Incidence Angle Normalization of Dual-Polarized Sentinel-1 Backscatter Data on Greenland Ice Sheet
Abstract
:1. Introduction
2. Study Area and Data Sets
2.1. Greenland Ice Sheet
2.2. Sentinel-1 EW SAR Imagery
2.3. Other Relevant Data
3. Methodology
3.1. Linear Normalization Method
3.2. Precision Evaluation
4. Results and Validation
4.1. Regression Coefficients Estimation
4.2. Evaluation Based on Ascending/Descending Image Pairs
4.3. Evaluation of Greenland Ice Sheet Mosaic
5. Discussion
5.1. Comparison with the Cosine-Square Method
5.2. Limitation of the Study
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. J. Geophys. Res. 2007, 112, B07407. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Guarnieri, A.M. Distributed scatterer interferometry with the refinement of spatiotemporal coherence. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3977–3987. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorqui, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Scher, C.; Steiner, N.C.; McDonald, K.C. Mapping seasonal glacier melt across the Hindu Kush Himalaya with time series synthetic aperture radar (SAR). Cryosphere 2021, 15, 4465–4482. [Google Scholar] [CrossRef]
- Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, H.; Luo, Q.; Li, Y.; Wei, J.; Li, J. Oil spill detection in quad-polarimetric SAR Images using an advanced convolutional neural network based on SuperPixel model. Remote Sens. 2020, 12, 944. [Google Scholar] [CrossRef] [Green Version]
- Dong, L.; Shan, J. A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS-J. Photogramm. Remote Sens. 2013, 84, 85–99. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; Univ. of Michigan Press: Ann Arbor, MI, USA, 2014. [Google Scholar]
- Mladenova, I.E.; Jackson, T.J.; Bindlish, R.; Hensley, S. Incidence angle normalization of radar backscatter data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1791–1804. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Volume II—Radar Remote Sensing and Surface Scattering and Emission Theory. In Microwave Remote Sensing: Active and Passive; Artech House: Norwood, MA, USA, 1982. [Google Scholar]
- Ardila, J.P.; Tolpekin, V.; Bijker, W. Angular backscatter variation in L-Band ALOS ScanSAR images of tropical forest areas. IEEE Geosci. Remote Sens. Lett. 2010, 7, 821–825. [Google Scholar] [CrossRef]
- Zhou, C.; Zheng, L. Mapping radar glacier zones and dry snow line in the Antarctic Peninsula using Sentinel-1 images. Remote Sens. 2017, 9, 1171. [Google Scholar] [CrossRef]
- Topouzelis, K.; Singha, S. Incidence angle normalization of Wide Swath SAR data for oceanographic applications. Open Geosci. 2016, 8, 450–464. [Google Scholar] [CrossRef] [Green Version]
- Menges, C.H.; Zyl, J.J.V.; Hill, G.J.E.; Ahmad, W. A procedure for the correction of the effect of variation in incidence angle on AIRSAR data. Int. J. Remote Sens. 2010, 22, 829–841. [Google Scholar] [CrossRef]
- Ye, N.; Walker, J.P.; Rüdiger, C. A cumulative distribution function method for normalizing variable-angle microwave observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3906–3916. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Brath, M.; Kern, S.; Stammer, D. Sea ice classification during freeze-up conditions with multifrequency scatterometer data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 3336–3353. [Google Scholar] [CrossRef]
- Gill, J.P.S.; Yackel, J.J.; Geldsetzer, T.; Fuller, M.C. Sensitivity of C-band synthetic aperture radar polarimetric parameters to snow thickness over landfast smooth first-year sea ice. Remote Sens. Environ. 2015, 166, 34–49. [Google Scholar] [CrossRef]
- Komarov, A.S.; Buehner, M. Detection of first-year and multi-year sea ice from dual-polarization SAR images under cold conditions. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9109–9123. [Google Scholar] [CrossRef]
- Mahmud, M.S.; Geldsetzer, T.; Howell, S.E.L.; Yackel, J.J.; Nandan, V.; Scharien, R.K. Incidence angle dependence of HH-polarized C- and L-band wintertime backscatter over Arctic sea ice. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6686–6698. [Google Scholar] [CrossRef]
- Zakhvatkina, N.Y.; Alexandrov, V.Y.; Johannessen, O.M.; Sandven, S.; Frolov, I.Y. Classification of sea ice types in ENVISAT Synthetic Aperture Radar images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2587–2600. [Google Scholar] [CrossRef]
- Aldenhoff, W.; Eriksson, L.E.B.; Ye, Y.; Heuzé, C. First-year and multiyear sea ice incidence angle normalization of dual-polarized Sentinel-1 SAR images in the Beaufort Sea. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 1540–1550. [Google Scholar] [CrossRef]
- Mäkynen, M.P.; Manninen, A.T.; Simila, M.H.; Karvonen, J.A.; Hallikainen, M.T. Incidence angle dependence of the statistical properties of C-band HH-polarization backscattering signatures of the Baltic Sea ice. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2593–2605. [Google Scholar] [CrossRef]
- Mäkynen, M.; Karvonen, J. Incidence angle dependence of first-year sea ice backscattering coefficient in Sentinel-1 SAR imagery over the Kara Sea. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6170–6181. [Google Scholar] [CrossRef]
- The IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar] [CrossRef]
- Bhattacharya, I.; Jezek, K.C.; Wang, L.; Liu, H. Surface melt area variability of the Greenland ice sheet: 1979-2008. Geophys. Res. Lett. 2009, 36, L20502. [Google Scholar] [CrossRef] [Green Version]
- Colosio, P.; Tedesco, M.; Ranzi, R.; Fettweis, X. Surface melting over the Greenland ice sheet derived from enhanced resolution passive microwave brightness temperatures (1979–2019). Cryosphere 2021, 15, 2623–2646. [Google Scholar] [CrossRef]
- National Snow & Ice Data Center. Available online: https://nsidc.org/greenland-today/ (accessed on 28 October 2022).
- Sun, Y.; Li, X.M. Denoising Sentinel-1 Extra-Wide mode cross-polarization images over sea ice. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2116–2131. [Google Scholar] [CrossRef]
- Howat, I.M.; Negrete, A.; Smith, B.E. MEaSUREs Greenland Ice Mapping Project (GIMP) Digital Elevation Model from GeoEye and WorldView Imagery, Version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center; Boulder, Colorado USA, 2017. Available online: https://nsidc.org/data/NSIDC-0715/versions/1 (accessed on 21 September 2022).
- Zwally; Jay, H.; Giovinetto, M.B.; Beckley, M.A.; Saba, J.L. Antarctic and Greenland Drainage Systems. GSFC Cryospheric Sciences Laboratory. 2012. Available online: http://icesat4.gsfc.nasa.gov/cryo_data/ant_grn_drainage_systems.php (accessed on 21 September 2022).
- Kim, Y.; Kimball, J.S.; Du, J.; Glassy, J. MEaSUREs Polar EASE-Grid 2.0 Daily 6 km Land Freeze/Thaw Status from AMSR-E and AMSR2, Version 2; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2021. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Single Levels from 1979 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2018. [Google Scholar] [CrossRef]
- Rees, W.G. Remote sensing of glacier, ice sheets and ice shelves. In Remote Sensing of Snow and Ice; CRC Press: Boca Raton, FL, USA, 2006; pp. 212–217. [Google Scholar]
- Joughin, I. MEaSUREs Greenland Image Mosaics from Sentinel-1A and 1B, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2020. [Google Scholar] [CrossRef]
- Joughin, I. MEaSUREs Greenland Ice Sheet Mosaics from SAR Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2015. [Google Scholar] [CrossRef]
- O’Grady, D.; Leblanc, M.; Gillieson, D. Relationship of local incidence angle with satellite radar backscatter for different surface conditions. Int. J. Appl. Earth Obs. Geoinf. 2013, 24, 42–53. [Google Scholar] [CrossRef]
- Liu, H.; Wang, L.; Jezek, K.C. Automated delineation of dry and melt snow zones in Antarctica using active and passive microwave observations from space. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2152–2163. [Google Scholar] [CrossRef]
Polarization | Samples | R² | RMSE [dB] 1 | ||||
---|---|---|---|---|---|---|---|
HH | 288,7749 | 0.311 | −7.54 × 10−5 | −4.88 × 10−3 | 6.00 × 10−4 | 0.22 | 0.09 |
HV | 968,909 | 0.302 | −8.32 × 10−5 | −3.61 × 10−3 | 6.63 × 10−4 | 0.08 | 0.15 |
Month | MAM | JJA | SON | DJF | |||||
---|---|---|---|---|---|---|---|---|---|
Polarization | HH | HV | HH | HV | HH | HV | HH | HV | |
EA1 | a 1 | 1.52 | 0.59 | 2.04 | 1.13 | 1.52 | 0.59 | 1.51 | 0.60 |
b 2 | 0.68 | 0.51 | 1.11 | 1.03 | 0.68 | 0.50 | 0.68 | 0.51 | |
c 3 | 1.53 | 0.59 | 1.85 | 0.78 | 1.52 | 0.59 | 1.54 | 0.59 | |
d 4 | 0.67 | 0.50 | 0.95 | 0.69 | 0.67 | 0.50 | 0.68 | 0.49 | |
EA2 | a | 0.96 | 0.47 | 1.29 | 1.16 | 0.97 | 0.47 | 0.96 | 0.47 |
b | 0.50 | 0.45 | 0.97 | 1.14 | 0.50 | 0.45 | 0.50 | 0.45 | |
c | 0.97 | 0.49 | 1.12 | 0.72 | 0.91 | 0.50 | 0.98 | 0.47 | |
d | 0.52 | 0.46 | 0.72 | 0.70 | 0.52 | 0.48 | 0.50 | 0.45 | |
EA3 | a | 1.26 | 0.71 | 1.53 | 1.23 | 1.26 | 0.70 | 1.26 | 0.69 |
b | 0.76 | 0.70 | 1.06 | 1.22 | 0.77 | 0.69 | 0.76 | 0.68 | |
c | 1.13 | 0.50 | 1.74 | 1.39 | 1.21 | 0.67 | 1.08 | 0.47 | |
d | 0.59 | 0.49 | 1.28 | 1.37 | 0.75 | 0.66 | 0.63 | 0.46 | |
EA4 | a | 1.09 | 0.69 | 1.38 | 0.70 | 1.10 | 0.69 | 1.16 | 0.64 |
b | 0.73 | 0.64 | 1.13 | 0.65 | 0.74 | 0.64 | 0.76 | 0.62 | |
c | 1.00 | 0.49 | 1.38 | 0.62 | 1.08 | 0.70 | 0.98 | 0.44 | |
d | 0.63 | 0.42 | 1.05 | 0.57 | 0.74 | 0.65 | 0.55 | 0.40 | |
EA5 | a | 1.43 | 0.84 | 2.26 | 2.18 | 1.40 | 0.86 | 1.41 | 0.86 |
b | 0.73 | 0.73 | 1.55 | 2.08 | 0.70 | 0.73 | 0.71 | 0.74 | |
c | 1.35 | 0.70 | 1.84 | 1.73 | 1.46 | 0.89 | 1.35 | 0.71 | |
d | 0.51 | 0.54 | 1.05 | 1.61 | 0.72 | 0.75 | 0.50 | 0.56 |
11 January 2020~16 January 2020 | 16 April 2020~21 April 2020 | 9 July 2020~14July 2020 | 13 October 2020~18 October 2020 | |||||
---|---|---|---|---|---|---|---|---|
Polarization | HH | HV | HH | HV | HH | HV | HH | HV |
Pixel | 13,314 | 10,057 | 20,790 | 15,799 | 15,897 | 9544 | 20,857 | 16,147 |
a 1 | 0.73 | 0.41 | 0.85 | 0.51 | 1.94 | 1.64 | 0.93 | 0.60 |
b 2 | 0.39 | 0.37 | 0.52 | 0.50 | 1.62 | 1.59 | 0.56 | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Li, G.; Chen, Z.; Ju, Q.; Cheng, X. Incidence Angle Normalization of Dual-Polarized Sentinel-1 Backscatter Data on Greenland Ice Sheet. Remote Sens. 2022, 14, 5534. https://doi.org/10.3390/rs14215534
Chen X, Li G, Chen Z, Ju Q, Cheng X. Incidence Angle Normalization of Dual-Polarized Sentinel-1 Backscatter Data on Greenland Ice Sheet. Remote Sensing. 2022; 14(21):5534. https://doi.org/10.3390/rs14215534
Chicago/Turabian StyleChen, Xiao, Gang Li, Zhuoqi Chen, Qi Ju, and Xiao Cheng. 2022. "Incidence Angle Normalization of Dual-Polarized Sentinel-1 Backscatter Data on Greenland Ice Sheet" Remote Sensing 14, no. 21: 5534. https://doi.org/10.3390/rs14215534