The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Observation Data
2.2.2. Remote Sensing Product
2.2.3. Meteorological Data
2.3. Description of CLM
2.3.1. Establishment and Survival
2.3.2. Seasonal–Deciduous Phenology
2.4. Experimental Design
2.5. Analytical Method
3. Evaluation of Remote Sensing Products and GPP Simulations
4. Response of Vegetation to Regional Climate Change on the TP
4.1. Climatology and Trend of Temperature, Precipitation, and GPP
4.2. Response of GPP to Climate Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; You, Q.L.; Chen, C.C.; Li, X. Flash droughts in a typical humid and subtropical basin: A case study in the Gan River Basin, China. J. Hydrol. 2017, 551, 162–176. [Google Scholar] [CrossRef]
- Sun, Y.L.; Shan, M.; Pei, X.R.; Zhang, X.K.; Yang, Y.L. Assessment of the impacts of climate change and human activities on vegetation cover change in the Haihe River Basin, China. Phys. Chem. Earth Parts A/B/C 2020, 115, 102834. [Google Scholar] [CrossRef]
- Ni, J.; Herzschuh, U. Simulating biome distribution on the tibetan plateau using a modified global vegetation model. Arct. Antarct. Alp. Res. 2011, 43, 429–441. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.Y.; Zhang, S.F.; Zhai, X.Y.; Xia, J. Runoff variation in the three rivers source region and its response to climate change. Acta Geogr. Sin. 2012, 67, 71–82. [Google Scholar] [CrossRef]
- Kang, S.C.; Li, J.J.; Yao, T.D.; Yan, Y.P. A study of the climate variation in the tibetan plateau during the last 50 years. J. Glaciolgy Geocryol. 1998, 20, 381–387. [Google Scholar]
- Zhong, L.; Ma, Y.M.; Salama, M.S.; Su, Z.B. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Chang. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulation in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Niu, T.; Chen, L.X.; Zhou, Z.J. The characteristic of climate change over the Tibetan Plateau in the last 40 years and the detection of climatic jumps. Adv. Atmos. Sci. 2004, 21, 193–203. [Google Scholar] [CrossRef]
- Meng, X.; Li, R.; Luan, L.; Lyu, S.; Zhang, T.; Ao, Y.; Han, B.; Zhao, L.; Ma, Y. Detecting hydrological consistency between soil moisture and precipitation and changes of soil moisture in summer over the Tibetan Plateau. Clim. Dyn. 2017, 51, 4157–4168. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.Y.; Ma, J.W.; Zheng, W.J.; Zeng, J.Y. Comparison of soil moisture in gldas model simulations and in-situ observations over the Tibetan Plateau. J. Geophys. Res. Atmos. 2016, 121, 2658–2678. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.Y.; Yang, K.; Qin, J.; Zhao, L.; Tang, W.J.; Han, M.L. Evaluation of amsr-e retrievals and gldas simulations against observations of a soil moisture network on the central Tibetan Plateau. J. Geophys. Res. Atmos. 2013, 118, 4466–4475. [Google Scholar] [CrossRef]
- Shang, L.Y.; Zhang, Y.; Lyu, S.H.; Wang, S.Y. Seasonal and inter-annual variations in carbon dioxide exchange over an alpine grassland in the eastern Qinghai-Tibetan Plateau. PLoS ONE 2016, 11, e0166837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, Y.; Xu, M.; Xi, Y.; Zhu, J.; Zhang, X.; Wang, Y.; Li, Y.; Shi, P.; Yu, G.; et al. Ecosystem response more than climate variability drivers the inter-annual variability of carbon fluxes in three Chinese grasslands. Agric. For. Meteorol. 2016, 225, 48–56. [Google Scholar] [CrossRef]
- Song, M.H.; Zhou, C.P.; Ouyang, H. Simulated distribution of vegetation types in response to climate change on the Tibetan Plateau. J. Veg. Sci. 2005, 16, 341–350. [Google Scholar] [CrossRef]
- Li, Y.; Piao, S.; Li, L.Z.; Chen, A.; Wang, X.; Ciais, P.; Zhou, L. Divergent hydrological response to large-scale afforestation and vegetation greening in China. Sci. Adv. 2018, 4, eaar4182. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Fang, J. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Niu, G.Y.; Yang, Z.L.; Mitchell, K.E.; Chen, F.; Ek, M.B.; Barlage, M.; Xia, Y. The community noah land surface model with multiparameterization options (noah-mp): 1. model description and evaluation with local: Cale measurements. J. Geophys. Res. Atmos. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.G.; Li, N.; Su, H.X.; Sang, W.G. Simulation and analysis on future carbon balance of three deciduous forests in Beijing mountain area, warm temperate zone of China. Chin. J. Plant Ecol. 2009, 33, 516–534. [Google Scholar]
- Zeng, X.D.; Fang, L.; Song, X. Development of the IAP dynamic global vegetation model. Adv. Atmos. Sci. 2014, 31, 505–514. [Google Scholar] [CrossRef]
- Song, X.; Zeng, X.D.; Zhu, J.W. Evaluating the Tree Population Density and Its Impacts in CLM-DGVM. Adv. Atmos. Sci. 2013, 30, 116–124. [Google Scholar] [CrossRef]
- Murray-Tortarolo, G.; Anav, A.; Friedlingstein, P.; Sitch, S.; Piao, S.; Zhu, Z.; Zeng, N. Evaluation of Land Surface Models in Reproducing Satellite-Derived LAI over the High-Latitude Northern Hemisphere. Part I: Uncoupled DGVMs. Remote Sens. 2013, 5, 4819–4838. [Google Scholar] [CrossRef] [Green Version]
- Deng, M.; Meng, X.; Lu, Y.; Li, Z.; Zhao, L.; Hu, Z.; Li, Q. Impact and Sensitivity Analysis of Soil Water and Heat Transfer Parameterizations in Community Land Surface Model on the Tibetan Plateau. J. Adv. Modeling Earth Syst. 2021, 13, e2021MS002670. [Google Scholar] [CrossRef]
- Luo, S.Q.; Fang, X.W.; Lyu, S.H.; Zhang, Y.; Chen, B.L. Improving CLM4.5 simulations of land-atmosphere exchange during freeze-thaw processes on the Tibetan Plateau. J. Meteorol. Res. 2017, 31, 916–930. [Google Scholar] [CrossRef]
- Yu, G.R.; Wen, X.F.; Sun, X.M.; Tanner, B.D.; Lee, X.; Chen, J.Y. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agric. For. Meteorol. 2006, 137, 125–137. [Google Scholar] [CrossRef]
- Wei, D.; Qi, Y.; Ma, Y.; Wang, X.; Ma, W.; Gao, T.; Wang, X. Plant uptake of CO2 outpaces losses from permafrost and plant respiration on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2021, 118, e2015283118. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.M.; Chen, J.; Davis, K.; Verma, S.B. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Cai, W.; Xia, J.; Chen, J.; Liu, S.; Dong, W.; Wohlfahrt, G. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 2014, 192, 108–120. [Google Scholar] [CrossRef]
- Bastos, A.; Fu, Z.; Ciais, P.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Zaehle, S. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190507. [Google Scholar] [CrossRef]
- Jung, M.; Koirala, S.; Weber, U.; Ichii, K.; Gans, F.; Camps-Valls, G.; Reichstein, M. The FLUXCOM Ensemble of global land-atmosphere energy fluxes. Sci. Data 2019, 6, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tramontana, G.; Jung, M.; Schwalm, C.R.; Ichii, K.; Camps-Valls, G.; Ráduly, B.; Papale, D. Predicting carbon dioxide and energy fluxes across global fluxnet sites with regression algorithms. Biogeosciences 2016, 13, 4291–4313. [Google Scholar] [CrossRef] [Green Version]
- Badgley, G.; Field, C.B.; Berry, J.A. Canopy near-infrared reflectance and terrestrial photosynthesis. Sci. Adv. 2017, 3, e1602244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Joiner, J.; Gentine, P.; Zhou, S. Reduced solar-induced chlorophyll fluorescence from GOME-2 during Amazon drought caused by dataset artifacts. Glob. Chang. Biol. 2018, 24, 2229–2230. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhang, Y.; Ju, W.; Qiu, B.; Zhang, Z. Tracking the seasonal and inter-annual variations of global gross primary production during last four decades using satellite near-infrared reflectance data-sciencedirect. Sci. Total Environ. 2021, 755, 142569. [Google Scholar] [CrossRef]
- Joiner, J.; Yoshida, Y. Global MODIS and FLUXNET-Derived Daily Gross Primary Production, V2; ORNL DAAC: Oak Ridge, TN, USA, 2021.
- Martens, B.; Miralles, D.G.; Lievens, H.; Van Der Schalie, R.; De Jeu, R.A.; Fernández-Prieto, D.; Verhoest, N.E. Gleam v3: Satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev. 2017, 10, 1903–1925. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.F.; Zhu, J.; Xu, Y. Establishment and assessment of the grid precipitation datasets in China for Recent 50 years. J. Meteorol. Sci. 2014, 34, 414–420. [Google Scholar]
- Foley, J.A.; Levis, S.; Prentice, I.C.; Pollard, D.; Thompson, S.L. Coupling dynamic models of climate and vegetation. Glob. Chang. Biol. 1998, 4, 561–579. [Google Scholar] [CrossRef] [Green Version]
- Sitch, S.; Smith, B.; Prentice, I.C.; Arneth, A.; Bondeau, A.; Cramer, W.; Venevsky, S. Evaluation of ecosystem dynamics, plant geography andterrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Chang. Biol. 2003, 9, 161–185. [Google Scholar] [CrossRef]
- Bonan, G.B.; Levis, S.; Sitch, S.; Vertenstein, M.; Oleson, K.W. A dynamic global vegetation model for use with climate models: Concepts and description of simulated vegetation dynamics. Glob. Chang. Biol. 2003, 9, 1543–1566. [Google Scholar] [CrossRef] [Green Version]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetationresponses to interannual climatic variability. Glob. Biogeochem. Cycle 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Gllewski, P.; Nawalany, M. Inter-Comparison of Rain-Gauge, Radar, and Satellite (IMERG GPM) Precipitation Estimates Performance for Rainfall-Runoff Modeling in a Mountainous Catchment in Poland. Water 2018, 10, 1665. [Google Scholar] [CrossRef] [Green Version]
- Fang, G.; Yuan, Y.; Gao, Y.; Huang, X.; Guo, Y. Assessing the Effects of Urbanization on Flood Events with Urban Agglomeration Polders Type of Flood Control Pattern Using the HEC-HMS Model in the Qinhuai River Basin, China. Water 2018, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Gilewski, P. Impact of the Grid Resolution and Deterministic Interpolation of Precipitation on Rainfall-Runoff Modeling in a Sparsely Gauged Mountainous Catchment. Water 2021, 13, 230. [Google Scholar] [CrossRef]
- Ahmad, A.; Zhang, Y.; Nichols, S. Review and evaluation of remote sensing methods for soil-moisture estimation. J. Photonics Energy 2011, 2, 028001. [Google Scholar]
Site | Lat (°N) | Lon (°E) | Elevation (m) | Vegetation Type | Years |
---|---|---|---|---|---|
Maqu | 33.9 | 102.17 | 3471 | Alpine meadow | 2010–2016 |
Dangx | 30.85 | 91.08 | 4250 | Alpine meadow | 2007–2010 |
Haibei | 37.62 | 101.3 | 3148 | Alpine meadow | 2003–2007 |
Product | Time Period | Temporal Resolution | Spatial Resolution |
---|---|---|---|
NIRv | 1982–2016 | 8 d | 0.05° × 0.05° |
GLASS | 1982–2016 | 8 d | 0.05° × 0.05° |
FLUXCOM | 2001–2016 | 8 d | 0.05° × 0.05° |
FLUXCOM1 | 1982–2013 | daily | 0.5° × 0.5° |
MODIS | 2000–2016 | daily | 0.05° × 0.05° |
MEaSURES | 1982–2013 | yearly | 0.05° × 0.05° |
PFT | Survival | Establishment | |
---|---|---|---|
Tropical broadleaf evergreen tree (BET) | 15.5 | No limit | 0 |
Tropical broadleaf deciduous tree (BDT) | 15.5 | No limit | 0 |
Temperate needleleaf evergreen tree (NET) | −2.0 | 22.0 | 900 |
Temperate broadleaf evergreen tree (BET) | 3.0 | 18.8 | 1200 |
Temperate broadleaf deciduous tree (BDT) | −17.0 | 15.5 | 1200 |
Boreal needleleaf evergreen tree (NET) | −32.5 | −2.0 | 600 |
Boreal deciduous | No limit | −2.0 | 350 |
C4 | 15.5 | No limit | 0 |
C3 | −17.0 | 15.5 | 0 |
C3 arctic | No limit | −17.0 | 0 |
Experiment | Soil Property Data | Parameterization | Model |
---|---|---|---|
BGCDV_CTL | BNU soil property data | Balland and Arp; virtual temperature; establishment and survival | CLM5.0-BGCDV |
BGCDV_NEW | BNU soil property data | Balland and Arp; virtual temperature; establishment and survival; seasonal–deciduous phenology | CLM5.0-BGCDV |
Sites | PBIAS (%) | RMSE (gC·m−2·d−1) | Corr | RSD | |||||
---|---|---|---|---|---|---|---|---|---|
CTL | NEW | CTL | NEW | CTL | NEW | CTL | NEW | ||
Dangx | GPP | 20.9 | 16.6 | 0.321 | 0.261 | 0.922 | 0.952 | 1.100 | 1.121 |
NEE | −71.1 | −87.8 | 0.316 | 0.299 | 0.572 | 0.640 | 0.676 | 0.745 | |
Re | 0.5 | 2.7 | 0.323 | 0.300 | 0.899 | 0.915 | 1.676 | 1.636 | |
Haibei | GPP | −6.9 | −5.5 | 1.227 | 1.127 | 0.863 | 0.882 | 0.780 | 0.892 |
NEE | −45.8 | −40.7 | 0.917 | 0.882 | 0.571 | 0.615 | 0.480 | 0.716 | |
Re | −10.9 | −8.6 | 0.580 | 0.516 | 0.927 | 0.945 | 1.054 | 1.085 | |
Maqu | GPP | 18.2 | 11.3 | 1.401 | 1.028 | 0.903 | 0.956 | 0.946 | 1.087 |
NEE | −82.0 | −79.7 | 1.114 | 0.877 | 0.634 | 0.814 | 0.691 | 0.924 | |
Re | 28.0 | 26.2 | 1.008 | 0.963 | 0.936 | 0.954 | 1.238 | 1.288 |
PBIAS (%) | RMSE (gC·m−2·d−1) | Corr | |||||||
---|---|---|---|---|---|---|---|---|---|
Experiment | Dangx | Haibei | Maqu | Dangx | Haibei | Maqu | Dangx | Haibei | Maqu |
NEW | 16.4 | −11.0 | 11.3 | 0.322 | 1.107 | 1.084 | 0.940 | 0.890 | 0.947 |
GLASS | 151.4 | 45.9 | 23.1 | 1.587 | 1.723 | 1.239 | 0.740 | 0.948 | 0.968 |
FLUXCOM | 43.6 | 44.1 | 16.8 | 0.520 | 1.582 | 1.472 | 0.779 | 0.881 | 0.923 |
NIRv | −31.4 | 118.7 | 89.6 | 0.659 | 4.184 | 3.554 | 0.637 | 0.931 | 0.959 |
MODIS | 66.7 | 45.7 | 5.2 | 0.569 | 1.727 | 0.905 | 0.812 | 0.947 | 0.957 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, M.; Meng, X.; Lu, Y.; Li, Z.; Zhao, L.; Niu, H.; Chen, H.; Shang, L.; Wang, S.; Sheng, D. The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sens. 2022, 14, 3337. https://doi.org/10.3390/rs14143337
Deng M, Meng X, Lu Y, Li Z, Zhao L, Niu H, Chen H, Shang L, Wang S, Sheng D. The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sensing. 2022; 14(14):3337. https://doi.org/10.3390/rs14143337
Chicago/Turabian StyleDeng, Mingshan, Xianhong Meng, Yaqiong Lu, Zhaoguo Li, Lin Zhao, Hanlin Niu, Hao Chen, Lunyu Shang, Shaoying Wang, and Danrui Sheng. 2022. "The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model" Remote Sensing 14, no. 14: 3337. https://doi.org/10.3390/rs14143337
APA StyleDeng, M., Meng, X., Lu, Y., Li, Z., Zhao, L., Niu, H., Chen, H., Shang, L., Wang, S., & Sheng, D. (2022). The Response of Vegetation to Regional Climate Change on the Tibetan Plateau Based on Remote Sensing Products and the Dynamic Global Vegetation Model. Remote Sensing, 14(14), 3337. https://doi.org/10.3390/rs14143337