Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Data Assimilation System
2.2. Linear Bias Correction
2.3. Nonlinear Bias Correction
2.4. Experimental Design
3. Results
3.1. Predictive Capability of RF Model
3.2. Comparison of Different BC Schemes
3.2.1. Variations in Bias with Predictors
3.2.2. OMB Distributions
3.2.3. Verification of Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Honda, T.; Kotsuki, S.; Lien, G.-Y.; Maejima, Y.; Okamoto, K.; Miyoshi, T. Assimilation of Himawari-8 All-Sky Radiances Every 10 Minutes: Impact on Precipitation and Flood Risk Prediction. J. Geophys. Res. 2018, 123, 965–976. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Qin, Z.; Weng, F. Improved Coastal Precipitation Forecasts with Direct Assimilation of GOES-11/12 Imager Radiances. Mon. Wea. Rev. 2011, 139, 3711–3729. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Min, J.; Shen, F.; Ban, J.; Chen, P. Assimilation of MWHS radiance data from the FY-3B satellite with the WRF Hybrid-3DVAR system for the forecasting of binary typhoons. J. Adv. Model. Earth Syst. 2016, 8, 1014–1028. [Google Scholar] [CrossRef] [Green Version]
- Benáček, P.; Mile, M. Satellite Bias Correction in the Regional Model ALADIN/CZ: Comparison of Different VarBC Approaches. Mon. Wea. Rev. 2019, 147, 3223–3239. [Google Scholar] [CrossRef]
- Eyre, J.R. Observation bias correction schemes in data assimilation systems: A theoretical study of some of their properties. Quart. J. Roy. Meteor. Soc. 2016, 142, 2284–2291. [Google Scholar] [CrossRef]
- Xu, D.; Liu, Z.; Fan, S.; Chen, M.; Shen, F. Assimilating all-sky infrared radiances from Himawari-8 using the 3DVar method for the prediction of a severe storm over north China. Adv. Atmos. Sci. 2021, 38, 661–676. [Google Scholar] [CrossRef]
- Eyre, J.R. A bias correction scheme for simulated TOVS brightness temperatures. ECMWF Tech. Memo. 1992, 186, 34. [Google Scholar]
- Harris, B.A.; Kelly, G. A satellite radiance-bias correction scheme for data assimilation. Quart. J. Roy. Meteor. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Shen, F.; Min, J. Assimilating AMSU-A Radiance Data with the WRF Hybrid En3DVAR System for Track Predictions of Typhoon Megi (2010). Adv. Atmos. Sci. 2015, 32, 1231–1243. [Google Scholar] [CrossRef]
- Watts, P.D.; McNally, A.P. Identification and Correction of Radiative Transfer Modeling Errors for Atmospheric Sounders: AIRS and AMSU-A; ECMWF: Reading, UK, 2004; pp. 23–28. [Google Scholar]
- Dee, D.P. Variational bias correction of radiance data in the ECMWF system. In Proceedings of the ECMWF Workshop on Assimilation of High Spectral Resolution Sounders in NWP, Berkshire, UK, 28 June–1 July 2004; pp. 97–112. [Google Scholar]
- Dee, D.P.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc. 2009, 135, 1830–1841. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, X.; Li, H.; Wu, H.; Shen, F.; Shu, A.; Wang, Y.; Zhuang, X. Evaluation of the Simulation of Typhoon Lekima (2019) Based on Different Physical Parameterization Schemes and FY-3D Satellite’s MWHS-2 Data Assimilation. Remote Sens. 2021, 13, 4556. [Google Scholar] [CrossRef]
- Zhu, Y.; Derber, J.; Collard, A.; Dee, D.; Treadon, R.; Gayno, G.; Jung, J.A. Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Quart. J. Roy. Meteor. Soc. 2014, 140, 1479–1492. [Google Scholar] [CrossRef]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Quart. J. Roy. Meteor. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Fertig, E.J.; Baek, S.-J.; Hunt, B.R.; Ott, E.; Szunyogh, I.; Aravéquia, J.A.; Kaknay, E.; Li, H.; Liu, J. Observation bias correction with an ensemble Kalman filter. Tellus A 2009, 61, 210–226. [Google Scholar] [CrossRef] [Green Version]
- Han, W.; Bormann, N. Constrained adaptive bias correction for satellite radiances assimilation in the ECMWF 4D-Var. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 7–22 April 2016. [Google Scholar]
- Okamoto, K.; Sawada, Y.; Kunii, M. Comparison of assimilating all-sky and clear-sky infrared radiances from Himawari-8 in a mesoscale system. Quart. J. Roy. Meteor. Soc. 2019, 145, 745–766. [Google Scholar] [CrossRef]
- Otkin, J.-A.; Potthast, R. Assimilation of All-Sky SEVIRI Infrared Brightness Temperatures in a Regional-Scale Ensemble Data Assimilation System. Mon. Weather Rev. 2019, 147, 4481–4509. [Google Scholar] [CrossRef]
- Honda, T.; Miyoshi, T.; Lien, G.-Y.; Nishizawa, S.; Yoshida, R.; Adachi, S.; Terasaki, K.; Okamoto, K.; Tomita, H.; Bessho, K. Assimilating All-Sky Himawari-8 Satellite Infrared Radiances: A Case of Typhoon Soudelor (2015). Mon. Weather Rev. 2018, 146, 213–229. [Google Scholar] [CrossRef]
- Minamide, M.; Zhang, F. Assimilation of All-Sky Infrared Radiances from Himawari-8 and Impacts of Moisture and Hydrometer Initialization on Convection-Permitting Tropical Cyclone Prediction. Mon. Weather Rev. 2018, 146, 3241–3258. [Google Scholar] [CrossRef]
- Otkin, J.A.; Potthast, R.; Lawless, A.S. Nonlinear Bias Correction for Satellite Data Assimilation Using Taylor Series Polynomials. Mon. Weather Rev. 2018, 146, 263–285. [Google Scholar] [CrossRef]
- Lary, D.J.; Remer, L.A.; MacNeill, D.; Roscoe, B.; Paradise, S. Machine Learning and Bias Correction of MODIS Aerosol Optical Depth. IEEE Geosci. Remote Sens. Lett. 2009, 6, 694–698. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Lin, H.; Segers, A.J.; Xie, Y.; Heemink, A. Machine learning for observation bias correction with application to dust storm data assimilation. Atmos. Chem. Phys. 2019, 19, 10009–10026. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Chen, J.; Dai, J.; Wang, Y. Bias Correction of Brightness Temperatures in Medium-Wave Channel of FY-4A Infrared Hyperspectral GIIRS. INFRARED. 2021, 42, 39–44. [Google Scholar]
- Chen, K.; Fan, X.; Han, W.; Xiao, H. A Remapping Technique of FY-3D MWRI Based on a Convolutional Neural Network for the Reduction of Representativeness Error. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5302511. [Google Scholar] [CrossRef]
- Yang, J.; Ding, S.; Dong, P.; Bi, L.; Yi, B. Advanced radiative transfer modeling system developed for satellite data assimilation and remote sensing applications. J. Quant. Spectrosc. Radiat. Transf. 2020, 251, 107043. [Google Scholar] [CrossRef]
- Xu, L.; Cheng, W.; Deng, Z.; Liu, J.; Wang, B.; Lu, B.; Wang, S.; Dong, L. Assimilation of the FY-4A AGRI clear-sky radiance data in a regional numerical model and its impact on the forecast of the “21·7” Henan extremely persistent heavy rainfall. Adv. Atmos. Sci. 2023, 40, 920–936. [Google Scholar] [CrossRef]
- Qu, J.H.; Zhang, L.; Lu, Q.F.; Zhang, N.Q.; Wang, D. Characterization of bias in FY-4A advanced geostationary radiation imager observations from ERA5 background simulations using RTTOV. Acta Meteorol. Sin. 2019, 77, 911–922. [Google Scholar]
- Zhu, J.; Shu, J.; Guo, W. Biases Characteristics Assessment of the Advanced Geosynchronous Radiation Imager (AGRI) Measurement on Board Fengyun–4A Geostationary Satellite. Remote Sens. 2020, 12, 2871. [Google Scholar] [CrossRef]
- Geng, X.; Min, J.Z.; Yang, C.; Wang, B.; Xu, D. Analysis of FY-4A AGRI radiance data bias characteristics and a correction experiment. Chin. J. Atmos. Sci. 2020, 44, 679–694. [Google Scholar]
- Tang, F.; Zhuge, X.; Zeng, M.; Li, X.; Dong, P.; Han, Y. Applications of the Advanced Radiative Transfer Modeling System (ARMS) to Characterize the Performance of Fengyun–4A/AGRI. Remote Sens. 2021, 13, 3120. [Google Scholar] [CrossRef]
- Zou, X.; Zhuge, X.; Weng, F. Characterization of Bias of Advanced Himawari Imager Infrared Observations from NWP Background Simulations Using CRTM and RTTOV. J. Atmos. Ocean. Technol. 2016, 33, 2553–2567. [Google Scholar] [CrossRef]
- Liu, J.; Xu, L.; Cheng, W.; Wang, B.; Gong, X.; Deng, Z.; Li, D.; Di, D. Bias Characteristics and Bias Correction of GIIRS Sounder onboard FY-4A Satellite for Data. Chin. J. Atmos. Sci. 2022, 46, 275–292. [Google Scholar]
- Barker, D.M.; Huang, W.; Guo, Y.R.; Bourgeois, A.J.; Xiao, Q.N. A Three-Dimensional Variational Data Assimilation System for MM5: Implementation and Initial Results. Mon. Weather Rev. 2004, 132, 897–914. [Google Scholar] [CrossRef]
- Li, X.; Zou, X. Bias characterization of CrIS radiances at 399 selected channels with respect to NWP model simulations. Atmos. Res. 2017, 196, 164–181. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, F.; Wu, X.; Xue, J. A regional ATOVS radiance-bias correction scheme for radiance assimilation. Acta Meteorol. Sin. 2007, 65, 113–123. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Auligne, T.; Descombes, G.; Snyder, C. A method for retrieving clouds with satellite infrared radiances using the particle filter. Geosci. Model Dev. 2016, 9, 3919–3932. [Google Scholar] [CrossRef] [Green Version]
- Saunders, R.W.; Blackmore, T.A.; Candy, B.; Francis, P.N.; Hewison, T.J. Monitoring satellite radiance biases using NWP models. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1124–1138. [Google Scholar] [CrossRef]
- Geer, A.J.; Migliorini, S.; Matricardi, M. All-sky assimilation of infrared radiances sensitive to mid- and upper-tropospheric moisture and cloud. Atmos. Meas. Tech. 2019, 12, 4903–4929. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P. Bias and data assimilation. Quart. J. Roy. Meteor. Soc. 2005, 131, 3323–3343. [Google Scholar] [CrossRef] [Green Version]
Experiment | Predictors Used | Bias Correction Method |
---|---|---|
RF_pre4 | p0: 1 (constant) p1: 1000–500 hPa thickness p2: 300–50 hPa thickness p3: Skin temperature p4: Total column water | Random forest |
RF_pre7 | p0: 1 (constant) | Random forest |
Linear_pre7 | p1: 1000–500 hPa thickness p2: 300–50 hPa thickness p3: Skin temperature p4: Total column water p5: Longitude p6: Scene brightness temperature p7: Scan position | Least square fitting |
Experiments | Channels | MAE (K) | RMSE (K) | Data Counts |
---|---|---|---|---|
RF_pre4 | 9 | 1.72 | 2.17 | 101,845 |
10 | 1.48 | 1.91 | 99,845 | |
RF_pre7 | 9 | 0.93 | 1.23 | 101,845 |
10 | 1.02 | 1.35 | 99,845 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xu, D.; Li, X.; Shen, F. Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest. Remote Sens. 2023, 15, 1809. https://doi.org/10.3390/rs15071809
Zhang X, Xu D, Li X, Shen F. Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest. Remote Sensing. 2023; 15(7):1809. https://doi.org/10.3390/rs15071809
Chicago/Turabian StyleZhang, Xuewei, Dongmei Xu, Xin Li, and Feifei Shen. 2023. "Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest" Remote Sensing 15, no. 7: 1809. https://doi.org/10.3390/rs15071809
APA StyleZhang, X., Xu, D., Li, X., & Shen, F. (2023). Nonlinear Bias Correction of the FY-4A AGRI Infrared Radiance Data Based on the Random Forest. Remote Sensing, 15(7), 1809. https://doi.org/10.3390/rs15071809