Assessing the Effects of Land Cover Land Use Change on Precipitation Dynamics in Guangdong–Hong Kong–Macao Greater Bay Area from 2001 to 2019
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Land Cover Land Use Data
3.2. Precipitation Data
3.3. Methods
3.3.1. Land Cover Land Use Data and Precipitation Data Processing
3.3.2. Analysis Method of Temporal and Spatial Change of Land Cover Land Use and Precipitation
3.3.3. Elliptic Analysis of the Standard Deviation of Precipitation Data
4. Results
4.1. Spatial and Temporal Change Analysis of Land Cover Land Use from 2001 to 2019
4.1.1. Analysis on the Characteristics of Land Cover Land Use Time Change
4.1.2. Analysis of Spatial Variation Characteristics of Land Cover Land Use
4.2. Spatial and Temporal Change Analysis of Precipitation from 2001 to 2019
4.2.1. Analysis of Annual Precipitation Change
4.2.2. Variation Trend of Precipitation in Different Seasons
4.3. The Relationship between Land Cover Land Use Change and Precipitation Change
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alireza, D.; Roy, B.; Ali, N.; Mostafa, P.; Ardavan, Z.; Fatemeh, F.M. Modelling the impacts of climate and land use change on water security in a semi-arid forested watershed using InVEST. J. Hydrol. 2021, 593, 125621. [Google Scholar]
- Eugenia, K.; Ming, C. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar]
- Mahmood, R.; Sr, R.A.P.; Hubbard, K.G.; Niyogi, D.; Bonan, G.; Lawrence, P.; McNider, R.; McAlpine, C.; Etter, A.; Gameda, S.; et al. Impacts of Land Use/Land Cover Change on Climate and Future Research Priorities. Bull. Am. Meteorol. Soc. 2010, 91, 37–46. [Google Scholar] [CrossRef]
- Meshesha, T.W.; Tripathi, S.K.; Khare, D. Analyses of land use and land cover change dynamics using GIS and remote sensing during 1984 and 2015 in the Beressa Watershed Northern Central Highland of Ethiopia. Modeling Earth Syst. Environ. 2016, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Worku, T.; Khare, D.; Tripathi, S.K. Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environ. Earth Sci. 2017, 76, 1–14. [Google Scholar] [CrossRef]
- Worku, T.; Tripathi, S.K.; Khare, D. Household level tree planting and its implication for environmental conservation in the Beressa Watershed of Ethiopia. Environ. Syst. Res. 2018, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Meshesha, T.W.; Tripathi, S.K. Farmer’s perception on soil erosion and land degradation problems and management practices in the Beressa Watershed of Ethiopia. J. Water Resour. Ocean Sci. 2016, 5, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Hamere, Y.; Teshome, S.; Mekuria, A.; Ashraf, D. Changes in landscape composition and configuration in the Beressa watershed, Blue Nile basin of Ethiopian Highlands: Historical and future exploration. Heliyon 2020, 6, e04859. [Google Scholar]
- Oskar, E.; Pål, B.; Göran, B.; Nicolae, S.; Jean, F.D.; Bruna, G.; Ioannis, D.; Blas, M.Y.; Fernando, F. Beneficial land use change: Strategic expansion of new biomass plantations can reduce environmental impacts from EU agriculture. Glob. Environ. Chang. 2020, 60, 101990. [Google Scholar]
- Costanza, R.; De, G.R.; Sutton, P.; Vander, P.S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Hernández, M.M.; Plieninger, T.; Bieling, C. An empirical review of cultural ecosystem service indicators. Ecol. Indic. 2013, 29, 434–444. [Google Scholar] [CrossRef]
- Li, B.; Huang, F.; Qin, L.; Qi, H.; Sun, N. Spatio-Temporal Variations of Carbon Use Efficiency in Natural Terrestrial Ecosystems and the Relationship with Climatic Factors in the Songnen Plain, China. Remote Sens. 2019, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Junkermann, W.; Hacker, J.; Lyons, T.; Nair, U. Land use change suppresses precipitation. Atmos. Chem. Phys. 2009, 9, 6531–6539. [Google Scholar] [CrossRef] [Green Version]
- Bounoua, L.; DeFries, R.; Collatz, G.J.; Sellers, P.; Khan, H. Effects of land cover conversion on surface climate. Clim. Chang. 2002, 52, 29–64. [Google Scholar] [CrossRef]
- Pitman, A.J.; de Noblet-Ducoudré, N.; Avila, F.B.; Alexander, L.V.; Boisier, J.P.; Brovkin, V.; Delire, C.; Cruz, F.; Donat, M.G.; Gayler, V. Effects of land cover change on temperature. Earth Syst. Dyn. 2012, 3, 213–231. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Liu, J.; Wang, Z.; Ning, L. Biogeophysical impacts of land use/land cover change on 20th century anthropogenic climate compared to the impacts of greenhouse gas change. Int. J. Clim. 2020, 40, 6560–6573. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Zhang, H.; Yan, Y.; Cong, P. A Semi-Parametric Geographically Weighted Regression Approach to Exploring Driving Factors of Fractional Vegetation Cover: A Case Study of Guangdong. Sustainability 2020, 12, 7512. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Sun, Y.; Wu, M.; Zhao, B. Urbanization-driven changes in land-climate dynamics: A case study of Haihe River Basin, China. Remote Sens. 2020, 12, 2701. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Yao, J.; Zhang, X.; Zhang, H. Mapping the annual dynamics of cultivated land in typical area of the Middle-lower Yangtze plain using long time-series of Landsat images based on Google Earth Engine. Int. J. Remote Sens. 2020, 41, 1625–1644. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhao, X.; Wu, D.; Tang, R.; Du, X.; Wang, H.; Zhao, J.; Xu, P.; Peng, Y. Impact of urbanization and climate on vegetation coverage in the Beijing–Tianjin–Hebei Region of China. Remote Sens. 2019, 11, 2452. [Google Scholar] [CrossRef] [Green Version]
- Tariq, A.; Shu, H. CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Landcover Change Using Optical Multi-Temporal Satellite Data of Faisalabad, Pakistan. Remote Sens. 2020, 12, 3402. [Google Scholar] [CrossRef]
- Zhang, C.L.; Chen, F.; Miao, S.G.; Li, Q.C.; Xia, X.A.; Xuan, C.Y. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Feng, J.M.; Wang, Y.L.; Ma, Z.G.; Liu, Y.H. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China. J. Clim. 2012, 25, 7187–7203. [Google Scholar] [CrossRef]
- Freitag, B.M.; Nair, U.S.; Niyogi, D. Urban modification of convection and rainfall in complex terrain. Geophys. Res. Lett. 2018, 45, 2507–2515. [Google Scholar] [CrossRef]
- Liu, Y.; Stanturf, J.; Lu, H. Modeling the Potential of the Northern China Forest Shelterbelt in Improving Hydroclimate Conditions 1. J. Am. Water Resour. Assoc. 2008, 44, 1176–1192. [Google Scholar] [CrossRef]
- Gálos, B.; Hagemann, S.; Hänsler, A.; Kindermann, G.; Rechid, D.; Sieck, K.; Teichmann, C.; Jacob, D. Case study for the assessment of the biogeophysical effects of a potential afforestation in Europe. Carbon Balance Manag. 2013, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Perugini, L.; Caporaso, L.; Marconi, S.; Cescatti, A.; Quesada, B.; de Noblet-Ducoudre, N.; House, J.I.; Arneth, A. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Ma, D.; Liu, Z.; Lü, S.; Michael, N.; Rong, X.; Cheng, G.; Wang, F. Short-term climatic impacts of afforestation in the East Asian monsoon region. Chin. Sci. Bull. 2013, 58, 2073–2081. [Google Scholar] [CrossRef] [Green Version]
- Hagos, S.; Leung, L.R.; Xue, Y.; Boone, A.; de Sales, F.; Neupane, N.; Huang, M.; Yoon, J.H. Assessment of uncertainties in the response of the African monsoon precipitation to land use change simulated by a regional model. Clim. Dyn. 2014, 43, 2765–2775. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Jiang, Z.; Li, Z.X.; Yang, X.Q. Numerical simulation of urbanization climate effects in regions of east China. Chin. J. Atmos. Sci. 2015, 39, 596–610. [Google Scholar]
- Woldemichael, A.T.; Hossain, F.; Pielke Sr, R.; Beltrán-Przekurat, A. Understanding the impact of dam-triggered land use/land cover change on the modification of extreme precipitation. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yan, F.; Su, F. Impacts of Urbanization on the Ecosystem Services in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Remote Sens. 2020, 12, 3269. [Google Scholar] [CrossRef]
- Qiao, W.; Sheng, Y.; Fang, B. Land use change information mining in highly urbanized area based on transfer matrix: A case study of Suzhou, Jiangsu Province. Geogr. Res. 2013, 32, 1497–1507. [Google Scholar]
- Allard, J.F.; Atalla, N. Extensions to the Transfer Matrix Method; John Wiley Sons Ltd.: Hoboken, NJ, USA, 2009. [Google Scholar] [CrossRef]
- Rahman, M.; Yang, R.; Di, L. Clustering Indian Ocean Tropical Cyclone Tracks by the Standard Deviational Ellipse. Climate 2018, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Gong, J. Clarifying the Standard Deviational Ellipse. Geogr. Anal. 2002, 34, 155–167. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, A.M.; Xia, X.X.; Wu, H.Q. Spatial distribution pattern and change characteristics analysis of cultivated land in the Manas River Basin from 1975 to 2015. Chin. J. Eco-Agric. 2020, 28, 117–129. [Google Scholar]
- Wang, B.J. Theories and methods for soil grain orientation distribution in SEM by standard deviational ellipse. Chin. J. Geotech. Eng. 2009, 07, 103–108. [Google Scholar]
- Zhou, T.; Niu, A.Y.; Ma, J.J.; Xu, S.J. Spatio-temporal pattern of national wetland parks. J. Nat. Resour. 2019, 034, 26–39. [Google Scholar]
- Gai, M.; Zhu, J.M.; Sun, C.Z.; Xu, K. Spatio-temporal evolution and influencing factors of Marine economic efficiency in China’s coastal areas. Resour. Sci. 2018, 40, 68–81. [Google Scholar]
- Zope, P.E.; Eldho, T.I.; Jothiprakash, V. Impacts of land use–land cover change and urbanization on flooding: A case study of Oshiwara River Basin in Mumbai, India. Catena 2016, 145, 142–154. [Google Scholar] [CrossRef]
- Tarigan, S.D. Land cover change and its impact on flooding frequency of Batanghari Watershed, Jambi Province, Indonesia. Procedia Environ. Sci. 2016, 33, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.L.; Xia, J. Analysis of causes and countermeasures of extraordinary rainstorm in 22nd, May, Guangzhou. Chin. J. Water Resour. 2020, 13, 4–7. [Google Scholar]
- Zhang, H.; Wu, C.; Chen, W.; Huang, G.R. Effect of urban expansion on summer rainfall in the pearl river delta, south china. J. Hydrol. 2019, 568, 747–757. [Google Scholar] [CrossRef]
Land Cover Land Use Types | Reclassification |
---|---|
Evergreen Needleleaf Forests, Evergreen Broadleaf Forests, Deciduous Needleleaf Forests, Deciduous Broadleaf Forests, Mixed Forests, Closed Shrublands, Open Shrublands, Woody Savannas, Savannas, Grasslands, Cropland/Natural Vegetation Mosaics | Forest/grassland |
Water Bodies, Permanent Wetlands | Water |
Croplands | Cropland |
Urban and Built-up Lands | Construction land |
Barren, Permanent Snow and Ice | Barren |
2001–2004 | 2004–2008 | 2008–2011 | 2011–2016 | 2016–2019 | 2001–2019 | ||
---|---|---|---|---|---|---|---|
Land cover land use | Cropland | −5.88 | 273.28 | 248.67 | 199.37 | −4.81 | 710.63 |
Barren | 203.06 | -42.05 | 104.60 | −26.63 | −11.96 | 227.02 | |
Construction land | −635.73 | −451.66 | −132.05 | −87.00 | −108.95 | −1415.39 | |
Water | 229.47 | 218.95 | −96.03 | −106.69 | 63.10 | 308.80 | |
Forest/grassland | 209.08 | 1.48 | −125.19 | 20.95 | 62.62 | 168.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cong, P.; Jin, Y.; Jia, X.; Wang, J.; Han, Y. Assessing the Effects of Land Cover Land Use Change on Precipitation Dynamics in Guangdong–Hong Kong–Macao Greater Bay Area from 2001 to 2019. Remote Sens. 2021, 13, 1135. https://doi.org/10.3390/rs13061135
Wang X, Cong P, Jin Y, Jia X, Wang J, Han Y. Assessing the Effects of Land Cover Land Use Change on Precipitation Dynamics in Guangdong–Hong Kong–Macao Greater Bay Area from 2001 to 2019. Remote Sensing. 2021; 13(6):1135. https://doi.org/10.3390/rs13061135
Chicago/Turabian StyleWang, Xinghan, Peitong Cong, Yuhao Jin, Xichun Jia, Junshu Wang, and Yuxing Han. 2021. "Assessing the Effects of Land Cover Land Use Change on Precipitation Dynamics in Guangdong–Hong Kong–Macao Greater Bay Area from 2001 to 2019" Remote Sensing 13, no. 6: 1135. https://doi.org/10.3390/rs13061135
APA StyleWang, X., Cong, P., Jin, Y., Jia, X., Wang, J., & Han, Y. (2021). Assessing the Effects of Land Cover Land Use Change on Precipitation Dynamics in Guangdong–Hong Kong–Macao Greater Bay Area from 2001 to 2019. Remote Sensing, 13(6), 1135. https://doi.org/10.3390/rs13061135