A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture
Abstract
:1. Introduction
2. Data
2.1. SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 8
2.2. In-Situ Soil Moisture Measurements
3. Methodology
3.1. Preliminary Examination of In-Situ Measurements
3.2. Derivation of Soil Moisture from Various Dielectric Models
3.3. Performance Metrics
4. Results and Discussion
4.1. Simulated Brightness Temperature of Smooth Soil through Synthetic Experiments
4.2. Evaluation of Dielectric Models over In-Situ Sites in Alaska
4.3. A Global Intercomparison between Mironov 2009 and Mironov 2019
4.4. Discussion
4.4.1. The Applicable Range of Dielectric Models
4.4.2. Organic-Soil-Based Dielectric Models
4.4.3. Limitations of In-Situ Benchmarks
4.4.4. Characteristics of Park Models
4.4.5. Selection of a Globally Optimal Combination of Dielectric Models
4.4.6. Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Njoku, E.G.; Entekhabi, D. Passive microwave remote sensing of soil moisture. J. Hydrol. 1996, 184, 101–129. [Google Scholar] [CrossRef]
- De Jeu, R.A.; Wagner, W.; Holmes, T.; Dolman, A.; Van De Giesen, N.; Friesen, J. Global soil moisture patterns observed by space borne microwave radiometers and scatterometers. Surv. Geophys. 2008, 29, 399–420. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Waldteufel, P.; Wigneron, J.-P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. [Google Scholar] [CrossRef]
- Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; Johnson, J. The soil moisture active passive (SMAP) mission. Proc. IEEE 2010, 98, 704–716. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.E.; Njoku, E.; Jackson, T.; Colliander, A.; Chen, F.; Burgin, M.; Dunbar, S.; Piepmeier, J. Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4994–5007. [Google Scholar] [CrossRef]
- Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.; Cosh, M.; Dunbar, R.; Dang, L.; Pashaian, L. Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. [Google Scholar] [CrossRef]
- Chan, S.K.; Bindlish, R.; O’Neill, P.; Jackson, T.; Njoku, E.; Dunbar, S.; Chaubell, J.; Piepmeier, J.; Yueh, S.; Entekhabi, D. Development and assessment of the SMAP enhanced passive soil moisture product. Remote Sens. Environ. 2018, 204, 931–941. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Wigneron, J.-P.; Kumar, S.; Dong, J.; Wagner, W.; Cosh, M.H.; Bosch, D.D.; Collins, C.H.; Starks, P.J.; Seyfried, M. Global scale error assessments of soil moisture estimates from microwave-based active and passive satellites and land surface models over forest and mixed irrigated/dryland agriculture regions. Remote Sens. Environ. 2020, 251, 112052. [Google Scholar] [CrossRef]
- Zhang, R.; Kim, S.; Sharma, A.; Lakshmi, V. Identifying relative strengths of SMAP, SMOS-IC, and ASCAT to capture temporal variability. Remote Sens. Environ. 2021, 252, 112126. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Radar Remote Sensing and Surface Scattering and Emission Theory; Artech House: Norwood, MA, USA, 1986; Volume II. [Google Scholar]
- Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y.H. Soil moisture sensor calibration for organic soil surface layers. Geosci. Instrum. Methods Data Syst. 2016, 5, 109–125. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave dielectric behavior of wet soil-Part II: Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [Google Scholar] [CrossRef]
- Zhang, R.; Kim, S.; Sharma, A. A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote Sens. Environ. 2019, 223, 82–94. [Google Scholar] [CrossRef]
- Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V. Physically and mineralogically based spectroscopic dielectric model for moist soils. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2059–2070. [Google Scholar] [CrossRef]
- Wigneron, J.-P.; Jackson, T.; O’neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262. [Google Scholar]
- Park, C.H.; Montzka, C.; Jagdhuber, T.; Jonard, F.; De Lannoy, G.; Hong, J.; Jackson, T.J.; Wulfmeyer, V. A dielectric mixing model accounting for soil organic matter. Vadose Zone J. 2019, 18, 190036. [Google Scholar] [CrossRef]
- O’Neill, P.; Jackson, T. Observed effects of soil organic matter content on the microwave emissivity of soils. Remote Sens. Environ. 1990, 31, 175–182. [Google Scholar] [CrossRef]
- O’Neill, P.; Bindlish, R.; Chan, S.; Chaubell, J.; Colliander, A.; Njoku, E.; Jackson, T. Algorithm Theoretical Basis Document Level 2 & 3 Soil Moisture (Passive) Data Products, Revision G, 12 October 2021, SMAP Project, JPL D-66480, Jet Propulsion Laboratory, Pasadena, CA. Available online: https://nsidc.org/sites/nsidc.org/files/technical-references/L2_SM_P_ATBD_rev_G_final_Oct2021.pdf (accessed on 12 May 2022).
- Wang, J.R.; Schmugge, T.J. An empirical model for the complex dielectric permittivity of soils as a function of water content. IEEE Trans. Geosci. Remote Sens. 1980, 18, 288–295. [Google Scholar] [CrossRef] [Green Version]
- Peplinski, N.R.; Ulaby, F.T.; Dobson, M.C. Dielectric properties of soils in the 0.3–1.3-GHz range. IEEE Trans. Geosci. Remote Sens. 1995, 33, 803–807. [Google Scholar] [CrossRef]
- Mironov, V.; Kerr, Y.; Wigneron, J.-P.; Kosolapova, L.; Demontoux, F. Temperature-and texture-dependent dielectric model for moist soils at 1.4 GHz. IEEE Geosci. Remote Sens. Lett. 2012, 10, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Park, C.-H.; Behrendt, A.; LeDrew, E.; Wulfmeyer, V. New approach for calculating the effective dielectric constant of the moist soil for microwaves. Remote Sens. 2017, 9, 732. [Google Scholar] [CrossRef] [Green Version]
- Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V.; Savin, I.V. Experimental analysis and empirical model of the complex permittivity of five organic soils at 1.4 GHz in the temperature range from −30 °C to 25 °C. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3778–3787. [Google Scholar] [CrossRef]
- Park, C.-H.; Berg, A.; Cosh, M.H.; Colliander, A.; Behrendt, A.; Manns, H.; Hong, J.; Lee, J.; Zhang, R.; Wulfmeyer, V. An inverse dielectric mixing model at 50 MHz that considers soil organic carbon. Hydrol. Earth Syst. Sci. 2021, 25, 6407–6420. [Google Scholar] [CrossRef]
- Yi, Y.; Chen, R.H.; Kimball, J.S.; Moghaddam, M.; Xu, X.; Euskirchen, E.S.; Das, N.; Miller, C.E. Potential Satellite Monitoring of Surface Organic Soil Properties in Arctic Tundra from SMAP. Water Resour. Res. 2022, 58, e2021WR030957. [Google Scholar] [CrossRef]
- Suman, S.; Srivastava, P.K.; Pandey, D.K.; Prasad, R.; Mall, R.; O’Neill, P. Comparison of soil dielectric mixing models for soil moisture retrieval using SMAP brightness temperature over croplands in India. J. Hydrol. 2021, 602, 126673. [Google Scholar] [CrossRef]
- Mialon, A.; Richaume, P.; Leroux, D.; Bircher, S.; Al Bitar, A.; Pellarin, T.; Wigneron, J.-P.; Kerr, Y.H. Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3084–3094. [Google Scholar] [CrossRef]
- Srivastava, P.K.; O’Neill, P.; Cosh, M.; Kurum, M.; Lang, R.; Joseph, A. Evaluation of dielectric mixing models for passive microwave soil moisture retrieval using data from ComRAD ground-based SMAP simulator. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 4345–4354. [Google Scholar] [CrossRef]
- O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T.; Bindlish, R.; Chaubell, J. L3 Radiometer Global Daily 36 km EASE-Grid Soil Moisture, Version 8.; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.B.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotić, A.; Shangguan, W.; Wright, M.N.; Geng, X.; Bauer-Marschallinger, B. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, N.N.; O’Neill, P. Soil Moisture Active Passive (SMAP) Ancillary Data Report, Soil Attributes, 15 August 2020, JPL D-53058, Version B, Jet Propulsion Laboratory, Pasadena, CA, USA. Available online: https://smap.jpl.nasa.gov/documents (accessed on 16 March 2023).
- Schaefer, G.L.; Paetzold, R.F. SNOTEL (SNOwpack TELemetry) and SCAN (soil climate analysis network). Autom. Weather. Station. Appl. Agric. Water Resour. Manag. Curr. Use Future Perspect. 2001, 1074, 187–194. [Google Scholar]
- Schaefer, G.L.; Cosh, M.H.; Jackson, T.J. The USDA natural resources conservation service soil climate analysis network (SCAN). J. Atmos. Ocean. Technol. 2007, 24, 2073–2077. [Google Scholar] [CrossRef]
- Dorigo, W.; Xaver, A.; Vreugdenhil, M.; Gruber, A.; Hegyiova, A.; Sanchis-Dufau, A.; Zamojski, D.; Cordes, C.; Wagner, W.; Drusch, M. Global automated quality control of in-situ soil moisture data from the International Soil Moisture Network. Vadose Zone J. 2013, 12, 1–21. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Hohensinn, R.; Hahn, S.; Paulik, C.; Xaver, A.; Gruber, A.; Drusch, M.; Mecklenburg, S.; van Oevelen, P. The International Soil Moisture Network: A data hosting facility for global in-situ soil moisture measurements. Hydrol. Earth Syst. Sci. 2011, 15, 1675–1698. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, J. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 25, 5749–5804. [Google Scholar] [CrossRef]
- Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application requirements. J. Hydrometeorol. 2010, 11, 832–840. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.-K. Microwave dielectric behavior of wet soil-part 1: Empirical models and experimental observations. IEEE Trans. Geosci. Remote Sens. 1985, 23, 25–34. [Google Scholar] [CrossRef]
- Crow, W.T.; Berg, A.A.; Cosh, M.H.; Loew, A.; Mohanty, B.P.; Panciera, R.; de Rosnay, P.; Ryu, D.; Walker, J.P. Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Kimball, J.S.; Chen, R.H.; Moghaddam, M.; Miller, C.E. Sensitivity of active-layer freezing process to snow cover in Arctic Alaska. Cryosphere 2019, 13, 197–218. [Google Scholar] [CrossRef] [Green Version]
- Topp, G.C.; Davis, J.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Roth, C.; Malicki, M.; Plagge, R. Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Paquet, J.; Caron, J.; Banton, O. In-situ determination of the water desorption characteristics of peat substrates. Can. J. Soil Sci. 1993, 73, 329–339. [Google Scholar] [CrossRef]
- Skierucha, W. Accuracy of soil moisture measurement by TDR technique. Int. Agrophys. 2000, 14, 417–426. [Google Scholar]
- Kellner, E.; Lundin, L.-C. Calibration of time domain reflectometry for water content in peat soil. Hydrol. Res. 2001, 32, 315–332. [Google Scholar] [CrossRef]
- Malicki, M.; Plagge, R.; Roth, C. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci. 1996, 47, 357–366. [Google Scholar] [CrossRef]
- Pribyl, D.W. A critical review of the conventional SOC to SOM conversion factor. Geoderma 2010, 156, 75–83. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, P.; Chan, S.; Bindlish, R.; Chaubell, J.; Colliander, A.; Chen, F.; Dunbar, S.; Jackson, T.; Peng, J.; Mousavi, M.; et al. Calibration and Validation for the L2/3_SM_P Version 8 and L2/3_SM_P_E Version 5 Data Products; SMAP Project, JPL D-56297; Jet Propulsion Laboratory: Pasadena, CA, USA, 2021. [Google Scholar]
- Broll, G.; Brauckmann, H.J.; Overesch, M.; Junge, B.; Erber, C.; Milbert, G.; Baize, D.; Nachtergaele, F. Topsoil characterization—Recommendations for revision and expansion of the FAO-Draft (1998) with emphasis on humus forms and biological features. J. Plant Nutr. Soil Sci. 2006, 169, 453–461. [Google Scholar] [CrossRef]
- Zanella, A.; Jabiol, B.; Ponge, J.-F.; Sartori, G.; De Waal, R.; Van Delft, B.; Graefe, U.; Cools, N.; Katzensteiner, K.; Hager, H. European Humus Forms Reference Base. 2011. Available online: https://hal.science/hal-00541496/file/Humus_Forms_ERB_31_01_2011.pdf (accessed on 16 March 2023).
- Huang, P.; Patel, M.; Bobet, A. FHWA/IN/JTRP-2008/2 Classification of Organic Soils. 2008. Available online: https://www.geostructures.com/library/technical-bulletins/pdf/Classification-of-Organic-Soils-FHWA-IN-JTRP-2008-2.pdf (accessed on 16 March 2023).
- Mudryk, L.; Santolaria-Otín, M.; Krinner, G.; Ménégoz, M.; Derksen, C.; Brutel-Vuilmet, C.; Brady, M.; Essery, R. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi-model ensemble. Cryosphere 2020, 14, 2495–2514. [Google Scholar] [CrossRef]
- Vonk, J.E.; Tank, S.; Walvoord, M.A. Integrating hydrology and biogeochemistry across frozen landscapes. Nat. Commun. 2019, 10, 5377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liljedahl, A.K.; Boike, J.; Daanen, R.P.; Fedorov, A.N.; Frost, G.V.; Grosse, G.; Hinzman, L.D.; Iijma, Y.; Jorgenson, J.C.; Matveyeva, N. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology. Nat. Geosci. 2016, 9, 312–318. [Google Scholar] [CrossRef]
- Reichle, R.; De Lannoy, G.; Koster, R.D.; Crow, W.T.; Kimball, J.S.; Liu, Q.; Bechtold, M. SMAP L4 Global 3-Hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 7; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2022. [Google Scholar] [CrossRef]
- Sabater, J.M.; De Rosnay, P.; Balsamo, G. Sensitivity of L-band NWP forward modelling to soil roughness. Int. J. Remote Sens. 2011, 32, 5607–5620. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms. Adv. Water Resour. 2017, 109, 106–120. [Google Scholar] [CrossRef]
Model Inputs | Mineral Soil Based Models | Organic Soil Based Models | |||||||
---|---|---|---|---|---|---|---|---|---|
Wang 1980 | Dobson 1985 | Mironov 2009 | Mironov 2013 | Park 2017 | Bircher 2016 | Mironov 2019 | Park 2019 | Park 2021 | |
Soil Moisture | Volumetric Soil Moisture (m3/m3) | Volumetric Soil Moisture (m3/m3) | Volumetric Soil Moisture (m3/m3) | Volumetric Soil Moisture (m3/m3) | Volumetric Soil Moisture (m3/m3) | Volumetric Soil Moisture (m3/m3) | Gravimetric Soil Moisture (g/g) | Volumetric Soil Moisture (m3/m3) | Volumetric Soil Moisture (m3/m3) |
Soil Organic Matter | / | / | / | / | / | / | Gravimetric Soil Organic Matter (%) | Gravimetric Soil Organic Matter (%) | Gravimetric Soil Organic Matter (%) |
Clay | Gravimetric Clay Fraction (0–1) | Gravimetric Clay Fraction (0–1) | Gravimetric Clay Fraction (%) | Gravimetric Clay Fraction (%) | Volumetric Clay Fraction (0–1) | / | / | Volumetric Clay Fraction (0–1) | Volumetric Clay Fraction (0–1) |
Sand | Gravimetric Sand Fraction (0–1) | Gravimetric Sand Fraction (0–1) | / | / | Volumetric Sand Fraction (0–1) | / | / | Volumetric Sand Fraction (0–1) | Volumetric Sand Fraction (0–1) |
Silt | / | / | / | / | Volumetric Silt Fraction (0–1) | / | / | Volumetric Silt Fraction (0–1) | Volumetric Silt Fraction (0–1) |
Bulk Density | Bulk Density (g/cm3) | Bulk Density (g/cm3) | / | / | / | / | Bulk Density (g/cm3) | / | / |
Frequency | / | Frequency (Hz) | Frequency (Hz) | / | Frequency (Hz) | / | / | Frequency (Hz) | Frequency (Hz) |
Salinity | / | / | / | / | Salinity (‰) | / | / | Salinity (‰) | Salinity (‰) |
Soil Temperature | / | Soil Temperature (°C) | / | Soil Temperature (°C) | Soil Temperature (°C) | / | Soil Temperature (°C) | Soil Temperature (°C) | Soil Temperature (°C) |
Total Number of Inputs | 4 | 6 | 3 | 3 | 7 | 1 | 4 | 8 | 8 |
Station/Bias (m3/m3) | N | Mineral Soil Based Models | Organic Soil Based Models | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Wang 1980 | Dobson 1985 | Mironov 2009 | Mironov 2013 | Park 2017 | Bircher 2016 | Mironov 2019 | Park 2019 | Park 2021 | ||
Gulkana River | 72 | 0.058 | 0.025 | 0.046 | 0.044 | 0.039 | 0.195 | 0.142 | 0.104 | 0.085 |
Spring Creek | 37 | −0.108 | −0.153 | −0.137 | −0.137 | −0.139 | −0.022 | −0.051 | −0.105 | −0.109 |
Atigun Pass | 81 | 0.047 | −0.002 | 0.015 | 0.016 | 0.009 | 0.092 | 0.092 | 0.044 | 0.061 |
Coldfoot | 156 | −0.085 | −0.133 | −0.121 | −0.121 | −0.124 | −0.030 | −0.036 | −0.083 | −0.067 |
Eagle Summit | 320 | −0.028 | −0.068 | −0.062 | −0.061 | −0.068 | 0.014 | 0.017 | −0.033 | −0.015 |
Gobblers Knob | 262 | 0.031 | −0.010 | −0.003 | −0.003 | −0.007 | 0.096 | 0.083 | 0.039 | 0.055 |
Monahan Flat | 121 | −0.047 | −0.093 | −0.076 | −0.077 | −0.081 | 0.035 | 0.009 | −0.029 | −0.029 |
Monument Creek | 405 | 0.018 | −0.022 | −0.014 | −0.014 | −0.016 | 0.091 | 0.073 | 0.029 | 0.041 |
Mt. Ryan | 194 | 0.114 | 0.078 | 0.082 | 0.082 | 0.080 | 0.196 | 0.172 | 0.132 | 0.142 |
Munson Ridge | 383 | 0.018 | −0.019 | −0.015 | −0.015 | −0.016 | 0.096 | 0.075 | 0.034 | 0.045 |
Tokositna Valley | 253 | 0.014 | −0.008 | −0.006 | −0.008 | −0.008 | 0.147 | 0.093 | 0.062 | 0.046 |
Upper Nome Creek | 283 | −0.138 | −0.180 | −0.171 | −0.171 | −0.176 | −0.086 | −0.091 | −0.138 | −0.120 |
Mean | 214 | −0.009 | −0.049 | −0.038 | −0.039 | −0.042 | 0.069 | 0.048 | 0.005 | 0.011 |
Station/ubRMSE (m3/m3) | N | Mineral Soil Based Models | Organic Soil Based Models | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Wang 1980 | Dobson 1985 | Mironov 2009 | Mironov 2013 | Park 2017 | Bircher 2016 | Mironov 2019 | Park 2019 | Park 2021 | ||
Gulkana River | 72 | 0.0132 | 0.0164 | 0.0156 | 0.0154 | 0.0152 | 0.0209 | 0.0180 | 0.0169 | 0.0138 |
Spring Creek | 37 | 0.0460 | 0.0457 | 0.0452 | 0.0454 | 0.0455 | 0.0408 | 0.0428 | 0.0446 | 0.0462 |
Atigun Pass | 81 | 0.0311 | 0.0311 | 0.0311 | 0.0311 | 0.0311 | 0.0317 | 0.0311 | 0.0310 | 0.0310 |
Coldfoot | 156 | 0.0736 | 0.0736 | 0.0736 | 0.0736 | 0.0736 | 0.0743 | 0.0737 | 0.0739 | 0.0737 |
Eagle Summit | 320 | 0.0487 | 0.0490 | 0.0487 | 0.0487 | 0.0487 | 0.0480 | 0.0477 | 0.0482 | 0.0481 |
Gobblers Knob | 262 | 0.0665 | 0.0663 | 0.0660 | 0.0662 | 0.0662 | 0.0622 | 0.0643 | 0.0628 | 0.0637 |
Monahan Flat | 121 | 0.0722 | 0.0721 | 0.0720 | 0.0721 | 0.0721 | 0.0714 | 0.0718 | 0.0715 | 0.0722 |
Monument Creek | 405 | 0.0510 | 0.0509 | 0.0508 | 0.0508 | 0.0508 | 0.0505 | 0.0503 | 0.0504 | 0.0503 |
Mt. Ryan | 194 | 0.0163 | 0.0177 | 0.0173 | 0.0172 | 0.0173 | 0.0262 | 0.0186 | 0.0237 | 0.0187 |
Munson Ridge | 383 | 0.0499 | 0.0492 | 0.0490 | 0.0492 | 0.0492 | 0.0465 | 0.0475 | 0.0467 | 0.0478 |
Tokositna Valley | 253 | 0.1295 | 0.1296 | 0.1295 | 0.1295 | 0.1296 | 0.1298 | 0.1294 | 0.1296 | 0.1296 |
Upper Nome Creek | 283 | 0.0122 | 0.0126 | 0.0124 | 0.0123 | 0.0126 | 0.0196 | 0.0129 | 0.0163 | 0.0160 |
Mean | 214 | 0.0509 | 0.0512 | 0.0509 | 0.0510 | 0.0510 | 0.0518 | 0.0507 | 0.0513 | 0.0509 |
Station/R | N | Mineral Soil Based Models | Organic Soil Based Models | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Wang 1980 | Dobson 1985 | Mironov 2009 | Mironov 2013 | Park 2017 | Bircher 2016 | Mironov 2019 | Park 2019 | Park 2021 | ||
Gulkana River | 72 | 0.605 | 0.596 | 0.607 | 0.604 | 0.599 | 0.608 | 0.621 | 0.603 | 0.601 |
Spring Creek | 37 | 0.757 | 0.737 | 0.758 | 0.752 | 0.745 | 0.757 | 0.805 | 0.752 | 0.746 |
Atigun Pass | 81 | 0.342 | 0.348 | 0.344 | 0.344 | 0.344 | 0.341 | 0.333 | 0.347 | 0.347 |
Coldfoot | 156 | 0.205 | 0.205 | 0.204 | 0.204 | 0.205 | 0.206 | 0.199 | 0.202 | 0.208 |
Eagle Summit | 320 | 0.375 | 0.353 | 0.372 | 0.376 | 0.368 | 0.376 | 0.429 | 0.368 | 0.372 |
Gobblers Knob | 262 | 0.571 | 0.557 | 0.571 | 0.570 | 0.564 | 0.571 | 0.603 | 0.575 | 0.577 |
Monahan Flat | 121 | 0.276 | 0.273 | 0.275 | 0.274 | 0.274 | 0.277 | 0.275 | 0.284 | 0.276 |
Monument Creek | 405 | 0.407 | 0.401 | 0.406 | 0.405 | 0.404 | 0.409 | 0.413 | 0.406 | 0.418 |
Mt. Ryan | 194 | 0.604 | 0.595 | 0.604 | 0.601 | 0.599 | 0.605 | 0.624 | 0.604 | 0.601 |
Munson Ridge | 383 | 0.608 | 0.597 | 0.606 | 0.604 | 0.602 | 0.610 | 0.624 | 0.611 | 0.611 |
Tokositna Valley | 253 | 0.177 | 0.171 | 0.174 | 0.172 | 0.170 | 0.172 | 0.176 | 0.172 | 0.171 |
Upper Nome Creek | 283 | 0.416 | 0.398 | 0.418 | 0.420 | 0.410 | 0.416 | 0.477 | 0.421 | 0.416 |
Mean | 214 | 0.445 | 0.436 | 0.445 | 0.444 | 0.440 | 0.446 | 0.465 | 0.445 | 0.445 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Chan, S.; Bindlish, R.; Lakshmi, V. A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture. Remote Sens. 2023, 15, 1658. https://doi.org/10.3390/rs15061658
Zhang R, Chan S, Bindlish R, Lakshmi V. A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture. Remote Sensing. 2023; 15(6):1658. https://doi.org/10.3390/rs15061658
Chicago/Turabian StyleZhang, Runze, Steven Chan, Rajat Bindlish, and Venkataraman Lakshmi. 2023. "A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture" Remote Sensing 15, no. 6: 1658. https://doi.org/10.3390/rs15061658
APA StyleZhang, R., Chan, S., Bindlish, R., & Lakshmi, V. (2023). A Performance Analysis of Soil Dielectric Models over Organic Soils in Alaska for Passive Microwave Remote Sensing of Soil Moisture. Remote Sensing, 15(6), 1658. https://doi.org/10.3390/rs15061658