Residual Attention Mechanism for Remote Sensing Target Hiding
Abstract
:1. Introduction
- We proposed a residual attention module that bifurcates the gated convolution into two branches utilizing concatenated convolutions. This extracts the features representing object distributions while enabling adjustable kernel sizes within the gated convolutions, thereby conferring greater flexibility. Additionally, the residual attention mechanism ameliorates gradient vanishing and explosion issues.
- To expand the fusion patch size, we substituted the complex operation with two convolutional layers utilizing an all-in-one kernel. This can elevate low similarities based on neighboring element values, thus providing more global context.
- We extended the edge-guided approach [12] to synthesize fabricated targets with higher realism, thereby utilizing edges derived from semantic segmentation. This technique is better suited for hiding targets when provided with highly confounding artificial edges that match the target spatial distribution.
- Finally, we performed ablation experiments on benchmark datasets to validate the proposed RATH model, thus achieving a state-of-the-art structural similarity index metric (SSIM) of for edge-guided [13] target hiding using fewer parameters than Gated Conv. Additionally, this paper presents two automated frameworks integrating semantic segmentation with direct or edge-guided target hiding for remote sensing mapping applications.
2. Relate Work
2.1. Target Hiding Based on Image Inpainting
2.2. Image Inpainting
3. Method and Materials
3.1. Coarse-to-Refinement Network
3.2. Methodology
3.2.1. The Proposed Residual Attention Module
3.2.2. The Larger Fusion Patch Size of the Contextual Attention Layer
3.2.3. Free-Form Mask
3.2.4. Edge Extracted by Semantic Segmentation
3.3. Materials
4. Experiment and Result
4.1. Experimental Comparison for the Image Inpainting Task
4.1.1. Computational Cost
4.1.2. Image Inpainting Results
4.1.3. Loss Curves
4.2. Experimental Comparison for the Target-Hiding Task
4.3. Experimental Comparison for the Edge-Guided Target-Hiding Task
4.3.1. Edge Generated by Semantic Segmentation
4.3.2. Edge Generated by Hand Drawing
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Li, Z.; Fu, X.; Yin, Z.; Liu, M.; Yin, L.; Zheng, W. Monitoring House Vacancy Dynamics in The Pearl River Delta Region: A Method Based on NPP-VIIRS Night-Time Light Remote Sensing Images. Land 2023, 12, 831. [Google Scholar] [CrossRef]
- Zhu, Q.; Cao, Z.; Lin, H.; Xie, W.; Ding, Y. Key technologies of emergency surveying and mapping service system. Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 551–555. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L. Artificial Intelligence for Remote Sensing Data Analysis: A review of challenges and opportunities. IEEE Geosci. Remote Sens. Mag. 2022, 10, 270–294. [Google Scholar] [CrossRef]
- Wang, P.; Bayram, B.; Sertel, E. A comprehensive review on deep learning based remote sensing image super-resolution methods. Earth-Sci. Rev. 2022, 232, 104110. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.; Wang, B.; Chen, C. A Hierarchical Fusion SAR Image Change-Detection Method Based on HF-CRF Model. Remote Sens. 2023, 15, 2741. [Google Scholar] [CrossRef]
- Dang, W.; Xiang, L.; Liu, S.; Yang, B.; Liu, M.; Yin, Z.; Yin, L.; Zheng, W. A Feature Matching Method based on the Convolutional Neural Network. J. Imaging Sci. Technol. 2023, 67, 1–11. [Google Scholar] [CrossRef]
- Qiu, T.; Liang, X.; Du, Q.; Ren, F.; Lu, P.; Wu, C. Techniques for the Automatic Detection and Hiding of Sensitive Targets in Emergency Mapping Based on Remote Sensing Data. ISPRS Int. J. Geo-Inf. 2021, 10, 68. [Google Scholar] [CrossRef]
- Lv, N.; Zhang, Z.; Li, C.; Deng, J.; Su, T.; Chen, C.; Zhou, Y. A hybrid-attention semantic segmentation network for remote sensing interpretation in land-use surveillance. Int. J. Mach. Learn. Cybern. 2023, 14, 395–406. [Google Scholar] [CrossRef]
- Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T.S. Generative Image Inpainting with Contextual Attention. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5505–5514. [Google Scholar] [CrossRef]
- Yu, J.; Lin, Z.; Yang, J.; Shen, X.; Lu, X.; Huang, T. Free-Form Image Inpainting with Gated Convolution. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 4470–4479. [Google Scholar] [CrossRef]
- Liu, G.; Reda, F.A.; Shih, K.J.; Wang, T.C.; Tao, A.; Catanzaro, B. Image Inpainting for Irregular Holes Using Partial Convolutions. arXiv 2018, arXiv:1804.07723. [Google Scholar]
- Chen, C.; Yao, G.; Liu, L.; Pei, Q.; Song, H.; Dustdar, S. A cooperative vehicle-infrastructure system for road hazards detection with edge intelligence. IEEE Trans. Intell. Transp. Syst. 2023, 24, 5186–5198. [Google Scholar] [CrossRef]
- Chen, C.; Yao, G.; Wang, C.; Goudos, S.; Wan, S. Enhancing the robustness of object detection via 6G vehicular edge computing. Digit. Commun. Netw. 2022, 8, 923–931. [Google Scholar] [CrossRef]
- Chen, X.; Liu, M.; Li, D.; Jia, J.; Yang, A.; Zheng, W.; Yin, L. Conv-trans dual network for landslide detection of multi-channel optical remote sensing images. Front. Earth Sci. 2023, 11, 1182145. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, L. Building Detection in Remote Sensing Image Based on Improved YOLOV5. In Proceedings of the 2021 17th International Conference on Computational Intelligence and Security (CIS), Chengdu, China, 19–22 November 2021; pp. 133–136. [Google Scholar] [CrossRef]
- Yang, P.; Wang, M.; Yuan, H.; He, C.; Cong, L. Using contour loss constraining residual attention U-net on optical remote sensing interpretation. Vis. Comput. 2023, 39, 4279–4291. [Google Scholar] [CrossRef]
- Lv, N.; Ma, H.; Chen, C.; Pei, Q.; Zhou, Y.; Xiao, F.; Li, J. Remote Sensing Data Augmentation Through Adversarial Training. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9318–9333. [Google Scholar] [CrossRef]
- Nitzberg, M.; Mumford, D.; Shiota, T. Filtering, Segmentation and Depth; Springer: Berlin/Heidelberg, Germany, 1993; Volume 662. [Google Scholar] [CrossRef]
- Hirani, A.N.; Totsuka, T. Combining frequency and spatial domain information for fast interactive image noise removal. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996. [Google Scholar]
- Masnou, S.; Morel, J.M. Level lines based disocclusion. In Proceedings of the 1998 International Conference on Image Processing, ICIP98 (Cat. No.98CB36269), Chicago, IL, USA, 7 October 1998; Volume 3, pp. 259–263. [Google Scholar] [CrossRef]
- Bertalmío, M.; Sapiro, G.; Caselles, V.; Ballester, C. Image inpainting. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 23–28 July 2000. [Google Scholar]
- Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; Efros, A.A. Context Encoders: Feature Learning by Inpainting. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Los Alamitos, CA, USA, 2016; pp. 2536–2544. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In Proceedings of the 28th Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar] [CrossRef]
- Yang, C.; Lu, X.; Lin, Z.; Shechtman, E.; Wang, O.; Li, H. High-Resolution Image Inpainting Using Multi-scale Neural Patch Synthesis. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4076–4084. [Google Scholar] [CrossRef]
- Iizuka, S.; Simo-Serra, E.; Ishikawa, H. Globally and Locally Consistent Image Completion. ACM Trans. Graph. 2017, 36, 107. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive Growing of GANs for Improved Quality, Stability, and Variation. arXiv 2018, arXiv:1710.10196. [Google Scholar]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-Image Translation with Conditional Adversarial Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5967–5976. [Google Scholar] [CrossRef]
- Yan, Z.; Li, X.; Li, M.; Zuo, W.; Shan, S. Shift-Net: Image Inpainting via Deep Feature Rearrangement. In Proceedings of the European Conference on Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–19. [Google Scholar]
- Nazeri, K.; Ng, E.; Joseph, T.; Qureshi, F.; Ebrahimi, M. EdgeConnect: Generative Image Inpainting with Adversarial Edge Learning. arXiv 2019, arXiv:1901.00212. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Srivastava, R.K.; Greff, K.; Schmidhuber, J. Training Very Deep Networks. In Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Nice, France, 2015; Volume 28, pp. 2377–2385. [Google Scholar]
- Liao, Z.; Chen, C.; Ju, Y.; He, C.; Jiang, J.; Pei, Q. Multi-controller deployment in SDN-enabled 6G space–air–ground integrated network. Remote Sens. 2022, 14, 1076. [Google Scholar] [CrossRef]
- Xie, S.; Tu, Z. Holistically-Nested Edge Detection. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015; pp. 1395–1403. [Google Scholar] [CrossRef]
- Chen, C.; Wang, C.; Liu, B.; He, C.; Cong, L.; Wan, S. Edge intelligence empowered vehicle detection and image segmentation for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 2023; early access. [Google Scholar] [CrossRef]
- Mnih, V. Machine Learning for Aerial Image Labeling. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2013. [Google Scholar]
Methods | Cont Atten | Partial Conv | Gated Conv | RATH (Ours) |
---|---|---|---|---|
Nonlocal | 🗸 | 🗸 | 🗸 | |
Free-Form | 🗸 | 🗸 | 🗸 | |
Edge-Guided | 🗸 | 🗸 | ||
Residual Attention | 🗸 |
Methods | Gated Conv | Self-Atten | Res Atten (Ours) |
---|---|---|---|
Parameters | 9M548K958B | 8M400K414B | 8M400K414B |
Training Speed (sec/batch) | 0.705 | 0.66 | 0.66 |
Methods | Cont Atten | Partial Conv | Gated Conv | Gated Conv (New Fusion) | Gated Conv (Res Atten) | RATH (Ours) |
---|---|---|---|---|---|---|
Sim (%) | 98.47 | 98.54 | 98.59 | 98.56 | 98.67 | 98.61 |
Sim (%) | 87.98 | 88.30 | 88.50 | 88.54 | 88.59 | 88.62 |
PSNR | 18.81 | 19.10 | 19.29 | 19.36 | 19.42 | 19.43 |
SSIM (%) | 91.86 | 92.04 | 81.49 | 90.21 | 91.94 | 91.72 |
UQI (%) | 90.98 | 91.38 | 91.62 | 91.45 | 91.69 | 91.70 |
Methods | Cont Atten | Partial Conv | Gated Conv | RATH (Ours) |
---|---|---|---|---|
Sim (%) | 97.45 | 97.51 | 97.68 | 97.52 |
Sim (%) | 85.32 | 85.26 | 86.02 | 85.54 |
PSNR | 18.19 | 18.32 | 18.60 | 18.33 |
SSIM (%) | 88.92 | 88.71 | 88.71 | 88.18 |
UQI (%) | 86.41 | 86.74 | 87.31 | 86.40 |
Methods | Gated Conv | RATH (Ours) |
---|---|---|
Sim (%) | 97.45 | 97.84 |
Sim (%) | 85.31 | 86.44 |
PSNR | 18.19 | 18.80 |
SSIM (%) | 89.50 | 90.44 |
UQI (%) | 88.21 | 89.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Shen, Y.; Lv, N.; Li, Y.; Chen, C.; Zhang, Z. Residual Attention Mechanism for Remote Sensing Target Hiding. Remote Sens. 2023, 15, 4731. https://doi.org/10.3390/rs15194731
Yuan H, Shen Y, Lv N, Li Y, Chen C, Zhang Z. Residual Attention Mechanism for Remote Sensing Target Hiding. Remote Sensing. 2023; 15(19):4731. https://doi.org/10.3390/rs15194731
Chicago/Turabian StyleYuan, Hao, Yongjian Shen, Ning Lv, Yuheng Li, Chen Chen, and Zhouzhou Zhang. 2023. "Residual Attention Mechanism for Remote Sensing Target Hiding" Remote Sensing 15, no. 19: 4731. https://doi.org/10.3390/rs15194731
APA StyleYuan, H., Shen, Y., Lv, N., Li, Y., Chen, C., & Zhang, Z. (2023). Residual Attention Mechanism for Remote Sensing Target Hiding. Remote Sensing, 15(19), 4731. https://doi.org/10.3390/rs15194731