, W.; Zhang, Z.; Zhang, H.; Zheng, D.; Zheng, W.; Wang, Y.; Xu, B.; Zhang, Y.J.A.G.S. Present-day deformation and geodynamic processes of the Tibetan Plateau. Acta Geol. Sin. 2022, 96, 3297–3313. [Google Scholar] [CrossRef]
- Deng, Q.-D.; Cheng, S.-P.; Ma, J.; Du, P. Seismic activities and earthquake potential in the Tibetan Plateau. Chin. J. Geophys. Chin. Ed. 2014, 57, 2025–2042. [Google Scholar] [CrossRef]
- Shen, Z.-K.; Lü, J.; Wang, M.; Bürgmann, R. Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau. J. Geophys. Res.-Solid Earth 2005, 110, B11. [Google Scholar] [CrossRef]
- Li, H.; Woerd, J.V.d.; Sun, Z.; Mériaux, A.S.; Tapponnier, P.; Ryerson, F.J.; Si, J.; Pan, J. Late quaternary left-slip rate and large earthquake recurrence time along the Kangxiwar (or Karakax) segment of the altyn tagh fault, Northern Tibet. Quat. Sci. 2008, 28, 197–213. [Google Scholar]
- Sun, F.Y.; Li, B.L.; Ding, Q.F.; Zhao, J.W.; Pan, T.; Yu, X.F.; Wang, L.; Chen, G.J.; Ding, Z.J. Report of Significant Exploration Problem for Eastern Kunlun Metallogenic Belt in Qinghai Province; Geological Survey of Jilin University: Changchun, China, 2009. [Google Scholar]
- Kirby, E.; Harkins, N.; Wang, E.Q.; Shi, X.H.; Fan, C.; Burbank, D. Slip rate gradients along the eastern Kunlun fault. Tectonics 2007, 26. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Zhiliang, C.; Yupinc, L.; Royden, L.H.J.I.G.R. Tectonics of the Longmen Shan and Adjacent Regions, Central China. Int. Geol. Rev. 1995, 37, 661–735. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res.-Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Li, T.-S.; Du, Q.-F.; Zhang, C.-G.; You, Z.-L. The Active Xianshuihe Fault Zone and Its Seismic Risk Assessment; Chengdu Cartographic Publishing House: Chengdu, China, 1997. [Google Scholar]
- Zielke, O.; Arrowsmith, J.R.; Ludwig, L.G.; Akciz, S.O. High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seismol. Soc. Am. 2012, 102, 1135–1154. [Google Scholar] [CrossRef]
- Ren, Z.; Zhang, P.; Oguchi, T.; He, Z. Remote Sensing Perspectives on Geomorphology and Tectonic Processes. Remote Sens. 2023, 15, 2327. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Min, W.; Ha, G.; Lei, J. The advance in obtaining fault slip rate of strike slip fault-A review. Earthq. Res. Adv. 2021, 1, 100032. [Google Scholar] [CrossRef]
- Li, X.; Pierce, I.K.D.; Sun, K.; Li, J.; Yang, H.; You, Z.; Liu, S.; Zhang, Z.; Li, C.; Zheng, W.; et al. Fault Geometry and Late Quaternary Kinematics Along the Tieluzi Fault: Implications for Tectonic Deformation and Eastward Expansion of the Tibetan Plateau, China. Tectonics 2024, 43, e2023TC008015. [Google Scholar] [CrossRef]
- Kang, W.J.; Xu, X.W.; Oskin, M.E.; Yu, G.H.; Luo, J.H.; Chen, G.H.; Luo, H.; Sun, X.Z.; Wu, X.Y. Characteristic slip distribution and earthquake recurrence along the eastern Altyn Tagh fault revealed by high-resolution topographic data. Geosphere 2020, 16, 392–406. [Google Scholar] [CrossRef]
- Stewart, N.; Gaudemer, Y.; Manighetti, I.; Serreau, L.; Vincendeau, A.; Dominguez, S.; Mattéo, L.; Malavieille, J. “3D_Fault_Offsets”, a Matlab Code to Automatically Measure Lateral and Vertical Fault Offsets in Topographic Data: Application to San Andreas, Owens Valley, and Hope Faults. J. Geophys. Res.-Solid Earth 2018, 123, 815–835. [Google Scholar] [CrossRef]
- Zielke, O.; Arrowsmith, J.R. LaDiCaoz and LiDARimager-MATLAB GUIs for LiDAR data handling and lateral displacement measurement. Geosphere 2012, 8, 206–221. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, Z.; Lü, T.; Feng, H. Review and progress of OSL dating. Geol. Bull. China 2015, 34, 183–203. [Google Scholar]
- Luo, Q.; Li, C.; Li, X.; Ren, G.; Dong, J. Slip Distribution and Footwall Topography of the Yanggao-Tianzhen Fault (Northern Shanxi Graben): Implications for the Along-Strike Variations in Fault Activity and Regional Deformation. Tectonics 2021, 40, e2020TC006593. [Google Scholar] [CrossRef]
- Liang, T.; Yue-cheng, X.; Ren-jian, J.; Bin, G.; Jun-jie, G.; Chang-wei, M. Characteristics and Tectonic Origin for River Terrace in the Maniganggo Basin. Acta Geol. Sichuan 2014, 34, 484–488. [Google Scholar]
- Mingkun, B. Late Quaternary Slip Rate Distribution and Earthquake Hazard Assessment Along the Xianshuihe Fault. Ph.D. Thesis, Peking University, Beijing, China, 2022. [Google Scholar]
- Pei-zhen, Z.; Chuan-you, L.; Feng-ying, M. Strath terrace formation and strike-slip faulting. Seismol. Geol. 2008, 30, 44–57. [Google Scholar]
- Sun, K.; Meng, G.; Hong, S.; Su, X.; Huang, X.; Dong, Y.; Takahashi, H.; Ohzono, M. Interseismic movement along the Luhuo-Daofu section of the Xianshuihe Fault from InSAR and GPS observations. Chin. J. Geophys. Chin. Ed. 2021, 64, 2278–2296. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Y.; Yang, Y.; Xu, Y.; An, Y.; Zhang, Y.; Feng, S.; Huai, Y.; Yang, J. The current slip rate of the Xianshuihe fault zone calculated using multiple observational data of crustal deformation. Chin. J. Geophys. Chin. Ed. 2019, 62, 1323–1335. [Google Scholar] [CrossRef]
- Liu, J.; Ren, Z.; Zhang, H.; Li, C.; Zhang, Z.; Zheng, W.; Li, X.; Liu, C. Slip Rates Along the Laohushan Fault and Spatial Variation in Slip Rate Along the Haiyuan Fault Zone. Tectonics 2022, 41, e2021TC006992. [Google Scholar] [CrossRef]
- Zhang, P.-Z.; Molnar, P.; Xu, X. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault, northern margin of the Tibetan Plateau. Tectonics 2007, 26. [Google Scholar] [CrossRef]
- Kirby, E.; Harkins, N. Distributed deformation around the eastern tip of the Kunlun fault. Int. J. Earth Sci. 2013, 102, 1759–1772. [Google Scholar] [CrossRef]
- Bai, M.; Chevalier, M.-L.; Pan, J.; Replumaz, A.; Leloup, P.H.; Métois, M.; Li, H. Southeastward increase of the late Quaternary slip-rate of the Xianshuihe fault, eastern Tibet. Geodynamic and seismic hazard implications. Earth Planet. Sci. Lett. 2018, 485, 19–31. [Google Scholar] [CrossRef]
- Wen, X.Z.; Du, F.; Zhang, P.Z.; Long, F. Correlation of major earthquake sequences on the northern and eastern boundaries of the Bayan Har block, and its relation to the 2008 Wenchuan earthquake. Chin. J. Geophys. Chin. Ed. 2011, 54, 706–716. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, C.; Feng, H.; Zhang, K.; Li, J.; Ye, P.; Li, Y.; Tian, T. Active faults and earthquake around Yushu in eastern Tibetan Plateau. Geol. Bull. China 2014, 33, 419–469. [Google Scholar]
- Lv, L.; Li, C.; Wei, Z.; Dong, J.; Tan, X.; Shi, F.; Su, P. Late Quaternary Strike-Slip Rate and Slip Partitioning along Garze-Yushu Fault Belt. Technol. Earthq. Disaster Prev. 2017, 12, 456–468. [Google Scholar]
- Zhou, R.-J.; He, Y.-L.; Huang, Z.-Z.; Li, X.-G.; Yang, T. The slip rate and strong earthquake recurrence interval on the Qianning-Kangding segment of the Xianshuihe fault zone. Acta Seismol. Sin. 2001, 14, 263–273. [Google Scholar] [CrossRef]
- He, H.; Ikeda, Y.; He, Y.; Togo, M.; Chen, J.; Chen, C.; Tajikara, M.; Echigo, T.; Okada, S. Newly-generated Daliangshan fault zone—Shortcutting on the central section of Xianshuihe-Xiaojiang fault system. Sci. China Ser. D Earth Sci. 2008, 51, 1248–1258. [Google Scholar] [CrossRef]
- Sun, H.; He, H.; Ikeda, Y.; Wei, Z.; Chen, C.; Xu, Y.; Shi, F.; Bi, L.; Shirahama, Y.; Okada, S.; et al. Paleoearthquake History Along the Southern Segment of the Daliangshan Fault Zone in the Southeastern Tibetan Plateau. Tectonics 2019, 38, 2208–2231. [Google Scholar] [CrossRef]
- Wang, H.; Li, D.M.; Li, K.J.; Deng, L.; Luo, P.S. Late Quaternary Fault Activity of the Southern Segment of the Daliangshan Fault along the Southeastern Margin of the Tibetan Plateau and Its Implications for Fault Rupture Behaviour at Stepovers. Lithosphere 2022, 2022, 9259647. [Google Scholar] [CrossRef]
- Guo, P.; Han, Z.; Dong, S.; Mao, Z.; Hu, N.; Gao, F.; Li, J.; Billi, A. Latest Quaternary Active Faulting and Paleoearthquakes on the Southern Segment of the Xiaojiang Fault Zone, SE Tibetan Plateau. Lithosphere 2021, 2021, 7866379. [Google Scholar] [CrossRef]
- He, H.; Oguchi, T. Late Quaternary activity of the Zemuhe and Xiaojiang faults in southwest China from geomorphological mapping. Geomorphology 2008, 96, 62–85. [Google Scholar] [CrossRef]
- Jun, S.; Yipeng, W.; Fangmin, S. Characteristics of the active Xiaojiang fault zone in Yunnan, China: A slip boundary for the southeastward escaping Sichuan–Yunnan Block of the Tibetan Plateau. J. Asian Earth Sci. 2003, 21, 1085–1096. [Google Scholar] [CrossRef]
Sample Code | Laboratory Code | Longitude (°E) | Latitude (°N) | Elevation (m) | Depth (m) | Analysis Method | Grain Size (um) | U-238 (Bg/Kg) | Th-232 (Bg/Kg) | K-40 (Bg/Kg) | Water Conten% | Dose Rate (Gy/ka) | De (Gy) | Age a (kyr) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GZ-OSL-01 b | LED21-333 | 99.127 | 31.967 | 3339 | 0.60 | SMAR | 4~11 | 55.1 ± 10.3 | 66.2 ± 1.2 | 468.3 ± 17.0 | 10 | 4.2 ± 0.1 | 39.9 ± 0.8 | 9.5 ± 0.4 |
SK-OSL-05 c | 21-OSL-342 | 99.882 | 31.626 | 3430 | 2.3 | SMAR | 4~11 | 2.74 ± 0.10 | 16.0 ± 0.4 | 2.24 ± 0.01 | 10 | 4.67 ± 0.32 | 247.60 ± 13.98 | 53.01 ± 4.70 |
SK-OSL-22 c | 23-OSL-611 | 99.873 | 31.630 | 3386 | 1.2 | SAR | 90~150 | 2.8 ± 0.03 | 16.4 ± 0.23 | 2.15 ± 0.01 | 2.73 | 4.13 ± 0.17 | 182.4 ± 4.65 | 44.19 ± 2.13 |
GD-OSL-11 c | 21-OSL-345 | 100.244 | 31.687 | 3512 | 1.7 | SMAR | 4~11 | 2.44 ± 0.03 | 13.3 ± 0.16 | 1.91 ± 0.02 | 15.04 | 4.02 ± 0.27 | 113.201 ± 3.04 | 28.14 ± 2.05 |
GD-OSL-25 c | 23-OSL-614 | 100.245 | 31.686 | 3425 | 0.8 | SAR | 90~150 | 1.79 ± 0.03 | 9.99 ± 0.23 | 1.67 ± 0.01 | 3.37 | 3 ± 0.12 | 7.32 ± 0.15 | 2.44 ± 0.11 |
DF-OSL-13 c | 23-OSL-616 | 101.048 | 31.035 | 3118 | 0.7 | SAR | 90~150 | 2.7 ± 0.06 | 17.2 ± 0.29 | 2.3 ± 0.01 | 1.96 | 4.35 ± 0.18 | 242.7 ± 11.81 | 55.75 ± 3.56 |
Fault Segment | Site | Slip Rate (mm/a) | Error (mm/a) | Lat | Long | Elevation | Dating Method | References |
---|---|---|---|---|---|---|---|---|
Manigango | Zhuqing | 7 | +1.1/–1.0 | 32.11 | 98.85 | 4088 | Be10 | [24] |
Zhuqing | 3.3 | 0.3 | 32.11 | 98.86 | 3940 | Estimate | [26] | |
Zhuqing | 7 | 0.7 | 32.11 | 98.86 | 3937 | TL | [22] | |
Ria | 7 | 0.7 | 31.97 | 99.13 | 3946 | TL | [22] | |
Ria | 12.8 | 1.7 | 31.97 | 99.13 | 3977 | TL | [19] | |
Ria | 9.2 | 0.75 | 31.97 | 99.13 | 3977 | OSL | This Study | |
Ria | 4.3 | 0.3 | 31.97 | 99.13 | 3977 | Estimate | [26] | |
Ria SE | 5.65 | 2.65 | 31.96 | 99.14 | 3987 | Be10 | [24] | |
Ria SE | 7 | 0.7 | 31.95 | 99.16 | 3974 | TL | [22] | |
Manigango | 8 | 0.5 | 31.91 | 99.21 | 3960 | Estimate | [26] | |
Manigango | 7 | 0.7 | 31.93 | 99.21 | 3863 | TL | [22] | |
Yulong S | 5.5 | 0.5 | 31.85 | 99.33 | 3940 | Estimate | [26] | |
Cuo’a | 13.9 | 1.4 | 31.82 | 99.41 | 3796 | TL | [19] | |
Cuo’a | 7 | 0.7 | 31.82 | 99.41 | 3796 | TL | [22] | |
Cuo’a | 7.5 | 0.5 | 31.81 | 99.41 | 3731 | Estimate | [26] | |
Cuo’a | 10 | 0.4 | 31.81 | 99.41 | 3731 | C14 | [25] | |
Cuo’a | 13.4 | 2 | 31.81 | 99.41 | 3730 | TL | [16] | |
Ganzi | Sixty-six Daoban | 8.5 | +0.8/–0.7 | 31.73 | 99.58 | 4005 | Be10 | [24] |
Sixty-six Daoban | 3.4 | 0.3 | 31.73 | 99.58 | 3955 | TL | [22] | |
Nawa West | 3.4 | 0.3 | 31.69 | 99.66 | 3654 | TL | [22] | |
Nawa | 8.9 | 1.1 | 31.69 | 99.66 | 3650 | TL | [19] | |
Cha La | 13.3 | 1.3 | 31.67 | 99.72 | 3483 | TL | [19] | |
Renguo | 5.45 | 2.55 | 31.64 | 99.78 | 3513 | C14 | [25] | |
E‘zhong | 10.9 | 2 | 31.64 | 99.80 | 3406 | TL | [19] | |
E‘zhong | 14.3 | 3 | 31.63 | 99.81 | 3415 | TL | [16] | |
Shengkang | 8 | 0.3 | 31.62 | 99.88 | 3408 | C14 | [25] | |
Shengkang | 11.5 | 2.4 | 31.63 | 99.88 | 3408 | TL | [19] | |
Shengkang | 9.36 | 1.47 | 31.62 | 99.88 | 3408 | OSL | This Study | |
Luhuo | Kasu NE | 10.64 | 0.57 | 31.72 | 100.18 | 3688 | TL | [27] |
Gongru Village | 8.11 | 1.8 | 31.71 | 100.19 | 3529 | TL | [21] | |
Gengda | 4.23 | 0.66 | 31.68 | 100.25 | 3529 | OSL | This Study | |
Gru | 18 | - | 31.49 | 100.53 | 3352 | TL | [17] | |
Gru | 13.8 | - | 31.49 | 100.53 | 3249 | TL | [28] | |
Gu Li | 14.92 | 3.81 | 31.44 | 100.59 | 3284 | TL | [16] | |
Chaqika | 10.58 | 1.16 | 31.41 | 100.62 | 3342 | TL | [27] | |
Laohekou | 9.6 | - | 31.37 | 100.66 | 3438 | TL | [28] | |
Laohekou | 9.6 | - | 31.37 | 100.67 | 3468 | TL | [17] | |
Douri Gou | 11.09 | 1.22 | 31.36 | 100.68 | 3536 | TL | [27] | |
Yousi | 8.4 | - | 31.34 | 100.70 | 3572 | C14 | [23] | |
Daofu | Chang Zi | 2.5 | - | 31.18 | 100.89 | 3327 | C14 | [23] |
Mazi | 14.92 | 3 | 31.04 | 101.05 | 3174 | TL | [16] | |
Mazi | 7.94 | 0.83 | 31.04 | 101.05 | 3174 | OSL | This Study | |
Xin Ke Wu | 10.5 | 0.5 | 30.97 | 101.12 | 2990 | TL | [27] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Li, C.; Liang, M.; Li, X.; Luo, Q.; Ren, G.; Huang, F.; Li, J. Spatial Variations of Late Quaternary Slip Rates along the Ganzi–Xianshuihe Fault Zone in the Eastern Tibet. Remote Sens. 2024, 16, 2612. https://doi.org/10.3390/rs16142612
Sun K, Li C, Liang M, Li X, Luo Q, Ren G, Huang F, Li J. Spatial Variations of Late Quaternary Slip Rates along the Ganzi–Xianshuihe Fault Zone in the Eastern Tibet. Remote Sensing. 2024; 16(14):2612. https://doi.org/10.3390/rs16142612
Chicago/Turabian StyleSun, Kai, Chuanyou Li, Mingjian Liang, Xinnan Li, Quanxing Luo, Guangxue Ren, Feipeng Huang, and Junjie Li. 2024. "Spatial Variations of Late Quaternary Slip Rates along the Ganzi–Xianshuihe Fault Zone in the Eastern Tibet" Remote Sensing 16, no. 14: 2612. https://doi.org/10.3390/rs16142612
APA StyleSun, K., Li, C., Liang, M., Li, X., Luo, Q., Ren, G., Huang, F., & Li, J. (2024). Spatial Variations of Late Quaternary Slip Rates along the Ganzi–Xianshuihe Fault Zone in the Eastern Tibet. Remote Sensing, 16(14), 2612. https://doi.org/10.3390/rs16142612