Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series
Abstract
:1. Introduction
2. Dataset
2.1. Study Area and Experiment
2.2. Meteorological Station Data
3. Methods
3.1. Physical-Based SCOPE Method
3.2. Random Forest Regression Method
3.3. Long Short-Term Memory Method
3.4. Input and Output
4. Results
4.1. Evaluation within the Same Vegetation Type
4.1.1. Evaluation of SCOPE Model
4.1.2. Evaluation of the RF Method
4.1.3. Evaluation of the LSTM Method
4.2. Evaluation of Different Surface Types during Different Years
4.2.1. Evaluation of SCOPE Model
4.2.2. Evaluation of the RF Method
4.2.3. Evaluation of the LSTM Method
5. Discussion
5.1. The Effect of in SCOPE
5.2. The Contribution of Inputs
5.3. Intellectual Merits and Limitations
- The transferability of an empirical model after being trained is an important factor in evaluation. Therefore, the comparison was performed from different perspectives, i.e., within the same surface type, between different years, and between different climate types. To meet this need, only limited measurements were selected in this study; in particular, the comparison with different surface types is insufficient. Additional work is therefore required based on measurements for more surface types.
- Moreover, because the differences among methods were focused on simulating land surface temperature, the comparison was performed by a forward simulation type at a point scale. When they are used with remote sensing data in practical applications, there are some differences due to the uncertainty of remote sensing products and the introduction of other data, which also deserves further analysis in the future.
- In addition, the SCOPE and RF/LSTM models were selected for the physical and empirical methods, respectively. Even similar models have some differences, especially for machine learning models. The structure of LSTM itself is complex, so a series of simplifications have been made, leading to the proposal of gated recurrent units (GRUs) and minimal gate units (MGUs). Although some research shows that none of the variants can improve significantly upon the standard LSTM architecture, different structures have different performances according to different specific problems [45], which has not been discussed in this study.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Li, Z.L.; Tang, B.H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Bayat, B.; van der Tol, C.; Yang, P.; Verhoef, W. Extending the SCOPE model to combine optical reflectance and soil moisture observations for remote sensing of ecosystem functioning under water stress conditions. Remote Sens. Environ. 2019, 221, 286–301. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Hu, T.; Renzullo, L.J.; Dijk AIJMv He, J.; Tian, S.; Xu, Z.; Zhou, J.; Liu, T.; Liu, Q. Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sens. Environ. 2020, 236, 111419. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, S.-B.; Li, A.; Yin, G. A practical method for reducing terrain effect on land surface temperature using random forest regression. Remote Sens. Environ. 2019, 221, 635–649. [Google Scholar] [CrossRef]
- Wu, P.; Yin, Z.; Zeng, C.; Duan, S.; Gottsche, F.-M.; Ma, X.; Li, X.; Yang, H.; Shen, H. Spatially Continuous and High-resolution Land Surface Temperature: A Review of Reconstruction and Spatiotemporal Fusion Techniques. arXiv 2019, arXiv:1909.09316. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Tang, B.-H.; Wu, H.; Tang, R. Direct estimation of land-surface diurnal temperature cycle model parameters from MSG–SEVIRI brightness temperatures under clear sky conditions. Remote Sens. Environ. 2014, 150, 34–43. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Privette, J.L.; Coudert, B.; Palecki, M.A.; Demarty, J.; Ottlé, C.; Augustine, J.A. Land Surface Temperature product validation using NOAA’s surface climate observation networks—Scaling methodology for the Visible Infrared Imager Radiometer Suite (VIIRS). Remote Sens. Environ. 2012, 124, 282–298. [Google Scholar] [CrossRef] [Green Version]
- Norman, J. Modeling the complete crop canopy. In Modification of the Aerial Environment of Crops; American Society of Agricultural Engineers: St. Joseph, MI, USA, 1979; pp. 249–280. [Google Scholar]
- Tol, V.D.C.; Verhoef, W.; Timmermans, J.; Verhoef, A.; Su, Z. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 2009, 6, 3109–3129. [Google Scholar]
- Bian, Z.; Cao, B.; Li, H.; Du, Y.; Huang, H.; Xiao, Q.; Liu, Q. Modeling the Distributions of Brightness Temperatures of a Cropland Study Area Using a Model that Combines Fast Radiosity and Energy Budget Methods. Remote Sens. 2018, 10, 736. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Du, Y.; Li, H.; Cao, B.; Huang, H.; Xiao, Q.; Liu, Q. Modeling the Temporal Variability of Thermal Emissions From Row-Planted Scenes Using a Radiosity and Energy Budget Method. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6010–6026. [Google Scholar] [CrossRef]
- Gastellu-Etchegorry, J.; Lauret, N.; Yin, T.; Landier, L.; Kallel, A.; Malenovský, Z.; Bitar, A.A.; Aval, J.; Benhmida, S.; Qi, J.; et al. DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2640–2649. [Google Scholar] [CrossRef]
- Malbéteau, Y.; Merlin, O.; Gascoin, S.; Gastellu, J.-P.; Mattar, C.; Olivera-Guerra, L.; Khabba, S.; Jarlan, L. Normalizing land surface temperature data for elevation and illumination effects in mountainous areas: A case study using ASTER data over a steep-sided valley in Morocco. Remote Sens. Environ. 2017, 189, 25–39. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Roujean, J.L.; Lagouarde, J.P.; Cao, B.; Li, H.; Du, Y.; Liu, Q.; Xiao, Q.; Liu, Q. A semi-empirical approach for modeling the vegetation thermal infrared directional anisotropy of canopies based on using vegetation indices. ISPRS J. Photogramm. Remote Sens. 2020, 160, 136–148. [Google Scholar] [CrossRef]
- Duffour, C.; Lagouarde, J.-P.; Olioso, A.; Demarty, J.; Roujean, J.-L. Driving factors of the directional variability of thermal infrared signal in temperate regions. Remote Sens. Environ. 2016, 177, 248–264. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, H.; Yin, G.; Duan, S.-B. Normalization of the temporal effect on the MODIS land surface temperature product using random forest regression. ISPRS J. Photogramm. Remote Sens. 2019, 152, 109–118. [Google Scholar] [CrossRef]
- Shwetha, H.; Kumar, D.N. Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN. ISPRS J. Photogramm. Remote Sens. 2016, 117, 40–55. [Google Scholar] [CrossRef]
- Gao, F.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Anderson, M.C. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Hutengs, C.; Vohland, M. Downscaling land surface temperatures at regional scales with random forest regression. Remote Sens. Environ. 2016, 178, 127–141. [Google Scholar] [CrossRef]
- Stewart, I.; Krayenhoff, E.; Voogt, J.; Lachapelle, J.; Allen, M.; Broadbent, A. Time Evolution of the Surface Urban Heat Island. Earth’s Future 2021, 9, e2021EF002178. [Google Scholar] [CrossRef]
- Wicki, A.; Parlow, E. Multiple regression analysis for unmixing of surface temperature data in an urban environment. Remote Sens. 2017, 9, 684. [Google Scholar] [CrossRef] [Green Version]
- Duffour, C.; Olioso, A.; Demarty, J.; Van der Tol, C.; Lagouarde, J.-P. An evaluation of SCOPE: A tool to simulate the directional anisotropy of satellite-measured surface temperatures. Remote Sens. Environ. 2015, 158, 362–375. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y. Heihe watershed allied telemetry experimental research (HiWATER): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. J. Geophys. Res. Atmos. 2013, 118, 13140–113157. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Che, T.; Xu, Z.; Ren, Z.; Tian, J. HiWATER: Dataset of Hydrometeorological Observation Network (an Observation System of Meteorological Elements Gradient of Daman Superstation, 2013); National Tibetan Plateau Data Center: Beijing, China, 2016. [Google Scholar]
- Liu, S.; Li, X.; Xu, Z.; Che, T.; Xiao, Q.; Ma, M.; Liu, Q.; Jin, R.; Guo, J.; Wang, L. The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China. Vadose Zone J. 2018, 17, 1–21. [Google Scholar] [CrossRef]
- Yang, P.; Verhoef, W.; van der Tol, C. The mSCOPE model: A simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sens. Environ. 2017, 201, 1–11. [Google Scholar] [CrossRef]
- Verrelst, J.; Rivera, J.P.; van der Tol, C.; Magnani, F.; Mohammed, G.; Moreno, J. Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence? Remote Sens. Environ. 2015, 166, 8–21. [Google Scholar] [CrossRef]
- Bayat, B.; van der Tol, C.; Verhoef, W. Integrating satellite optical and thermal infrared observations for improving daily ecosystem functioning estimations during a drought episode. Remote Sens. Environ. 2018, 209, 375–394. [Google Scholar] [CrossRef]
- Wallace, J.; Verhoef, A. Modelling interactions in mixed-plant communities: Light, water and carbon dioxide. Leaf Dev. Canopy Growth 2000, 204, 250. [Google Scholar]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-Sklearn: Efficient and Robust Automated Machine Learning; Advances in Neural Information Processing Systems; Neural Information Processing Systems: La Jolla, CA, USA, 2015; pp. 113–134. [Google Scholar]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Jozefowicz, R.; Zaremba, W.; Sutskever, I. An empirical exploration of recurrent network architectures. In International Conference on Machine Learning; PMLR: Lille, France, 2015; pp. 2342–2350. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Messina, R.; Louradour, J. Segmentation-free handwritten Chinese text recognition with LSTM-RNN. In Proceedings of the 2015 13th International Conference on Document Analysis and Recognition (ICDAR), Tunis, Tunisia, 23–26 August 2015; pp. 171–175. [Google Scholar]
- Carbune, V.; Gonnet, P.; Deselaers, T.; Rowley, H.A.; Daryin, A.; Calvo, M.; Wang, L.-L.; Keysers, D.; Feuz, S.; Gervais, P. Fast multi-language LSTM-based online handwriting recognition. Int. J. Doc. Anal. Recognit. 2020, 23, 89–102. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; Ferroni, G.; Eyben, F.; Gabrielli, L.; Squartini, S.; Schuller, B. Multi-resolution linear prediction based features for audio onset detection with bidirectional LSTM neural networks. In Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 4–9 May 2014; pp. 2164–2168. [Google Scholar]
- Mahasseni, B.; Lam, M.; Todorovic, S. Unsupervised video summarization with adversarial lstm networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 202–211. [Google Scholar]
- Bin, Y.; Yang, Y.; Shen, F.; Xie, N.; Shen, H.T.; Li, X. Describing video with attention-based bidirectional LSTM. IEEE Trans. Cybern. 2018, 49, 2631–2641. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Vilfan, N.; Tol Cvd Muller, O.; Rascher, U.; Verhoef, W. Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens. Environ. 2016, 186, 596–615. [Google Scholar] [CrossRef]
- Si, Y.; Schlerf, M.; Zurita-Milla, R.; Skidmore, A.; Wang, T. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model. Remote Sens. Environ. 2012, 121, 415–425. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, Q. Inverse Retrieval of Chlorophyll From Reflected Spectra for Assimilating Branches of Drought-TolerantTamarix ramosissima. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1498–1505. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, Q.; Li, H.; Du, Y.; Liu, Q. Investigating the impact of soil moisture on thermal infrared emissivity using ASTER data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 294–298. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, C.; Pan, X.; Li, X.; Zhu, X. Downscaling land surface temperature in an arid area by using multiple remote sensing indices with random forest regression. Remote Sens. 2017, 9, 789. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Li, R.; Yang, Y.; Cao, B.; Bian, Z.; Hu, T.; Du, Y.; Sun, L.; Liu, Q. Temperature-Based and Radiance-Based Validation of the Collection 6 MYD11 and MYD21 Land Surface Temperature Products Over Barren Surfaces in Northwestern China. IEEE Trans. Geosci. Remote Sens. 2021, 59, 1794–1807. [Google Scholar] [CrossRef]
Stations | Latitude (°)/ Longitude (°) | Altitude (m) | Year | DOY | Land Cover |
---|---|---|---|---|---|
M1 | 38.8869/ 100.3541 | 1559 | 2012 | 150–250 | Corn |
M2 | 38.8905/ 100.3763 | 1543 | 2012 | 150–250 | Corn |
M3 | 38.8757/ 100.3507 | 1567 | 2012 | 150–250 | Corn |
M4 | 38.8767/ 100.3652 | 1556 | 2012 | 150–250 | Corn |
M5 | 38.8725/ 100.3765 | 1550 | 2012 | 150–250 | Corn |
M6 | 38.8757/ 100.3957 | 1534 | 2012 | 150–250 | Corn |
M7 | 38.8652/ 100.3663 | 1559 | 2012 | 150–250 | Corn |
M8 | 38.8607/ 100.3785 | 1550 | 2012 | 150–250 | Corn |
M9 | 38.8587/ 100.331 | 1570 | 2012 | 150–250 | Corn |
M10 | 38.8555/ 100.3722 | 1556 | 2012 | 150–250 | Corn |
DM | 38.8555/ 100.3722 | 1556 | 2013–2017 | 150–250 | Corn |
AR | 38.0473/ 100.4643 | 3033 | 2013–2017 | 150–250 | Grass/ alpine meadow |
SDQ | 42.0012/ 101.1374 | 873 | 2013–2017 | 150–250 | Tamarix |
Corn | Grass | Tamarix | |
---|---|---|---|
Canopy structure information | |||
LAI | LAI2200/ MCD15A3H | MCD15A3H | MCD15A3H |
Canopy Height | 0–2.2 | 0.15 | 1.5 |
LADFa | −0.35 | −0.35 | −0.35 |
LADFb | −0.15 | −0.15 | −0.15 |
Component spectral information | |||
Leaf VNIR spectral | FLUSPECT model | ||
Leaf structure parameter (Ns) | 1.518 | 1.70 | 1.80 |
Chlorophyll a and b content (Cab) | 58 | 45 | 100 |
Dry matter content (Cm) | 0.0036 | 0.0030 | 0.0070 |
Equivalent water thickness (Cw) | 0.0131 | 0.0150 | 0.0038 |
Soil VNIR spectral | ASTER spectral library | ||
Leaf broad emissivity | 0.975 | 0.975 | 0.975 |
Soil broad emissivity | 0.955 | 0.955 | 0.955 |
Component biochemical information | |||
Vegetation Type | C4 | C3 | C3 |
Maximum carboxylation capacity (Vcmo) | 35 | 80 | 80 |
Ball–Berry slope (m) | 4 | 9 | 9 |
Respiration as fraction of Vcmo (Rdparam) | 0.025 | 0.015 | 0.015 |
Slope of cold temperature decline (slti) | 0.2 | 0.2 | 0.2 |
Slope of high temperature decline (shti) | 0.3 | 0.3 | 0.3 |
Temperature below which photosynthesis is lower than half that predicted by Q10 (Thl) | 288 | 281 | 278 |
Temperature above which photosynthesis is lower than half that predicted by Q10 (Thh) | 313 | 308 | 313 |
Temperature at which respiration is lower than half that predicted by Q10 (Trdm) | 328 | 328 | 328 |
Soil surface resistance (rss) | using soil water content [26] | ||
Surface meteorological information | |||
Air temperature (Ta) | Meteorological station | ||
Air humidity (RH) | |||
Wind speed (WS) | |||
Downward shortwave radiation (DS) | |||
Downward longwave radiation (DL) |
Unit | DM | AR | SDQ | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Vcmo | 20 | 35 | 50 | 50 | 80 | 110 | 50 | 80 | 110 | |
RMSE | K | 2.03 | 1.83 | 1.85 | 2.16 | 2.25 | 2.06 | 2.07 | 2.12 | 2.24 |
Bias | K | 0.22 | −0.29 | −0.35 | 0.52 | −0.32 | 0.06 | 1.05 | 0.75 | 0.53 |
- | 0.91 | 0.92 | 0.92 | 0.94 | 0.92 | 0.93 | 0.97 | 0.97 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, Z.; Lu, Y.; Du, Y.; Zhao, W.; Cao, B.; Hu, T.; Li, R.; Li, H.; Xiao, Q.; Liu, Q. Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series. Remote Sens. 2022, 14, 3385. https://doi.org/10.3390/rs14143385
Bian Z, Lu Y, Du Y, Zhao W, Cao B, Hu T, Li R, Li H, Xiao Q, Liu Q. Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series. Remote Sensing. 2022; 14(14):3385. https://doi.org/10.3390/rs14143385
Chicago/Turabian StyleBian, Zunjian, Yifan Lu, Yongming Du, Wei Zhao, Biao Cao, Tian Hu, Ruibo Li, Hua Li, Qing Xiao, and Qinhuo Liu. 2022. "Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series" Remote Sensing 14, no. 14: 3385. https://doi.org/10.3390/rs14143385
APA StyleBian, Z., Lu, Y., Du, Y., Zhao, W., Cao, B., Hu, T., Li, R., Li, H., Xiao, Q., & Liu, Q. (2022). Comparison between Physical and Empirical Methods for Simulating Surface Brightness Temperature Time Series. Remote Sensing, 14(14), 3385. https://doi.org/10.3390/rs14143385