Using Landsat Image Series to Identify and Characterize Persistent Oceanographic Structures in a Dynamic Marine Protected Area (North of San Jorge Gulf, Argentinian Patagonia)
Abstract
:1. Introduction
2. Study Area
3. Data and Methodology
3.1. Data Sources
3.2. Methodology
3.2.1. Image Correction and Visualization Adjustment
3.2.2. Structure Identification and Classification
3.2.3. Data Analysis: Related Variables
4. Results and Discussion
4.1. Observed Coastal Oceanographic Structures in PIMCPA
4.2. Oceanographic Structure Description: Forcing and Behavior
4.2.1. Mushroom-Like Structure in Cape Dos Bahias
4.2.2. Associated Eddies Chain in Isla Rasa
4.2.3. Eddies behind the Islands in Isla Viana
4.2.4. Island Wake, Associated Eddies Chain, and Mushrooms in Tova Island
4.3. Methodological Approaches
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giraud, X.; Le Quéré, C.; Da Cunha, L.C. Importance of coastal nutrient supply for global ocean biogeochemistry. Global Biogeochem. Cycles 2008, 22, GB2025. [Google Scholar] [CrossRef]
- Wolanski, E.; Hamner, W.M. Topographically controlled fronts in the ocean and their biological influence. Science 1988, 241, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.Y.; Ginzburg, A.I. Oceanic eddies in synthetic aperture radar images. J. Earth Syst. Sci. 2002, 111, 281. [Google Scholar] [CrossRef]
- Wolanski, E.; Imberger, J.; Heron, M.L. Island wakes in shallow coastal waters. J. Geophys. Res. Ocean. 1984, 89, 10553–10569. [Google Scholar] [CrossRef]
- Gustafsson, Ö.; Gschwend, P.M. Hydrophobic organic compound partitioning from bulk water to the water/air interface. Atmos. Environ. 1998, 33, 163–167. [Google Scholar] [CrossRef]
- Fossum, T.O.; Eidsvik, J.; Ellingsen, I.; Alver, M.O.; Fragoso, G.M.; Johnsen, G.; Mendes, R.; Ludvigsen, M.; Rajan, K. Information-driven robotic sampling in the coastal ocean. J. Field Robot. 2018, 35, 1101–1121. [Google Scholar] [CrossRef]
- Zhu, L.; Suomalainen, J.; Liu, J.; Hyyppä, J.; Kaartinen, H.; Haggren, H. A review: Remote sensing sensors. In Multi-Purposeful Application of Geospatial Data; Rustamov, R.B., Hasanova, S., Zeynalova, M.H., Eds.; IntechOpen: London, UK, 2018; pp. 19–42. [Google Scholar] [CrossRef]
- Cameron, H.L. Coastal studies by sequential air photography. Can. Surv. 1965, 19, 372–381. [Google Scholar] [CrossRef]
- Stafford, D.B.; Langfelder, J. Air photo survey of coastal erosion. Photogramm. Eng. 1971, 37, 565–575. [Google Scholar]
- Whitehead, H.; Payne, R. New techniques for assessing populations. Mamm. Seas Rep. 1978, 3, 189. [Google Scholar]
- Baily, B.; Nowell, D. Techniques for monitoring coastal change: A review and case study. Ocean Coast. Manag. 1996, 32, 85–95. [Google Scholar] [CrossRef]
- Stumpf, R.P. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. Hum. Ecol. Risk Assess. An Int. J. 2001, 7, 1363–1368. [Google Scholar] [CrossRef]
- Riddick, C.A.L.; Hunter, P.D.; Dominguez Gómez, J.A.; Martinez-Vicente, V.; Présing, M.; Horváth, H.; Kovács, A.W.; Vörös, L.; Zsigmond, E.; Tyler, A.N. Optimal cyanobacterial pigment retrieval from ocean colour sensors in a highly turbid, optically complex lake. Remote Sens. 2019, 11, 1613. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Y.; Lin, S.; Xi, J. Remote Sensing of the Seasonal and Interannual Variability of Surface Chlorophyll-a Concentration in the Northwest Pacific over the Past 23 Years (1997–2020). Remote Sens. 2022, 14, 5611. [Google Scholar] [CrossRef]
- Robinson, I.S. Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Horstmann, J.; Koch, W. Measurement of ocean surface winds using synthetic aperture radars. IEEE J. Ocean. Eng. 2005, 30, 508–515. [Google Scholar] [CrossRef]
- Fore, A.G.; Yueh, S.H.; Tang, W.; Stiles, B.W.; Hayashi, A.K. Combined active/passive retrievals of ocean vector wind and sea surface salinity with SMAP. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7396–7404. [Google Scholar] [CrossRef]
- Zhou, L.; Zheng, G.; Li, X.; Yang, J.; Ren, L.; Chen, P.; Zhang, H.; Lou, X. An improved local gradient method for sea surface wind direction retrieval from SAR imagery. Remote Sens. 2017, 9, 671. [Google Scholar] [CrossRef]
- Cantón Garbin, M.; Guerra, A.H. La Teledetección de Los Océanos Desde El Espacio. Rev. Española Fis. 2008, 5, 8–14. (In Spanish) [Google Scholar]
- Groom, S.; Sathyendranath, S.; Ban, Y.; Bernard, S.; Brewin, R.; Brotas, V.; Brockmann, C.; Chauhan, P.; Choi, J.; Chuprin, A.; et al. Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 2019, 6, 485. [Google Scholar] [CrossRef]
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A systematic review of landsat data for change detection applications: 50 years of monitoring the earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Aleskerova, A.; Kubryakov, A.; Stanichny, S.; Medvedeva, A.; Plotnikov, E.; Mizyuk, A.; Verzhevskaia, L. Characteristics of topographic submesoscale eddies off the Crimea coast from high-resolution satellite optical measurements. Ocean Dyn. 2021, 71, 655–677. [Google Scholar] [CrossRef]
- Hong, T.T.M.; Park, Y.; Choi, J.M.; Thi, T.; Hong, M.; Park, Y. Divergence Observation in a Mesoscale Eddy during Chla Bloom Revealed in Submesoscale Satellite Currents. Remote Sens. 2023, 15, 995. [Google Scholar] [CrossRef]
- Pattiaratchi, C.; James, A.; Collins, M. Island wakes and headland eddies: A comparison between remotely sensed data and laboratory experiments. J. Geophys. Res. 1987, 92, 783. [Google Scholar] [CrossRef]
- Thomas, L.N.; Tandon, A.; Mahadevan, A. Submesoscale processes and dynamics. In Ocean Modeling in an Eddying Regime; Hecht, M.W., Hasumi, H., Eds.; AGU Books: Washington, DC, USA, 2008. [Google Scholar] [CrossRef]
- Sathyendranath, S. (Ed.) Remote Sensing of Ocean Colour in Coastal, and Other Optically-Complex, Waters; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2000. [Google Scholar] [CrossRef]
- Alldredge, A.L.; Hamner, W.M. Recurring aggregation of zooplankton by a tidal current. Estuar. Coast. Mar. Sci. 1980, 10, 31–37. [Google Scholar] [CrossRef]
- Lévy, M.; Franks, P.J.S.; Smith, K.S. The role of submesoscale currents in structuring marine ecosystems. Nat. Commun. 2018, 9, 4758. [Google Scholar] [CrossRef]
- Fadeev, E.; Wietz, M.; von Appen, W.-J.; Iversen, M.H.; Nöthig, E.-M.; Engel, A.; Grosse, J.; Graeve, M.; Boetius, A. Submesoscale physicochemical dynamics directly shape bacterioplankton community structure in space and time. Limnol. Oceanogr. 2021, 66, 2901–2913. [Google Scholar] [CrossRef]
- Schnack, E.; Pousa, J.; Bértola, G.; Isla, F. Argentina. In Encyclopedia of the World’s Coastal Landforms; Bird, E.C.F., Ed.; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Gagliardini, D.A.; Amoroso, R.O.; Dell’Arciprete, O.P.; Yorio, P.; Orensanz, J.M. Detection of small-scale coastal oceanographic processes through LANDSAT-TM/ETM+ images: Implications for the study of biological processes along the Patagonian coasts of Argentina. Gayana (Concepción) 2004, 68, 194–200. [Google Scholar] [CrossRef]
- Capet, X.; Campos, E.J.; Paiva, A.M. Submesoscale activity over the Argentinian shelf. Geophys. Res. Lett. 2008, 35, L15605. [Google Scholar] [CrossRef]
- Tonini, M.H.; Palma, E.D. Circulación residual y vorticidad mareal en los golfos norpatagónicos. Mecánica Comput. 2009, 28, 2851–2867. [Google Scholar]
- Tonini, M.H.; Palma, E.D. Tidal dynamics on the North Patagonian Argentinean gulfs. Estuar. Coast. Shelf Sci. 2017, 189, 115–130. [Google Scholar] [CrossRef]
- Pisoni, J.P.; Tonini, M.H.; Glembocki, N.; Romero, S. Headland eddies and island wakes over the Argentine Patagonian coast. Remote Sens. Lett. 2023; submitted. [Google Scholar]
- Retana, M.V.; Lewis, M.N. Suitable habitat for marine mammals during austral summer in San Jorge Gulf, Argentina. Rev. Biol. Mar. Oceanogr. 2017, 52, 275–288. [Google Scholar] [CrossRef]
- Yorio, P. Marine protected areas, spatial scales, and governance: Implications for the conservation of breeding seabirds. Conserv. Lett. 2009, 2, 171–178. [Google Scholar] [CrossRef]
- Crespo, E.A.; Pedraza, S.N.; Dans, S.L.; Koen Alonso, M.; Reyes, L.M.; García, N.A.; Coscarella, M.; Schiavini, A.C.M. Direct and indirect effects of the highseas fisheries on the marine mammal populations in the northern and central Patagonian coast. J. Northwest Atl. Fish. Sci. 1997, 22, 189–207. [Google Scholar] [CrossRef]
- Borboroglu, P.G.; Yorio, P.; Boersma, P.D.; Del Valle, H.; Bertellotti, M. Habitat use and breeding distribution of Magellanic penguins in northern San Jorge Gulf, Patagonia, Argentina. Auk 2002, 119, 233–239. [Google Scholar] [CrossRef]
- Yorio, P.; Quintana, F.; Dell’arciprete, P.; González-Zevallos, D.; DELL’ARCIPRETE, P.; Gonzalez-Zevallos, D. Spatial overlap between foraging seabirds and trawl fisheries: Implications for the effectiveness of a marine protected area at Golfo San Jorge, Argentina. Bird Conserv. Int. 2010, 20, 320–334. [Google Scholar] [CrossRef]
- Sánchez-Carnero, N.; Rodríguez-Pérez, D. A sea bottom classification of the Robredo area in the Northern San Jorge Gulf (Argentina). Geo-Mar. Lett. 2021, 41, 12. [Google Scholar] [CrossRef]
- Fernández, M.; Carreto, J.I.; Mora, J.; Roux, A. Physico-chemical characterization of the benthic environment of the Golfo San Jorge, Argentina. J. Mar. Biol. Assoc. UK 2005, 85, 1317–1328. [Google Scholar] [CrossRef]
- Marinho, C.H.; Gil, M.N.; Esteves, J.L. Distribution and origin of trace metals in sediments of a marine park (Northern San Jorge Gulf) from Argentina. Mar. Pollut. Bull. 2013, 72, 260–263. [Google Scholar] [CrossRef] [PubMed]
- Latorre, M.P.M.P.; Schloss, I.R.; Almandoz, G.O.; Lemarchand, K.; Flores-Melo, X.; Massé-Beaulne, V.; Ferreyra, G.A. Mixing processes at the pycnocline and vertical nitrate supply: Consequences for the microbial food web in San Jorge Gulf, Argentina. Oceanography 2018, 31, 50–59. [Google Scholar] [CrossRef]
- Díaz, P.; López Gappa, J.J.; Piriz, M.L. Symptoms of eutrophication in intertidal macroalgal assemblages of Nuevo Gulf (Patagonia, Argentina). Bot. Mar. 2002, 45, 267–273. [Google Scholar] [CrossRef]
- Torres, A.I.; Paparazzo, F.E.; Williams, G.N.; Rivas, A.L.; Solís, M.E.; Esteves, J.L. Dynamics of macronutrients in the San Jorge Gulf during spring and summer. Oceanography 2018, 31, 25–32. [Google Scholar] [CrossRef]
- Desiage, P.-A.; Montero-Serrano, J.-C.; St-Onge, G.; Crespi-Abril, A.C.; Giarratano, E.; Gil, M.N.; Haller, M.J. Quantifying sources and transport pathways of surface sediments in the Gulf of San Jorge, central Patagonia (Argentina). Oceanography 2018, 31, 92–103. [Google Scholar] [CrossRef]
- Tonini, M.; Palma, E.; Rivas, A. Modelo de alta resolución de los Golfos Patagónicos. Mecánica Comput. 2006, XXV, 1441–1460. [Google Scholar]
- Matano, R.; Palma, E. Seasonal Variability of the Oceanic Circulation in the Gulf of San Jorge, Argentina. Oceanography 2018, 31, 16–24. [Google Scholar] [CrossRef]
- Palma, E.D.; Matano, R.P.; Tonini, M.H.; Martos, P.; Combes, V. Dynamical analysis of the oceanic circulation in the Gulf of San Jorge, Argentina. J. Mar. Syst. 2020, 203, 103261. [Google Scholar] [CrossRef]
- Fernández, M.; Roux, A.; Fernández, E.; Caló, J.; Marcos, A.; Aldacur, H. Grain-size analysis of surficial sediments from Golfo San Jorge, Argentina. J. Mar. Biol. Assoc. UK 2003, 83, 1193–1197. [Google Scholar] [CrossRef]
- Rodriguez-Perez, D.; Sanchez-Carnero, N. Multigrid/Multiresolution Interpolation: Reducing Oversmoothing and Other Sampling Effects. Geomatics 2022, 2, 236–253. [Google Scholar] [CrossRef]
- Bertuche, D.; Fischbach, C.; Roux, A.; Fernandez, M.; Pinero, R. Langostino (Pleoticus muelleri). In Síntesis del Estado de las Pesquerías Marítimas Argentinas y de la Cuenca del Plata. Años 1997–1998, con la Actualización de 1999; Bezzi, S., Akselman, R., Boschi, E., Eds.; INIDEP: Mar del Plata, Argentina, 2000; pp. 179–190. ISBN 987-96244-7-5. (In Spanish) [Google Scholar]
- Nievas, M.L.; Esteves, J.L. Relevamiento de Actividades Relacionadas con la Explotación de Petróleo en zona Costera Patagónica y datos Preliminares Sobre Residuos de Hidrocarburos en Puertos; Fundación Patagonia Natural: Puerto Madryn, Argentina, 2007; ISBN 978-987-97411-5-3. Available online: http://hdl.handle.net/11336/136664 (accessed on 26 February 2023). (In Spanish)
- Gongora, M.E.; Gonzalez Zevallos, D.; Pettovello, A.; Mendia, L. Characterization of the main fisheries in San Jorge Gulf, Patagonia, Argentina/Caracterizacion de las principales pesquerias del golfo San Jorge Patagonia, Argentina. Lat. Am. J. Aquat. Res. 2012, 40, 1–11. [Google Scholar] [CrossRef]
- Akselman, R. Estudios Ecologicos en el Golfo San Jorge y Adyacencias (Atlantico Sudoccidental). Distribucion, Abundancia Y Variacion Estacional del Fitoplancton en Relacion a Factores Fisico-Quimicos Y la Dinamica Hidrologica. Ph.D. Thesis, Universidad De Buenos Aires, Buenos Aires, Argentina, 1996. [Google Scholar]
- Flores-Melo, X.; Schloss, I.R.; Chavanne, C.; Almandoz, G.O.; Latorre, M.; Ferreyra, G.A. Phytoplankton ecology during a spring-neap tidal cycle in the southern tidal front of san jorge gulf, patagonia. Oceanography 2018, 31, 104–112. [Google Scholar] [CrossRef]
- Dans, S.L.; Cefarelli, A.O.; Galván, D.; Gongora, M.E.; Martos, P.; Varisco, M.M.A.; Alvarez Colombo, G.L.; Blanc, S.; Bos, P.; Bovcon, N.D.; et al. El golfo San Jorge como área prioritaria de investigación, manejo y conservación en el marco de la iniciativa Pampa Azul. Rev. Cienc. Investig. 2021, 71, 21–43. (In Spanish) [Google Scholar]
- Pisoni, J.P.; Rivas, A.L.; Tonini, M.H. Coastal upwelling in the San Jorge Gulf (Southwestern Atlantic) from remote sensing, modelling and hydrographic data. Estuar. Coast. Shelf Sci. 2020, 245, 106919. [Google Scholar] [CrossRef]
- Rivas, A.L.; Pisoni, J.P. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. J. Mar. Syst. 2010, 79, 134–143. [Google Scholar] [CrossRef]
- Glembocki, N.G.; Williams, G.N.; Góngora, M.E.; Gagliardini, D.A.; Orensanz, J.M. (Lobo). Synoptic oceanography of San Jorge Gulf (Argentina): A template for Patagonian red shrimp (Pleoticus muelleri) spatial dynamics. J. Sea Res. 2015, 95, 22–35. [Google Scholar] [CrossRef]
- Pessacg, N.; Blázquez, J.; Lancelotti, J.; Solman, S. Climate changes in coastal areas of Patagonia: Observed trends and future projections. In Global Change in Atlantic Coastal Patagonian Ecosystems: A Journey Through Time; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–42. [Google Scholar]
- Labraga, J.C. Extreme winds in the Pampa del Castillo Plateau, Patagonia, Argentina, with reference to wind farm settlement. J. Appl. Meteorol. Climatol. 1994, 33, 85–95. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Chavez Jr, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Hedley, J.D.; Harborne, A.R.; Mumby, P.J. Simple and robust removal of sun glint for mapping shallow-water benthos. Int. J. Remote Sens. 2005, 26, 2107–2112. [Google Scholar] [CrossRef]
- Hochberg, E.J.; Andréfouët, S.; Tyler, M.R. Sea surface correction of high spatial resolution ikonos images to improve bottom mapping in near-shore environments. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1724–1729. [Google Scholar] [CrossRef]
- Vidhya, G.R.; Ramesh, H. Effectiveness of contrast limited adaptive histogram equalization technique on multispectral satellite imagery. In Proceedings of the International Conference on Video and Image Processing, Beijing, China, 17–20 September 2017; pp. 234–239. [Google Scholar] [CrossRef]
- Dong, C.; McWilliams, J.C.; Liu, Y.; Chen, D. Global heat and salt transports by eddy movement. Nat. Commun. 2014, 5, 3294. [Google Scholar] [CrossRef] [PubMed]
- Fedorov, K.N.; Ginsburg, A.I. Mushroom-like currents (vortex dipoles): One of the most widespread forms of non-stationary coherent motions in the ocean. In Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1989; Volume 50, pp. 1–14. [Google Scholar]
- Gagliardini, D.A. Medium Resolution Microwave, Thermal and Optical Satellite Sensors: Characterizing Coastal Environments Through the Observation of Dynamical Processes. In Remote Sensing of the Changing Oceans; Tang, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 251–277. [Google Scholar] [CrossRef]
- Munk, W.; Armi, L.; Fischer, K.; Zachariasen, F. Spirals on the sea. Proc. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 2000, 456, 1217–1280. [Google Scholar] [CrossRef]
- Rossby, C.-G. Solenoidal circulations resulting from lateral mixing. Eos Trans. Am. Geophys. Union 1938, 19, 159–162. [Google Scholar] [CrossRef]
- Dong, C.; Cao, Y.; McWilliams, J.C. Island wakes in shallow water. Atmos.-Ocean. 2018, 56, 96–103. [Google Scholar] [CrossRef]
- Palacios, D.M. Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: Regional and local influences. Deep Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 43–57. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C. Estimating sea surface salinity in the northern Gulf of Mexico from satellite ocean color measurements. Remote Sens. Environ. 2017, 201, 115–132. [Google Scholar] [CrossRef]
- Westberry, T.K.; Silsbe, G.M.; Behrenfeld, M.J. Gross and net primary production in the global ocean: An ocean color remote sensing perspective. Earth-Sci. Rev. 2023, 237, 104322. [Google Scholar] [CrossRef]
- Choi, J.; Park, Y.-G.; Kim, W.; Kim, Y.H. Characterization of submesoscale turbulence in the east/japan sea using geostationary ocean color satellite images. Geophys. Res. Lett. 2019, 46, 8214–8223. [Google Scholar] [CrossRef]
- Li, G.; He, Y.; Liu, G.; Zhang, Y.; Hu, C.; Perrie, W. Multi-sensor observations of submesoscale eddies in coastal regions. Remote Sens. 2020, 12, 711. [Google Scholar] [CrossRef]
- Fu, L.-L.; Ferrari, R. Observing oceanic submesoscale processes from space. Eos Trans. Am. Geophys. Union 2008, 89, 488. [Google Scholar] [CrossRef]
- Cai, L.; Zhou, M.; Liu, J.; Tang, D.; Zuo, J.; Hamze-ziabari, S.M.; Foroughan, M.; Lemmin, U.; Barry, D.A.; Jolliff, J.K.; et al. HY-1C observations of the impacts of Islands on suspended sediment distribution in Zhoushan coastal waters, China. Remote Sens. 2020, 12, 1766. [Google Scholar] [CrossRef]
- Kubryakov, A.A.; Lishaev, P.N.; Chepyzhenko, A.I.; Aleskerova, A.A.; Kubryakova, E.A.; Medvedeva, A.V.; Stanichny, S.V. Impact of Submesoscale Eddies on the Transport of Suspended Matter in the Coastal Zone of Crimea Based on Drone, Satellite, and In Situ Measurement Data. Oceanology 2021, 61, 159–172. [Google Scholar] [CrossRef]
- DiGiacomo, P.M.; Holt, B. Satellite observations of small coastal ocean eddies in the Southern California Bight. J. Geophys. Res. Ocean. 2001, 106, 22521–22543. [Google Scholar] [CrossRef]
- Karimova, S. Spiral eddies in the Baltic, Black and Caspian seas as seen by satellite radar data. Adv. Sp. Res. 2012, 50, 1107–1124. [Google Scholar] [CrossRef]
- Lavrova, O.; Serebryany, A.; Bocharova, T.; Mityagina, M. Investigation of fine spatial structure of currents and submesoscale eddies based on satellite radar data and concurrent acoustic measurements. In Proceedings of the Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions, Edinburgh, UK, 26–27 September 2012; Volume 85320. [Google Scholar] [CrossRef]
- Kozlov, I.E.; Artamonova, A.V.; Manucharyan, G.E.; Kubryakov, A.A. Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones. J. Geophys. Res. Ocean. 2019, 124, 6601–6616. [Google Scholar] [CrossRef]
- Gurova, E.; Chubarenko, B. Remote-sensing observations of coastal sub-mesoscale eddies in the south-eastern Baltic. Oceanologia 2012, 54, 631–654. [Google Scholar] [CrossRef]
- Ginzburg, A.I.; Bulycheva, E.V.; Kostianoy, A.G.; Solovyev, D.M. On the role of vortices in the transport of oil pollution in the Southeastern Baltic Sea (according to satellite monitoring). Sovrem. Probl. Distantsionnogo Zo. Zemli Iz Kosm. 2015, 12, 149–157. [Google Scholar]
Time (h) | ↑ | ↓ | Distance to Cape (km) | Images | ||
---|---|---|---|---|---|---|
↑ | ↓ | |||||
min | max | (45) | (32) | |||
<4 | 1.6 | 3.5 | 14 | 15 | ||
1.5 | 1.8 | 6 | 4 | |||
≥4 | 2.8 | 5.3 | 10 | 6 | ||
0.8 | 6.4 | 15 | 7 |
Time (h) | Distance to Island (km) | Images | ||||||
---|---|---|---|---|---|---|---|---|
min | max | (19) | (13) | |||||
1–2 | 7.0 | 15.5 | 6 | 3 | ||||
3–4 | 6.1 | 11.4 | 9 | 5 | ||||
5–6 | 5.6 | 13.1 | 4 | 5 |
Time (h) | Distance between Eddies (km) | Images | ||||
---|---|---|---|---|---|---|
min | max | (31) | (30) | |||
1–2 | 1.1 | 3.3 | 7 | 17 | ||
2–4 | 1.4 | 3.8 | 13 | 8 | ||
4–6 | 1.8 | 4.5 | 11 | 5 |
Time (h) | Distance to Island (km) | Images | ||||||
---|---|---|---|---|---|---|---|---|
min | max | (31) | (43) | |||||
1–2 h | 2.5 | 13.4 | 14 | 18 | ||||
3–4 h | 1.3 | 10.4 | 2 | 19 | ||||
5–6 h | 5.2 | 9.7 | 15 | 6 | ||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmedo-Masat, O.M.; Pisoni, J.P.; Rodríguez-Pérez, D.; Sánchez-Carnero, N. Using Landsat Image Series to Identify and Characterize Persistent Oceanographic Structures in a Dynamic Marine Protected Area (North of San Jorge Gulf, Argentinian Patagonia). Remote Sens. 2023, 15, 2147. https://doi.org/10.3390/rs15082147
Olmedo-Masat OM, Pisoni JP, Rodríguez-Pérez D, Sánchez-Carnero N. Using Landsat Image Series to Identify and Characterize Persistent Oceanographic Structures in a Dynamic Marine Protected Area (North of San Jorge Gulf, Argentinian Patagonia). Remote Sensing. 2023; 15(8):2147. https://doi.org/10.3390/rs15082147
Chicago/Turabian StyleOlmedo-Masat, O. Magalí, Juan Pablo Pisoni, Daniel Rodríguez-Pérez, and Noela Sánchez-Carnero. 2023. "Using Landsat Image Series to Identify and Characterize Persistent Oceanographic Structures in a Dynamic Marine Protected Area (North of San Jorge Gulf, Argentinian Patagonia)" Remote Sensing 15, no. 8: 2147. https://doi.org/10.3390/rs15082147
APA StyleOlmedo-Masat, O. M., Pisoni, J. P., Rodríguez-Pérez, D., & Sánchez-Carnero, N. (2023). Using Landsat Image Series to Identify and Characterize Persistent Oceanographic Structures in a Dynamic Marine Protected Area (North of San Jorge Gulf, Argentinian Patagonia). Remote Sensing, 15(8), 2147. https://doi.org/10.3390/rs15082147