Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring
Abstract
:1. Introduction
2. Materials and Method
2.1. Testing Area
2.2. Dataset
2.3. Data Processing
2.3.1. Relative Co-Registration Test
2.3.2. Atmospheric Correction and Masking
2.3.3. Spectral Consistency Assessment
2.3.4. Combined Landsat-8/OLI and Sentinel-2/MSI Use for Coastal/Inland Water Applications
- i.
- Example 1: TSS time series analysis
- ii.
- Example 2: Floating algae area comparison
- iii.
- Example 3: Tracking of coastal floating algae
3. Results
3.1. Geometric Assessment
3.2. Spectral Consistency Assessment
3.2.1. Top-of-Atmosphere Reflectance (
3.2.2. Rayleigh-Corrected Reflectance (
3.2.3. Water-Leaving Remote-Sensing Reflectance (
3.3. Spectral Band Adjustment
3.4. Example 1: Time Series Analysis
3.5. Example 2: Floating Algae Area Comparison
3.6. Example 3: Tracking of Coastal Floating Algae
4. Discussion and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Paerl, H.W.; Paul, V.J. Climate change: Links to global expansion of harmful cyanobacteria. Water Res. 2012, 46, 1349–1363. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef] [Green Version]
- Xie, P. Reading about the Histories of Cyanobacteria, Eutrophication and Geological Evolution in Lake Chaohu; Science Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Mackey, K.R.M.; Kavanaugh, M.; Wang, F.; Chen, Y.; Liu, F.; Glover, D.M.; Chien, C.-T.; Paytan, A. Atmospheric and Fluvial Nutrients Fuel Algal Blooms in the East China Sea. Front. Mar. Sci. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Li, Y.S.; Liu, Z.; Yin, K.; Li, Z.; Wai, O.W.; King, B. Integration of multi-source data for water quality classification in the Pearl River estuary and its adjacent coastal waters of Hong Kong. Cont. Shelf Res. 2004, 24, 1827–1843. [Google Scholar] [CrossRef]
- Doña, C.; Chang, N.-B.; Caselles, V.; Sánchez, J.M.; Camacho, A.; Delegido, J.; Vannah, B.W. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J. Environ. Manag. 2015, 151, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Tyler, A.N.; Hunter, P.D.; Spyrakos, E.; Groom, S.; Constantinescu, A.M.; Kitchen, J. Developments in Earth observation for the assessment and monitoring of inland, transitional, coastal and shelf-sea waters. Sci. Total Environ. 2016, 572, 1307–1321. [Google Scholar] [CrossRef] [Green Version]
- Pahlevan, N.; Sarkar, S.; Franz, B.; Balasubramanian, S.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Pahlevan, N.; Chittimalli, S.K.; Balasubramanian, S.V.; Vellucci, V. Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems. Remote Sens. Environ. 2019, 220, 19–29. [Google Scholar] [CrossRef]
- Pahlevan, N.; Lee, Z.; Wei, J.; Schaaf, C.; Schott, J.R.; Berk, A. On-orbit radiometric characterization of OLI (Landsat-8) for applications in aquatic remote sensing. Remote Sens. Environ. 2014, 154, 272–284. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI Images to Retrieve Suspended Particulate Matter Concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, S.; Wong, M.S. Measurement of coastal water quality indicators using Sentinel-2; An evaluation over Hong Kong and the Pearl River Estuary. In Proceedings of the IGARSS 2019–2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 8249–8252. [Google Scholar]
- Zorrilla, N.A.; Vantrepotte, V.; Gensac, E.; Huybrechts, N.; Gardel, A. The Advantages of Landsat 8-OLI-Derived Suspended Particulate Matter Maps for Monitoring the Subtidal Extension of Amazonian Coastal Mud Banks (French Guiana). Remote Sens. 2018, 10, 1733. [Google Scholar] [CrossRef] [Green Version]
- Page, B.P.; Olmanson, L.G.; Mishra, D.R. A harmonized image processing workflow using Sentinel-2/MSI and Landsat-8/OLI for mapping water clarity in optically variable lake systems. Remote Sens. Environ. 2019, 231, 111284. [Google Scholar] [CrossRef]
- Gons, H.J.; Rijkeboer, M.; Ruddick, K.G. A chlorophyll-retrieval algorithm for satellite imagery (Medium Resolution Imaging Spectrometer) of inland and coastal waters. J. Plankton Res. 2002, 24, 947–951. [Google Scholar] [CrossRef] [Green Version]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Satellite Estimation of Chlorophyll-$a$ Concentration Using the Red and NIR Bands of MERIS—The Azov Sea Case Study. IEEE Geosci. Remote Sens. Lett. 2009, 6, 845–849. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Borstad, G.; Brown, L. The importance of a band at 709 nm for interpreting water-leaving spectral radiance. Can. J. Remote Sens. 2008, 34, 287–295. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Qiu, Z.; Xiao, C.; Perrie, W.; Sun, D.; Wang, S.; Shen, H.; Yang, D.; He, Y. Using L andsat 8 data to estimate suspended particulate matter in the Y ellow R iver estuary. J. Geophys. Res. Oceans 2017, 122, 276–290. [Google Scholar] [CrossRef]
- Gernez, P.; Doxaran, D.; Barillé, L. Shellfish aquaculture from space: Potential of Sentinel2 to monitor tide-driven changes in turbidity, chlorophyll concentration and oyster physiological response at the scale of an oyster farm. Front. Mar. Sci. 2017, 4, 137. [Google Scholar] [CrossRef] [Green Version]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef] [Green Version]
- Caballero, I.; Fernández, R.; Escalante, O.M.; Mamán, L.; Navarro, G. New capabilities of Sentinel-2A/B satellites combined with in situ data for monitoring small harmful algal blooms in complex coastal waters. Sci. Rep. 2020, 10, 8743. [Google Scholar] [CrossRef] [PubMed]
- Dörnhöfer, K.; Göritz, A.; Gege, P.; Pflug, B.; Oppelt, N. Water Constituents and Water Depth Retrieval from Sentinel-2A—A First Evaluation in an Oligotrophic Lake. Remote Sens. 2016, 8, 941. [Google Scholar] [CrossRef] [Green Version]
- Bolognesi, S.F.; Pasolli, E.; Belfiore, O.; De Michele, C.; D’Urso, G. Harmonized Landsat 8 and Sentinel-2 Time Series Data to Detect Irrigated Areas: An Application in Southern Italy. Remote Sens. 2020, 12, 1275. [Google Scholar] [CrossRef] [Green Version]
- Nie, Z.; Chan, K.K.Y.; Xu, B. Preliminary Evaluation of the Consistency of Landsat 8 and Sentinel-2 Time Series Products in An Urban Area—An Example in Beijing, China. Remote Sens. 2019, 11, 2957. [Google Scholar] [CrossRef] [Green Version]
- Lima, T.A.; Beuchle, R.; Langner, A.; Grecchi, R.C.; Griess, V.C.; Achard, F. Comparing Sentinel-2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. Remote Sens. 2019, 11, 961. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Vermote, E.; Roger, J.-C.; Franch, B. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale. AIMS Geosci. 2017, 3, 163–186. [Google Scholar] [CrossRef]
- Lessio, A.; Fissore, V.; Borgogno-Mondino, E. Preliminary Tests and Results Concerning Integration of Sentinel-2 and Landsat-8 OLI for Crop Monitoring. J. Imaging 2017, 3, 49. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Franz, B.A.; Werdell, P.J.; Meister, G.; Bailey, S.; Eplee, R.E., Jr.; Feldman, G.C.; Kwiatkowska, E.J.; McClain, C.R.; Patt, F.S.; Thomas, D. The continuity of ocean color measurements from SeaWiFS to MODIS. In Earth Observing Systems X; SPIE: Bellingham, DC, USA, 2005; Volume 5882, p. 58820W. [Google Scholar] [CrossRef]
- Morel, A.; Huot, Y.; Gentili, B.; Werdell, P.J.; Hooker, S.B.; Franz, B.A. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 2007, 111, 69–88. [Google Scholar] [CrossRef]
- Müller, D.; Krasemann, H.; Brewin, R.J.; Brockmann, C.; Deschamps, P.-Y.; Doerffer, R.; Fomferra, N.; Franz, B.A.; Grant, M.G.; Groom, S.B.; et al. The Ocean Colour Climate Change Initiative: II. Spatial and temporal homogeneity of satellite data retrieval due to systematic effects in atmospheric correction processors. Remote Sens. Environ. 2015, 162, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Mandanici, E.; Bitelli, G. Preliminary Comparison of Sentinel-2 and Landsat 8 Imagery for a Combined Use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Braun, M.; Herold, M. Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany). In Remote Sensing for Environmental Monitoring, gis Applications, and Geology iii; SPIE: Bellingham, DC, USA, 2004; Volume 5239, pp. 274–284. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Kalinowski, A.A.; Oliver, S. ASTER Processing Manual, Remote Sensing Applications, Geoscience Australia, Internal Report. Commonwealth of Australia (Geoscience Australia) Australia 01/01/2004. 2004. Available online: https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/67957 (accessed on 1 February 2021).
- Runge, A.; Grosse, G. Comparing Spectral Characteristics of Landsat-8 and Sentinel-2 Same-Day Data for Arctic-Boreal Regions. Remote Sens. 2019, 11, 1730. [Google Scholar] [CrossRef] [Green Version]
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Bernstein, L.S.; Muratov, L.; Lee, J.; Fox, M.; Adler-Golden, S.M.; Chetwynd, J.H., Jr.; Hoke, M.L.; et al. MODTRAN5: 2006 update. In Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII; International Society for Optics and Photonics: Bellingham, DC, USA, 2006; Volume 6233, p. 62331F. [Google Scholar]
- Pan, D.; Ma, R. Several key problems of lake water quality remote sensing. J. Lake Sci. 2008, 20, 139–144. [Google Scholar]
- MEP. Report on the State of the Enviornment in China. Minister of Environmental Protection the People’s Republic of China. 2014. Available online: http://english.mee.gov.cn/Resources/Reports/soe/soe2011/201606/P020160601591756378883.pdf (accessed on 1 February 2021).
- FAO. Yearbook 2012, Fisheries and Aquaculture Statistics; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Wang, X.-Y.; Li, T.-J.; Zhu, J.-H. Analyzing Surface Water Optical Properties of Qinghai Lake. Ocean. Technol. 2005, 24, 54. [Google Scholar]
- NASA. Landsat 8 Overview. 2013. Available online: https://landsat.gsfc.nasa.gov/landsat-data-continuity-mission/ (accessed on 10 February 2021).
- ESA. Sentinel Online: Sentinel-2 Overview. 2020. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2/overview (accessed on 10 February 2021).
- RBINS. ACOLITE Python User Manual (QV-September 25, 2018). 2018. Available online: https://odnature.naturalsciences.be/downloads/remsem/acolite/acolite_manual_20190326.0.pdf (accessed on 10 March 2020).
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Acolite for Sentinel-2: Aquatic applications of MSI imagery. In Proceedings of the 2016 ESA Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13. [Google Scholar]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 remote sensing reflectance (Rrs) products: Evaluations, intercomparisons, and enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. Cloud Masking for Ocean Color Data Processing in the Coastal Regions. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3196–3105. [Google Scholar] [CrossRef]
- Masek, J.G.; Claverie, M.; Ju, J.; Vermote, E.; Justice, C.O. A Harmonized Landsat-Sentinel-2 Surface Reflectance product: A resource for Agricultural Monitoring. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Nechad, B.; Ruddick, K.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Ilori, C.O.; Pahlevan, N.; Knudby, A. Analyzing Performances of Different Atmospheric Correction Techniques for Landsat 8: Application for Coastal Remote Sensing. Remote Sens. 2019, 11, 469. [Google Scholar] [CrossRef] [Green Version]
- Martins, V.S.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.D.L.; Novo, E.M.L.D.M. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.E.; Abbas, S.; Tang, D.; Lee, K.-H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote. Sens. 2019, 11, 617. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Li, J.; Tian, L.; Song, Q.; Wei, A. Coupled approach for radiometric calibration and parameter retrieval to improve SPM estimations in turbid inland/coastal waters. Opt. Express 2020, 28, 5567–5586. [Google Scholar] [CrossRef]
- Pahlevan, N.; Roger, J.-C.; Ahmad, Z. Revisiting short-wave-infrared (SWIR) bands for atmospheric correction in coastal waters. Opt. Express 2017, 25, 6015–6035. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; He, W.; Liu, W.-X.; Qin, N.; Ouyang, H.-L.; Wang, Q.-M.; Kong, X.-Z.; He, Q.-S.; Yang, C.; Yang, B.; et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Duan, H.T.; Ma, R.H.; Xu, X.F.; Kong, F.X.; Zhang, S.X.; Kong, W.J.; Hao, J.Y.; Shang, L.L. Two-Decade Reconstruction of Algal Blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Zhang, M.; Duan, H.; Loiselle, S.; Xu, J. Fourteen-year record (2000–2013) of the spatial and temporal dynamics of floating algae blooms in Lake Chaohu, observed from time series of MODIS images. Remote Sens. 2015, 7, 10523–10542. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Li, W.; Zhu, G.; Zhang, Y.; Wu, T.; Gao, G. Cyanobacterial bloom management through integrated monitoring and forecasting in large shallow eutrophic Lake Taihu (China). J. Hazard. Mater. 2015, 287, 356–363. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, Y.; Hu, M.; Chu, Q.; Ma, R. MODIS-Satellite-Based Analysis of Long-Term Temporal-Spatial Dynamics and Drivers of Algal Blooms in a Plateau Lake Dianchi, China. Remote Sens. 2019, 11, 2582. [Google Scholar] [CrossRef] [Green Version]
- Shang, R.; Zhu, Z. Harmonizing Landsat 8 and Sentinel-2: A time-series-based reflectance adjustment approach. Remote Sens. Environ. 2019, 235, 111439. [Google Scholar] [CrossRef]
- Ciancia, E.; Campanelli, A.; Lacafva, T.; Palombo, A.; Pascucci, S.; Pergola, N.; Pignatti, S.; Satriano, V.; Tramutoli, V. Modeling and Multi-Temporal Characterization of Total Suspended Matter by the Combined Use of Sentinel 2-MSI and Landsat 8-OLI Data: The Pertusillo Lake Case Study (Italy). Remote Sens. 2020, 12, 2147. [Google Scholar] [CrossRef]
- Peeters, E.T.; Franken, R.J.; Jeppesen, E.; Moss, B.; Bécares, E.; Hansson, L.-A.; Romo, S.; Kairesalo, T.; Gross, E.M.; van Donk, E.; et al. Assessing ecological quality of shallow lakes: Does knowledge of transparency suffice? Basic Appl. Ecol. 2009, 10, 89–96. [Google Scholar] [CrossRef] [Green Version]
Sentinel-2 MSI-A | Sentinel-2 MSI-B | Landsat-8 OLI | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Central wavelength (nm) of the band | Resolution (m) | Bandwidth (nm) | Central Wavelength (nm) of the Band | Resolution (m) | Bandwidth (nm) | Signal-to-Noise Ratio | Central Wavelength (nm) of the Band | Resolution (m) | Bandwidth (nm) | Signal-to-Noise Ratio |
B1: 443.9 | 60 | 27 | B1: 442.3 | 60 | 45 | 439 | B1: 442.96 | 30 | 15.98 | 284 |
B2: 496.6 | 10 | 98 | B2: 492.1 | 10 | 98 | 102 | B2: 482.04 | 30 | 60.04 | 321 |
B3: 560 | 10 | 45 | B3: 559 | 10 | 46 | 79 | B3: 561.41 | 30 | 57.33 | 223 |
B4: 664.5 | 10 | 38 | B4: 665 | 10 | 39 | 45 | B4: 654.59 | 30 | 37.47 | 113 |
B8A: 864.8 | 20 | 33 | B8A: 864 | 20 | 32 | 16 | B5: 864.67 | 30 | 28.25 | 45 |
B10: 1373.5 | 60 | 75 | B10: 1376.9 | 60 | 76 | – | B9:1373.43 | 30 | 20.39 | – |
B11: 1613.5 | 20 | 143 | B11: 1610.4 | 20 | 141 | 2.8 | B6: 1608.86 | 30 | 84.72 | 10.1 |
B12: 2202.4 | 20 | 242 | B12: 2185.7 | 20 | 238 | 2.2 | B7: 2200.73 | 30 | 186.66 | 7.4 |
Radiometric resolution: 12-bit | Radiometric resolution: 12-bit | |||||||||
Temporal Resolution: 5 days | Temporal Resolution: 16 Days |
OLI vs. MSI | ||||
---|---|---|---|---|
(m) | (m) | (m) | RMSE(m) | |
12.3 | 5.5 | 14.3 | 12.6 | 23.5 |
MSI-A vs. OLI (N = 4409) | |||||||
---|---|---|---|---|---|---|---|
Central Wavelength, MSI-A–OLI (nm) | 443–443 | 497–482 | 560–561 | 665–655 | 865–865 | 1613–1608 | 2200–2200 |
Slope | 0.9734 | 1.0235 | 1.0301 | 1.0003 | 0.9632 | 0.9257 | 0.8104 |
Intercept | 0.0018 | −0.0084 | −0.0027 | −0.0042 | 0.0016 | 0.001 | 0.0018 |
R2 | 0.97 | 0.97 | 0.99 | 0.98 | 0.97 | 0.91 | 0.80 |
RMSE | 0.0041 | 0.0066 | 0.0035 | 0.0058 | 0.0035 | 0.0016 | 0.0017 |
MD | 0.0040 | 0.0040 | −0.0006 | 0.0075 | 0.0008 | −0.0003 | −0.0009 |
MAPE (%) | 2.1 | 4.0 | 2.0 | 4.6 | 4.9 | 13.5 | 28.5 |
MSI-B vs. OLI (N = 542) | |||||||
Central Wavelength, MSI-B–OLI (nm) | 442–443 | 492–482 | 559–561 | 665–655 | 864–865 | 1611–1608 | 2184–2200 |
Slope | 1.2982 | 1.2069 | 1.081 | 1.0075 | 1.0175 | 0.7195 | 0.504 |
Intercept | −0.0499 | −0.0359 | −0.0093 | −0.0068 | −0.0015 | 0.0022 | 0.0024 |
R2 | 0.92 | 0.88 | 0.98 | 0.99 | 0.85 | 0.41 | 0.39 |
RMSE | 0.0047 | 0.0077 | 0.0022 | 0.0065 | 0.0060 | 0.0018 | 0.0009 |
MD | 0.0007 | 0.0063 | −0.0011 | 0.0073 | 0.0002 | 0.0007 | −0.0002 |
MAPE (%) | 2.1 | 5.0 | 1.5 | 8.0 | 7.2 | 14.2 | 14.4 |
MSI-A vs. OLI (N = 4409) | |||||||
Central Wavelength, MSI-A–OLI (nm) | 443–443 | 497–482 | 560–561 | 665–655 | 865–865 | 1613–1608 | 2200–2200 |
Slope | 0.9905 | 1.0284 | 1.0415 | 0.9961 | 0.9577 | 0.9248 | 0.8106 |
Intercept (1/sr) | −0.0033 | −0.0038 | −0.0033 | −0.003 | 0.0017 | 0.001 | 0.0018 |
R2 | 0.97 | 0.96 | 0.99 | 0.98 | 0.97 | 0.91 | 0.79 |
RMSE (1/sr) | 0.0062 | 0.0063 | 0.0045 | 0.0054 | 0.0037 | 0.0017 | 0.0017 |
MD (1/sr) | 0.00504 | 0.00006 | 0.00003 | 0.00680 | 0.00076 | −0.00029 | −0.00087 |
MAPE (%) | 8.1 | 6.4 | 3.4 | 5.3 | 6.1 | 14.7 | 29.9 |
MSI-B vs. OLI (N = 542) | |||||||
Central Wavelength, MSI-B–OLI (nm) | 442–443 | 492–482 | 559–561 | 665–655 | 864–865 | 1611–1608 | 2184–2200 |
Slope | 1.3151 | 1.2218 | 1.0867 | 1.002 | 1.0148 | 0.7248 | 0.5072 |
Intercept (1/sr) | −0.0311 | −0.0228 | −0.0087 | −0.0059 | −0.0015 | 0.002 | 0.0023 |
R2 | 0.95 | 0.92 | 0.98 | 0.99 | 0.87 | 0.42 | 0.41 |
RMSE (1/sr) | 0.0101 | 0.0066 | 0.0026 | 0.0061 | 0.0060 | 0.0018 | 0.0009 |
MD (1/sr) | 0.0049 | 0.0039 | 0.0002 | 0.0068 | 0.0005 | 0.0006 | −0.0002 |
MAPE (%) | 13.3 | 6.9 | 2.3 | 10.6 | 9.3 | 15.3 | 14.9 |
MSI-A vs. OLI (N = 4103) | |||||
---|---|---|---|---|---|
Central Wavelength, MSI-A–OLI (nm) | 443–443 | 497–482 | 560–561 | 665–655 | 865–865 |
Slope | 1.0453 | 1.1286 | 1.0758 | 0.998 | 0.9567 |
Intercept (1/sr) | −0.0101 | −0.0132 | −0.01 | −0.0063 | −0.0003 |
R2 | 0.92 | 0.93 | 0.99 | 0.99 | 0.97 |
RMSE (1/sr) | 0.0029 | 0.0026 | 0.0019 | 0.0025 | 0.0014 |
MD (1/sr) | 0.0024 | 0.0003 | 0.0006 | 0.0027 | 0.0006 |
MAPE (%) | 12.2 | 9.2 | 4.6 | 8.6 | 10.8 |
MSI-B vs. OLI (N = 542) | |||||
Central Wavelength, MSI-B–OLI (nm) | 442–443 | 492–482 | 559–561 | 665–655 | 864–865 |
Slope | 1.002 | 1.1796 | 1.073 | 1.1152 | 0.9251 |
Intercept (1/sr) | −0.013 | −0.0196 | −0.0086 | −0.0185 | 0.0006 |
R2 | 0.84 | 0.87 | 0.88 | 0.97 | 0.75 |
RMSE (1/sr) | 0.0042 | 0.0023 | 0.0008 | 0.0031 | 0.0021 |
MD (1/sr) | 0.0041 | 0.0022 | 0.0003 | 0.0030 | 0.0007 |
MAPE (%) | 21.0 | 9.0 | 1.6 | 12.1 | 10.9 |
MSI-A | ||||||
---|---|---|---|---|---|---|
Slope | Intercept | R2 | RMSE | RMSE’ | RRR | |
Band 1 | 0.954 | 0.004 | 0.95 | 0.0058 | 0.0034 | 41.4 |
Band 2 | 0.992 | −0.005 | 0.88 | 0.0064 | 0.0033 | 49.5 |
Band 3 | 1.007 | 0.001 | 0.99 | 0.0046 | 0.0031 | 32.6 |
Band 4 | 0.994 | −0.002 | 0.97 | 0.0075 | 0.0059 | 20.3 |
Band 8-A | 0.901 | 0.006 | 0.99 | 0.0048 | 0.0033 | 30.6 |
MSI-A | ||||||
Slope | Intercept | R2 | RMSE | RMSE’ | RRR | |
Band 1 | 1.003 | −0.004 | 0.97 | 0.0046 | 0.0034 | 26.1 |
Band 2 | 0.993 | −0.001 | 0.84 | 0.0087 | 0.0078 | 10.3 |
Band 3 | 0.997 | 0.003 | 0.97 | 0.0060 | 0.0051 | 16.3 |
Band 4 | 0.984 | 0.000 | 0.97 | 0.0067 | 0.0057 | 14.8 |
Band 8-A | 0.874 | 0.006 | 0.98 | 0.0055 | 0.0034 | 37.0 |
MSI-A | ||||||
Slope | Intercept | R2 | RMSE | RMSE’ | RRR | |
Band 1 | 1.039 | −0.009 | 0.95 | 0.0021 | 0.0012 | 42.5 |
Band 2 | 1.038 | −0.006 | 0.89 | 0.0032 | 0.0027 | 15.2 |
Band 3 | 1.006 | 0.000 | 0.98 | 0.0021 | 0.0020 | 4.6 |
Band 4 | 0.997 | −0.004 | 0.98 | 0.0026 | 0.0016 | 40.3 |
Band 8-A | 0.783 | 0.005 | 0.93 | 0.0032 | 0.0011 | 63.8 |
MSI-B | ||||||
---|---|---|---|---|---|---|
Slope | Intercept | R2 | RMSE | RMSE’ | RRR | |
Band 1 | 1.154 | −0.027 | 0.90 | 0.0075 | 0.0046 | 38.6 |
Band 2 | 1.043 | −0.014 | 0.89 | 0.0083 | 0.0047 | 43.4 |
Band 3 | 0.965 | 0.002 | 0.99 | 0.0030 | 0.0028 | 4.7 |
Band 4 | 0.909 | −0.001 | 0.99 | 0.0087 | 0.0040 | 53.3 |
Band 8-A | 0.744 | 0.007 | 0.93 | 0.0057 | 0.0043 | 23.9 |
MSI-B | ||||||
Slope | Intercept | R2 | RMSE | RMSE’ | RRR | |
Band 1 | 0.993 | −0.008 | 0.95 | 0.0041 | 0.0031 | 22.6 |
Band 2 | 0.987 | −0.006 | 0.96 | 0.0055 | 0.0039 | 28.8 |
Band 3 | 0.955 | 0.000 | 0.99 | 0.0050 | 0.0031 | 37.7 |
Band 4 | 0.901 | −0.002 | 0.99 | 0.0083 | 0.0051 | 39.0 |
Band 8-A | 0.746 | 0.005 | 0.94 | 0.0060 | 0.0044 | 26.3 |
MSI-B | ||||||
Slope | Intercept | R2 | RMSE | RMSE’ | RRR | |
Band 1 | 1.063 | −0.002 | 0.88 | 0.0021 | 0.0012 | 42.5 |
Band 2 | 0.982 | 0.003 | 0.97 | 0.0025 | 0.0022 | 11.5 |
Band 3 | 0.952 | 0.002 | 0.99 | 0.0013 | 0.0009 | 31.5 |
Band 4 | 0.932 | −0.003 | 0.99 | 0.0026 | 0.0016 | 40.3 |
Band 8-A | 0.813 | 0.001 | 0.80 | 0.0030 | 0.0026 | 15.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hafeez, S.; Wong, M.S.; Abbas, S.; Asim, M. Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring. Remote Sens. 2022, 14, 3155. https://doi.org/10.3390/rs14133155
Hafeez S, Wong MS, Abbas S, Asim M. Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring. Remote Sensing. 2022; 14(13):3155. https://doi.org/10.3390/rs14133155
Chicago/Turabian StyleHafeez, Sidrah, Man Sing Wong, Sawaid Abbas, and Muhammad Asim. 2022. "Evaluating Landsat-8 and Sentinel-2 Data Consistency for High Spatiotemporal Inland and Coastal Water Quality Monitoring" Remote Sensing 14, no. 13: 3155. https://doi.org/10.3390/rs14133155