The Study on Anomalies of the Geomagnetic Topology Network Associated with the 2022 Ms6.8 Luding Earthquake
Abstract
:1. Introduction
2. Studied Earthquakes and Observations
2.1. Studied Earthquake
2.2. Geomagnetic Observations from AETA
3. Methods
3.1. Extracting Periodic Components Based on MSSA
3.2. Building a Geomagnetic Topology Network for the Periodic Components
3.3. Excluding the Anomalous Interference from One Single Station
4. Results
5. Discussion
5.1. Network Centrality during Random Periods
5.2. Network Centrality for an Additional Network
5.3. Superposed Epoch Analysis (SEA) for the Geomagnetic Topology Network
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akhoondzadeh, M.; De Santis, A.; Marchetti, D.; Wang, T. Developing a Deep Learning-Based Detector of Magnetic, Ne, Te and TEC Anomalies from Swarm Satellites: The Case of Mw 7.1 2021 Japan Earthquake. Remote Sens. 2022, 14, 1582. [Google Scholar] [CrossRef]
- Xiong, P.; Zhai, D.; Long, C.; Zhou, H.; Zhang, X.; Shen, X. Long short-term memory neural network for ionospheric total electron content forecasting over China. Space Weather. 2021, 19, e2020SW002706. [Google Scholar] [CrossRef]
- Chen, H.; Han, P.; Hattori, K. Recent Advances and Challenges in the Seismo-Electromagnetic Study: A Brief Review. Remote Sens. 2022, 14, 5893. [Google Scholar] [CrossRef]
- Hattori, K.; Han, P.; Yoshino, C.; Febriani, F.; Yamaguchi, H.; Chen, C.H. Investigation of ULF seismo-magnetic phenomena in Kanto, Japan during 2000–2010: Case studies and statistical studies. Surv. Geophys. 2013, 34, 293–316. [Google Scholar] [CrossRef]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’Arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide statistical correlation of eight years of swarm satellite data with M5. 5+ earthquakes: New hints about the preseismic phenomena from space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Parrot, M.; Tramutoli, V.; Liu, T.J.; Pulinets, S.; Ouzounov, D.; Genzano, N.; Lisi, M.; Hattori, K.; Namgaladze, A. Atmospheric and ionospheric coupling phenomena associated with large earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 197–225. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Li, M.; Lu, J.; Zhang, X.; Shen, X. Indications of Ground-based Electromagnetic Observations to A Possible Lithosphere–Atmosphere–Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan MS 8.0 Earthquake. Atmosphere 2019, 10, 355. [Google Scholar] [CrossRef]
- Sarlis, N.V. Statistical significance of earth’s electric and magnetic field variations preceding earthquakes in Greece and Japan revisited. Entropy 2018, 20, 561. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Huang, Q.; Shao, Z.; Liu, J.; Zhang, X.; Ma, W.; Parrot, M. Statistical correlation between DEMETER satellite electronic perturbations and global earthquakes with M≥4.8. IEEE Trans. Geosci. Remote Sens. 2023. [Google Scholar] [CrossRef]
- Chen, C.H.; Zhang, S.; Mao, Z.; Sun, Y.Y.; Liu, J.; Chen, T.; Zhang, X.; Yisimayili, A.; Qing, H.; Luo, T.; et al. The Lithosphere-Atmosphere-Ionosphere Coupling of Multiple Geophysical Parameters Approximately 3 Hours Prior to the 2022 M6.8 Luding Earthquake. Geosciences 2023, 13, 356. [Google Scholar] [CrossRef]
- Pulinets, S.; Tsidilina, M.; Ouzounov, D.; Davidenko, D. From Hector Mine M7. 1 to Ridgecrest M7. 1 earthquake. A look from a 20-year perspective. Atmosphere 2021, 12, 262. [Google Scholar] [CrossRef]
- Pulinets, S.; Davidenko, D. The nocturnal positive ionospheric anomaly of electron density as a short-term earthquake precursor and the possible physical mechanism of its formation. Geomagn. Aeron. 2018, 58, 559–570. [Google Scholar] [CrossRef]
- Pulinets, S.; Gaivoronska, T.; Leyva Contreras, A.; Ciraolo, L. Correlation analysis technique revealing ionospheric precursors of earthquakes. Nat. Hazards Earth Syst. Sci. 2004, 4, 697–702. [Google Scholar] [CrossRef]
- Liu, Q.; De Santis, A.; Piscini, A.; Cianchini, G.; Ventura, G.; Shen, X. Multi-parametric climatological analysis reveals the involvement of fluids in the preparation phase of the 2008 Ms 8.0 wenchuan and 2013 Ms 7.0 lushan earthquakes. Remote Sens. 2020, 12, 1663. [Google Scholar] [CrossRef]
- Han, P.; Zhuang, J.; Hattori, K.; Chen, C.H.; Febriani, F.; Chen, H.; Yoshino, C.; Yoshida, S. Assessing the potential earthquake precursory information in ULF magnetic data recorded in Kanto, Japan during 2000–2010: Distance and magnitude dependences. Entropy 2020, 22, 859. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Zhuang, J.; Chen, C.H.; Liu, J.Y.; Yoshida, S. Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram. Geophys. J. Int. 2016, 208, 182–490. [Google Scholar] [CrossRef]
- Potirakis, S.; Karadimitrakis, A.; Eftaxias, K. Natural time analysis of critical phenomena: The case of pre-fracture electromagnetic emissions. Chaos Interdiscip. J. Nonlinear Sci. 2013, 23. [Google Scholar] [CrossRef]
- Chen, H.J.; Chen, C.C. Testing the correlations between anomalies of statistical indexes of the geoelectric system and earthquakes. Nat. Hazards 2016, 84, 877–895. [Google Scholar] [CrossRef]
- Guo, Q.; Yong, S.; Wang, X. Statistical analysis of the relationship between AETA electromagnetic anomalies and local earthquakes. Entropy 2021, 23, 411. [Google Scholar] [CrossRef]
- Rundle, J.; Tiampo, K.; Klein, W.; Sa Martins, J. Self-organization in leaky threshold systems: The influence of near-mean field dynamics and its implications for earthquakes, neurobiology, and forecasting. Proc. Natl. Acad. Sci. USA 2002, 99, 2514–2521. [Google Scholar] [CrossRef]
- Wen, S.; Chen, C.H.; Yen, H.Y.; Yeh, T.K.; Liu, J.Y.; Hattori, K.; Peng, H.; Wang, C.H.; Shin, T.C. Magnetic storm free ULF analysis in relation with earthquakes in Taiwan. Nat. Hazards Earth Syst. Sci. 2012, 12, 1747–1754. [Google Scholar] [CrossRef]
- Golyandina, N.; Nekrutkin, V.; Zhigljavsky, A.A. Analysis of Time Series Structure: SSA and Related Techniques; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Guo, J.; Li, W.; Chang, X.; Zhu, G.; Liu, X.; Guo, B. Terrestrial water storage changes over Xinjiang extracted by combining Gaussian filter and multichannel singular spectrum analysis from GRACE. Geophys. J. Int. 2018, 213, 397–407. [Google Scholar] [CrossRef]
- Yu, Z.; Hattori, K.; Zhu, K.; Chi, C.; Fan, M.; He, X. Detecting earthquake-related anomalies of a borehole strain network based on multi-channel singular spectrum analysis. Entropy 2020, 22, 1086. [Google Scholar] [CrossRef]
- Martinetz, T.; Schulten, K. Topology representing networks. Neural Netw. 1994, 7, 507–522. [Google Scholar] [CrossRef]
- Abe, S.; Suzuki, N. Small-world structure of earthquake network. Phys. A Stat. Mech. Its Appl. 2004, 337, 357–362. [Google Scholar] [CrossRef]
- Jiménez, A.; Tiampo, K.; Posadas, A. Small world in a seismic network: The California case. Nonlinear Process. Geophys. 2008, 15, 389–395. [Google Scholar] [CrossRef]
- Chorozoglou, D.; Kugiumtzis, D.; Papadimitriou, E. Application of complex network theory to the recent foreshock sequences of Methoni (2008) and Kefalonia (2014) in Greece. Acta Geophys. 2017, 65, 543–553. [Google Scholar] [CrossRef]
- Lv, Y.; Wang, X.; Huang, J.; Yong, S. Research on Jiuzhaigou Ms 7.0 Earthquake based on AETA electromagnetic disturbance. J. Peking Univ. 2019, 55, 1007–1013. (In Chinese) [Google Scholar]
- Huang, J.; Wang, X.; Yong, S.; Feng, Y. A feature enginering framework for short-term earthquake prediction based on AETA data. In Proceedings of the 2019 IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC), Chongqing, China, 24–26 May 2019; pp. 563–566. [Google Scholar]
- Bao, Z.; Yong, S.; Wang, X.; Yang, C.; Xie, J.; He, C. Seismic reflection analysis of AETA electromagnetic signals. Appl. Sci. 2021, 11, 5869. [Google Scholar] [CrossRef]
- Yi, G.; Long, F.; Liang, M.; Zhao, M.; Zhang, H.; Zhou, R.; Li, Y.; Liu, H.; Wu, P.; Wang, S.; et al. Seismogenic structure of the 5 September 2022 Sichuan Luding Ms6.8 earthquake sequence. Chin. J. Geophys. 2023, 66, 1363–1384. [Google Scholar]
- Qu, Z.; Zhu, B.; Cao, Y.; Fu, H. Rapid report of seismic damage to buildings in the 2022 M 6.8 Luding earthquake, China. Earthq. Res. Adv. 2023, 3, 20. [Google Scholar] [CrossRef]
- Peng, W.; Huang, X.; Wang, Z. Focal Mechanism and Regional Fault Activity Analysis of 2022 Luding Strong Earthquake Constraint by InSAR and Its Inversion. Remote Sens. 2023, 15, 3753. [Google Scholar] [CrossRef]
- Wen, X.Z.; Ma, S.L.; Xu, X.W.; He, Y.N. Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan-Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter. 2008, 168, 16–36. [Google Scholar] [CrossRef]
- An, Y.; Wang, D.; Ma, Q.; Xu, Y.; Li, Y.; Zhang, Y.; Liu, Z.; Huang, C.; Su, J.; Li, J.; et al. Preliminary report of the 5 September 2022 MS 6.8 Luding earthquake, Sichuan, China. Earthq. Res. Adv. 2023, 3, 100184. [Google Scholar] [CrossRef]
- Wang, C.; Li, C.; Yong, S.; Wang, X.; Yang, C. Time Series and Non-Time Series Models of Earthquake Prediction Based on AETA Data: 16-Week Real Case Study. Appl. Sci. 2022, 12, 8536. [Google Scholar] [CrossRef]
- Bao, Z.; Zhao, J.; Huang, P.; Yong, S.; Wang, X. A deep learning-based electromagnetic signal for earthquake magnitude prediction. Sensors 2021, 21, 4434. [Google Scholar] [CrossRef] [PubMed]
- Wanga, J.; Yong, S.; Wang, X. An AETA Electromagnetic Disturbance Anomaly Extraction Method based on Sample Entropy. In Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 12–14 March 2021. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, L.; Zhan, F.; Wang, Z.; Wang, Y.; Chen, Y.; Meng, Q.; Ji, Z.; Wang, P.; Liu, Z.; et al. The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci. 2018, 61, 653–658. [Google Scholar] [CrossRef]
- Oropeza, V.; Sacchi, M. Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis. Geophysics 2011, 76, V25–V32. [Google Scholar] [CrossRef]
- Huang, W.; Wang, R.; Chen, Y.; Li, H.; Gan, S. Damped multichannel singular spectrum analysis for 3D random noise attenuation. Geophysics 2016, 81, V261–V270. [Google Scholar] [CrossRef]
- Voss, N.K.; Malservisi, R.; Dixon, T.H.; Protti, M. Slow slip events in the early part of the earthquake cycle. J. Geophys. Res. Solid Earth 2017, 122, 6773–6786. [Google Scholar] [CrossRef]
- Wallace, L.M.; Bartlow, N.; Hamling, I.; Fry, B. Quake clamps down on slow slip. Geophys. Res. Lett. 2014, 41, 8840–8846. [Google Scholar] [CrossRef]
- Rekapalli, R.; Tiwari, R.K. Windowed SSA (singular spectral analysis) for geophysical time series analysis. J. Geol. Resour. Eng. 2014, 3, 167–173. [Google Scholar] [CrossRef]
- Gruszczynska, M.; Klos, A.; Rosat, S.; Bogusz, J. Deriving common seasonal signals in GPS position time series: By using multichannel singular spectrum analysis. Acta Geodyn. Geomater. 2017, 14, 267–278. [Google Scholar] [CrossRef]
- Oldham, S.; Fulcher, B.; Parkes, L.; Arnatkeviciute, A.; Suo, C.; Fornito, A. Consistency and differences between centrality measures across distinct classes of networks. PloS ONE 2019, 14, e0220061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, H.; Yang, Y.; Liu, N.; Gao, J. Seismic random noise separation and attenuation based on MVMD and MSSA. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–16. [Google Scholar] [CrossRef]
- Yu, Z.; Hattori, K.; Zhu, K.; Fan, M.; Marchetti, D.; He, X.; Chi, C. Evaluation of pre-earthquake anomalies of borehole strain network by using Receiver Operating Characteristic Curve. Remote Sens. 2021, 13, 515. [Google Scholar] [CrossRef]
- Kasahara, Y.; Muto, F.; Horie, T.; Yoshida, M.; Hayakawa, M.; Ohta, K.; Rozhnoi, A.; Solovieva, M.; Molchanov, O. On the statistical correlation between the ionospheric perturbations as detected by subionospheric VLF/LF propagation anomalies and earthquakes. Nat. Hazards Earth Syst. Sci. 2008, 8, 653–656. [Google Scholar] [CrossRef]
- Taylor, J.; Lester, M.; Yeoman, T. A superposed epoch analysis of geomagnetic storms. Ann. Geophys. 1994, 12, 612–624. [Google Scholar] [CrossRef]
- Hutchinson, J.A.; Wright, D.; Milan, S. Geomagnetic storms over the last solar cycle: A superposed epoch analysis. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef]
- Maekawa, S.; Horie, T.; Yamauchi, T.; Sawaya, T.; Ishikawa, M.; Hayakawa, M.; Sasaki, H. A statistical study on the effect of earthquakes on the ionosphere, based on the subionospheric LF propagation data in Japan. Ann. Geophys. 2006, 24, 2219–2225. [Google Scholar] [CrossRef]
- Han, P.; Hattori, K.; Hirokawa, M.; Zhuang, J.; Chen, C.H.; Febriani, F.; Yamaguchi, H.; Yoshino, C.; Liu, J.Y.; Yoshida, S. Statistical analysis of ULF seismomagnetic phenomena at Kakioka, Japan, during 2001–2010. J. Geophys. Res. Space Phys. 2014, 119, 4998–5011. [Google Scholar] [CrossRef]
- Wu, L.; Wang, X.; Qi, Y.; Lu, J.; Mao, W. Characteristics and mechanisms of near-surface atmospheric electric field negative anomalies preceding the 5 September, 2022, Ms6. 8 Luding earthquake, China. EGUsphere 2023, 2023, 1–17. [Google Scholar]
- Zhu, J.; Sun, K.; Zhang, J. Anomalies in Infrared Outgoing Longwave Radiation Data before the Yangbi Ms 6.4 and Luding Ms 6.8 Earthquakes Based on Time Series Forecasting Models. Appl. Sci. 2023, 13, 8572. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Yang, X.; Yang, M.; Zhang, T.; Bao, Z.; Wu, W.; Qiu, G.; Yang, X.; Lu, Q. The Analysis of Lithosphere–Atmosphere–Ionosphere Coupling Associated with the 2022 Luding Ms6.8 Earthquake. Remote Sens. 2023, 15, 4042. [Google Scholar] [CrossRef]
No. | Station ID | Latitude (°N) | Longitude (°E) | Distance from the Epicenter (km) |
---|---|---|---|---|
1 | 33 | 29.31 | 102.28 | 23.19 |
2 | 152 | 25.83 | 100.59 | 184.86 |
3 | 73 | 28.83 | 103.54 | 163.42 |
4 | 124 | 30.19 | 103.15 | 119.87 |
5 | 177 | 29.80 | 102.84 | 84.66 |
6 | 318 | 27.82 | 99.70 | 267.21 |
7 | 254 | 28.30 | 103.85 | 199.42 |
8 | 206 | 27.15 | 100.39 | 195.17 |
9 | 331 | 29.45 | 104.23 | 239.10 |
No. | Station ID | Latitude (°N) | Longitude (°E) | Distance from the Epicenter (km) |
---|---|---|---|---|
1 | 50,117 | 24.12 | 102.75 | 611 |
2 | 146 | 32.59 | 105.23 | 448 |
3 | 332 | 23.73 | 102.52 | 653 |
4 | 106 | 24.44 | 98.59 | 668 |
5 | 24 | 32.63 | 105.75 | 486 |
6 | 155 | 32.78 | 105.42 | 476 |
7 | 161 | 23.38 | 103.16 | 698 |
8 | 220 | 24.47 | 102.62 | 571 |
9 | 186 | 25.11 | 99.12 | 577 |
10 | 226 | 32.93 | 104.69 | 446 |
11 | 113 | 32.44 | 105.35 | 444 |
12 | 115 | 25.03 | 98.52 | 616 |
13 | 141 | 33.15 | 104.2 | 444 |
14 | 183 | 25.21 | 98.49 | 602 |
15 | 43 | 24.95 | 98.43 | 629 |
16 | 172 | 23.37 | 102.38 | 692 |
17 | 202 | 23.23 | 102.84 | 711 |
No. | Station ID | Latitude (°N) | Longitude (°E) | Distance from the Epicenter (km) |
---|---|---|---|---|
1 | CDP | 103.76 | 30.91 | 218 |
2 | NNS | 102.609 | 27.221 | 268 |
3 | CHX | 101.53 | 25.032 | 509 |
4 | YOS | 100.768 | 26.695 | 346 |
5 | MUL | 101.272 | 27.932 | 200 |
6 | XIC | 102.55 | 27.89 | 194 |
7 | WEC | 101.646 | 27.454 | 241 |
8 | NAS | 101.69 | 26.54 | 341 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Jing, X.; Wang, X.; Chi, C.; Zheng, H. The Study on Anomalies of the Geomagnetic Topology Network Associated with the 2022 Ms6.8 Luding Earthquake. Remote Sens. 2024, 16, 1613. https://doi.org/10.3390/rs16091613
Yu Z, Jing X, Wang X, Chi C, Zheng H. The Study on Anomalies of the Geomagnetic Topology Network Associated with the 2022 Ms6.8 Luding Earthquake. Remote Sensing. 2024; 16(9):1613. https://doi.org/10.3390/rs16091613
Chicago/Turabian StyleYu, Zining, Xilong Jing, Xianwei Wang, Chengquan Chi, and Haiyong Zheng. 2024. "The Study on Anomalies of the Geomagnetic Topology Network Associated with the 2022 Ms6.8 Luding Earthquake" Remote Sensing 16, no. 9: 1613. https://doi.org/10.3390/rs16091613
APA StyleYu, Z., Jing, X., Wang, X., Chi, C., & Zheng, H. (2024). The Study on Anomalies of the Geomagnetic Topology Network Associated with the 2022 Ms6.8 Luding Earthquake. Remote Sensing, 16(9), 1613. https://doi.org/10.3390/rs16091613