Mapping an Invasive Plant Spartina alterniflora by Combining an Ensemble One-Class Classification Algorithm with a Phenological NDVI Time-Series Analysis Approach in Middle Coast of Jiangsu, China
Abstract
:1. Introduction
- (1)
- How does the EOCC algorithm perform compare to individual OCC algorithms and a standard supervised classifier SVM in S. alterniflora detection?
- (2)
- How much does phenological NDVI-TSA improve S. alterniflora detection?
- (3)
- Is the detection scheme transferable and robust when it is applied in different regions?
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.3. Reference Data
3. Methodology
3.1. Remote Sensing Image Preprocessing
3.2. One-Class Classification Algorithms
3.2.1. Individual Models
3.2.2. Ensemble Model
3.3. Standard Supervised Classification Method
3.4. Feature Selection
3.5. Two Scenarios for S. alterniflora Detection
3.5.1. Monthly SSA for S. alterniflora Detection (Scenario 1)
3.5.2. NDVI-TSA for S. alterniflora Detection (Scenario 2)
3.6. Transferability Analysis of the EOCC Algorithm Combined with PB-NDVI-TSA for S. alterniflora Detection
3.7. Accuracy Assessment
4. Results
4.1. Crucial Variables, Months, and Phenological Phases for S. alterniflora Detection
4.2. Algorithms Comparison
4.3. Performance of the EOCC Algorithm in NDVI-TSA for S. alterniflora Detection
4.4. Transferability Analysis of the EOCC Algorithm in the PB-NDVI-TSA
5. Discussion
5.1. Ensemble Analysis for OCC Methods
5.2. Advantages of Phenological NDVI Time-Series for Mapping Invasive Plant S. alterniflora
5.3. Transferability of the EOCC Combined with PB-NDVI-TSA
5.4. Methodological Considerations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
S. alternifora | Spartina alterniflora |
P. australis | Phragmites australis |
S. salsa | Suaeda salsa |
RS | Remote sensing |
GF-1 WFV | Gaofen-1 wide field of view |
EOCC | Ensemble one-class classification |
YNNR | Yancheng National Nature Reserve |
DMNNR | Dafeng Milu National Nature Reserve |
OCSVM | One-class support vector machines |
SVDD | Support vector data description |
MaxEnt | Maximum entropy |
BSVM | Biased support vector machine |
PUDNN | Positive and unlabeled deep neural network |
PUL | Positive and unlabeled learning |
SVM | Support vector machine |
RF | Random forest |
SSA | Single-scene analysis |
NDVI-TSA | Normalized difference vegetation index time-series analysis |
PB-NDVI-TSA | Phenology-based normalized difference vegetation index time-series analysis |
GE | Google Earth |
ENVI | Environment for visualizing images |
FLAASH | Fast line-of sight atmospheric analysis of spectral hypercubes |
MaxSSS | Maximizing the sum of specificity and sensitivity |
RFE | Recursive feature elimination |
Appendix A
Ensemble Methods | Kappa | OA (%) | Sensitivity | Specificity | TSS |
---|---|---|---|---|---|
Weighted vote | 0.698 | 86.79 | 0.745 | 0.931 | 0.676 |
(0.116) | (5.17) | (0.078) | (0.048) | (0.063) | |
Majority vote | 0.685 | 85.99 | 0.751 | 0.916 | 0.667 |
(0.123) | (6.09) | (0.068) | (0.056) | (0.124) |
Scenarios | SVM | EOCC | MaxEnt | PUDNN | BSVM | |||||
---|---|---|---|---|---|---|---|---|---|---|
Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | Kappa | OA (%) | |
Jan | 0.668 | 85.24 | 0.644 | 84.35 | 0.655 | 84.95 | 0.607 | 82.85 | 0.652 | 84.55 |
Feb | 0.666 | 85.04 | 0.647 | 84.55 | 0.638 | 84.05 | 0.622 | 83.65 | 0.655 | 84.55 |
Mar | 0.687 | 85.64 | 0.672 | 85.34 | 0.620 | 82.55 | 0.633 | 84.15 | 0.690 | 86.14 |
Apr | 0.729 | 87.74 | 0.750 | 88.93 | 0.750 | 88.93 | 0.712 | 87.14 | 0.755 | 89.33 |
May | 0.718 | 87.94 | 0.719 | 87.94 | 0.715 | 87.94 | 0.656 | 85.24 | 0.744 | 88.83 |
Jun | 0.680 | 85.04 | 0.736 | 88.73 | 0.700 | 87.44 | 0.672 | 85.54 | 0.723 | 88.24 |
Jul | 0.587 | 81.75 | 0.605 | 82.25 | 0.578 | 80.66 | 0.609 | 82.95 | 0.603 | 82.15 |
Aug | 0.359 | 68.79 | 0.394 | 73.38 | 0.373 | 68.99 | 0.364 | 72.78 | 0.394 | 73.38 |
Sep | 0.579 | 80.56 | 0.599 | 82.35 | 0.611 | 82.95 | 0.541 | 78.96 | 0.591 | 81.85 |
Oct | 0.646 | 83.85 | 0.650 | 85.34 | 0.647 | 85.24 | 0.632 | 84.55 | 0.660 | 85.54 |
Nov | 0.835 | 92.62 | 0.813 | 91.92 | 0.771 | 90.33 | 0.838 | 92.72 | 0.805 | 91.53 |
Dec | 0.798 | 90.93 | 0.799 | 91.23 | 0.791 | 90.83 | 0.836 | 92.72 | 0.640 | 85.24 |
NDVI3 | 0.815 | 91.72 | 0.824 | 92.22 | 0.814 | 91.82 | 0.804 | 91.23 | 0.820 | 92.02 |
NDVI6 | 0.846 | 93.12 | 0.841 | 92.92 | 0.838 | 92.82 | 0.825 | 92.12 | 0.841 | 92.92 |
NDVI12 | 0.858 | 93.62 | 0.778 | 90.43 | 0.773 | 90.23 | 0.811 | 91.72 | 0.769 | 90.13 |
Mean (SD) | 0.698 (0.130) | 86.24 (6.36) | 0.698 (0.116) | 86.79 (5.17) | 0.685 (0.118) | 85.98 (5.97) | 0.677 (0.132) | 85.89 (5.63) | 86.43 (5.00) | 0.689 (0.113) |
Algorithms | Kappa | OA (%) | Sensitivity | Specificity | TSS |
---|---|---|---|---|---|
SVM | 0.621 | 80.22 | 0.995 | 0.669 | 0.664 |
EOCC | 0.802 | 90.26 | 0.940 | 0.877 | 0.817 |
MaxEnt | 0.337 | 66.34 | 0.727 | 0.620 | 0.347 |
PUDNN | 0.793 | 89.76 | 0.947 | 0.864 | 0.811 |
BSVM | 0.390 | 74.31 | 0.430 | 0.958 | 0.388 |
References
- Perrings, C.; Dehnen-Schmutz, K.; Touza, J.; Williamson, M. How to manage biological invasions under globalization. Trends Ecol. Evol. 2005, 20, 212–215. [Google Scholar] [CrossRef]
- Mao, D.; Liu, M.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Zhang, Y. Rapid Invasion of Spartina alterniflora in the coastal zone of mainland China: Spatiotemporal patterns and human prevention. Sensors 2019, 19, 2308. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, H.; Li, L.; Man, W.; Jia, M.; Wang, Z.; Lu, C. Monitoring the invasion of Spartina alterniflora using multi-source high-resolution imagery in the Zhangjiang estuary, China. Remote Sens. 2017, 9, 539. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Liu, H.; Gong, H.; Lin, Z.; Lv, S. Appling the one-class classification method of Maxent to detect an invasive plant Spartina alterniflora with time-series analysis. Remote Sens. 2017, 9, 1120. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Mao, D.; Wang, Z.; Li, L.; Man, W.; Jia, M.; Ren, C.; Zhang, Y. Rapid Invasion of Spartina alterniflora in the coastal zone of mainland China: New observations from landsat OLI Images. Remote Sens. 2018, 10, 1933. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xiao, X.; Wang, X.; Xu, X.; Chen, B.; Wang, J.; Ma, J.; Zhao, B.; Li, B. Quantifying expansion and removal of Spartina alterniflora on Chongming island, China, using time series Landsat images during 1995–2018. Remote Sens. Environ. 2020, 247, 111916. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wang, L.; Yin, D.; Li, X.; Diao, C.; Gong, H.; Shi, C.; Menenti, M.; Ge, Y.; Nie, S.; et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sens. Environ. 2020, 242, 111745. [Google Scholar] [CrossRef]
- Ai, J.; Gao, W.; Gao, Z.; Shi, R.; Zhang, C. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite no. 1 wide field of view imagery. J. Appl. Remote Sens. 2017, 11, 026020. [Google Scholar] [CrossRef]
- Sun, C.; Liu, Y.; Zhao, S.; Zhou, M.; Yang, Y.; Li, F. Classification mapping and species identification of salt marshes based on a short-time interval NDVI time-series from HJ-1 optical imagery. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 27–41. [Google Scholar] [CrossRef]
- Tian, Y.; Jia, M.; Wang, Z.; Mao, D.; Du, B.; Wang, C. Monitoring Invasion Process of Spartina alterniflora by Seasonal Sentinel-2 Imagery and an Object-Based Random Forest Classification. Remote Sens. 2020, 12, 1383. [Google Scholar] [CrossRef]
- Diao, C.; Wang, L. Incorporating plant phenological trajectory in exotic saltcedar detection with monthly time series of Landsat imagery. Remote Sens. Environ. 2016, 182, 60–71. [Google Scholar] [CrossRef]
- Ji, W.; Wang, L. Phenology-guided saltcedar (Tamarix spp.) mapping using Landsat TM images in western U.S. Remote Sens. Environ. 2016, 173, 29–38. [Google Scholar] [CrossRef]
- Singh, K.K.; Chen, Y.-H.; Smart, L.; Gray, J.; Meentemeyer, R.K. Intra-annual phenology for detecting understory plant invasion in urban forests. ISPRS J. Photogramm. Remote Sens. 2018, 142, 151–161. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-temporal analysis of vegetation variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Ng, W.-T.; Meroni, M.; Immitzer, M.; Böck, S.; Leonardi, U.; Rembold, F.; Gadain, H.; Atzberger, C. Mapping Prosopis spp. with Landsat 8 data in arid environments: Evaluating effectiveness of different methods and temporal imagery selection for Hargeisa, Somaliland. Int. J. Appl. Earth Obs. Geoinf. 2016, 53, 76–89. [Google Scholar] [CrossRef]
- Shiferaw, H.; Bewket, W.; Eckert, S. Performances of machine learning algorithms for mapping fractional cover of an invasive plant species in a dryland ecosystem. Ecol. Evol. 2019, 9, 2562–2574. [Google Scholar] [CrossRef] [Green Version]
- Cesar de Sa, N.; Carvalho, S.; Castro, P.; Marchante, E.; Marchante, H. Using Landsat Time Series to Understand How Management and Disturbances Influence the Expansion of an Invasive Tree. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3243–3253. [Google Scholar] [CrossRef]
- Mack, B.; Roscher, R.; Stenzel, S.; Feilhauer, H.; Schmidtlein, S.; Waske, B. Mapping raised bogs with an iterative one-class classification approach. ISPRS J. Photogramm. Remote Sens. 2016, 120, 53–64. [Google Scholar] [CrossRef]
- Xu, X.; Ji, X.; Jiang, J.; Yao, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q.; Yang, H.; Shi, Z.; et al. Evaluation of one-class support vector classification for mapping the paddy rice planting area in jiangsu province of china from landsat 8 oli imagery. Remote Sens. 2018, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Li, W.; Liu, X.; Lu, X.; Li, T.; Guo, Q. An Ensemble of Classifiers Based on Positive and Unlabeled Data in One-Class Remote Sensing Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 572–584. [Google Scholar] [CrossRef]
- Araya-López, R.A.; Lopatin, J.; Fassnacht, F.E.; Hernández, H.J. Monitoring Andean high altitude wetlands in central Chile with seasonal optical data: A comparison between Worldview-2 and Sentinel-2 imagery. ISPRS J. Photogramm. Remote Sens. 2018, 145, 213–224. [Google Scholar] [CrossRef]
- Xu, X.; Liu, X.; Li, X.; Xin, Q.; Chen, Y.; Shi, Q.; Ai, B. Global snow cover estimation with Microwave Brightness Temperature measurements and one-class in situ observations. Remote Sens. Environ. 2016, 182, 227–251. [Google Scholar] [CrossRef]
- Sanchez-Hernandez, C.; Boyd, D.S.; Foody, G.M. One-Class Classification for Mapping a Specific Land-Cover Class: SVDD Classification of Fenland. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, P.; Stohlgren, T.; Morisette, J.; Kumar, S. Mapping Invasive Tamarisk (Tamarix): A Comparison of Single-Scene and Time-Series Analyses of Remotely Sensed Data. Remote Sens. 2009, 1, 519. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Guo, Q. A maximum entropy approach to one-class classification of remote sensing imagery. Int. J. Remote Sens. 2010, 31, 2227–2235. [Google Scholar] [CrossRef]
- Mack, B.; Roscher, R.; Waske, B. Can I Trust My One-Class Classification? Remote Sens. 2014, 6, 8779. [Google Scholar] [CrossRef] [Green Version]
- Stenzel, S.; Fassnacht, F.E.; Mack, B.; Schmidtlein, S. Identification of high nature value grassland with remote sensing and minimal field data. Ecol. Indic. 2017, 74, 28–38. [Google Scholar] [CrossRef]
- Skowronek, S.; Asner, G.P.; Feilhauer, H. Performance of one-class classifiers for invasive species mapping using airborne imaging spectroscopy. Ecol. Inform. 2017, 37, 66–76. [Google Scholar] [CrossRef]
- Deng, X.; Li, W.; Liu, X.; Guo, Q.; Newsam, S. One-class remote sensing classification: One-class vs. binary classifiers. Int. J. Remote Sens. 2018, 39, 1890–1910. [Google Scholar] [CrossRef]
- Piiroinen, R.; Fassnacht, F.E.; Heiskanen, J.; Maeda, E.; Mack, B.; Pellikka, P. Invasive tree species detection in the Eastern Arc Mountains biodiversity hotspot using one class classification. Remote Sens. Environ. 2018, 218, 119–131. [Google Scholar] [CrossRef]
- Kattenborn, T.; Lopatin, J.; Förster, M.; Braun, A.C.; Fassnacht, F.E. UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2019, 227, 61–73. [Google Scholar] [CrossRef]
- Grenouillet, G.; Buisson, L.; Casajus, N.; Lek, S. Ensemble modelling of species distribution: The effects of geographical and environmental ranges. Ecography 2011, 34, 9–17. [Google Scholar] [CrossRef]
- Mack, B.; Waske, B. In-depth comparisons of MaxEnt, biased SVM and one-class SVM for one-class classification of remote sensing data. Remote Sens. Lett. 2017, 8, 290–299. [Google Scholar] [CrossRef]
- Forester, B.R.; DeChaine, E.G.; Bunn, A.G. Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers. Distrib. 2013, 19, 1480–1495. [Google Scholar] [CrossRef]
- Woodman, S.M.; Forney, K.A.; Becker, E.A.; DeAngelis, M.L.; Hazen, E.L.; Palacios, D.M.; Redfern, J.V. esdm: A tool for creating and exploring ensembles of predictions from species distribution and abundance models. Methods. Ecol. Evol. 2019, 10, 1923–1933. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Miao, X.-Y.; Wang, B.; Jiang, R.-P.; Wen, T.; Liu, M.-S.; Huang, C.; Xu, C. System-Specific Complex Interactions Shape Soil Organic Carbon Distribution in Coastal Salt Marshes. Int. J. Environ. Res. Public. Health 2020, 17, 2037. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Shen, H.; Li, H.; Xia, G.; Gamba, P.; Zhang, L. Multi-feature combined cloud and cloud shadow detection in GaoFen-1 wide field of view imagery. Remote Sens. Environ. 2017, 191, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Fei, X.; Zhang, Y.; Chen, Z.; Wang, X.; Tsou, J.Y.; Liu, D.; Lu, X. Assessing texture features to classify coastal wetland vegetation from high spatial resolution imagery using completed local binary patterns (CLBP). Remote Sens. 2018, 10, 778. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Tucker, C.J. Red and Photographic Infrared l,lnear Combinations for Monitoring Vegetation. Remote Sens Env. 1979, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Pearson Miller Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands. In Proceedings of the 8th International Symposium on Remote Sensing of the Environment, Colorado, CO, USA, 2 October 1972.
- Liu, H.Q.; Huete, A. A feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Liu, B.; Dai, Y.; Li, X.; Lee, W.S.; Yu, P.S. Building text classifiers using positive and unlabeled examples. In Proceedings of the 3rd IEEE International Conference on Data Mining, Melbourne, Australia, 19–22 November 2003; pp. 179–186. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Elkan, C.; Noto, K. Learning classifiers from only positive and unlabeled data. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining—KDD 08, Las Vegas, NV, USA, 14–18 August 2008; p. 213. [Google Scholar]
- Li, W.; Guo, Q.; Elkan, C. A Positive and Unlabeled Learning Algorithm for One-Class Classification of Remote-Sensing Data. IEEE Trans. Geosci. Remote Sens. 2011, 49, 717–725. [Google Scholar] [CrossRef]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GIScience Remote Sens. 2019, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS): Assessing the accuracy of distribution models. J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Moraes, A.M.; Vancine, M.H.; Moraes, A.M.; de Oliveira Cordeiro, C.L.; Pinto, M.P.; Lima, A.A.; Culot, L.; Silva, T.S.F.; Collevatti, R.G.; Ribeiro, M.C.; et al. Predicting the potential hybridization zones between native and invasive marmosets within Neotropical biodiversity hotspots. Glob. Ecol. Conserv. 2019, 20, e00706. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28. [Google Scholar] [CrossRef] [Green Version]
- Guyon, I.; Weston, J.; Barnhill, S. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Feilhauer, H.; Thonfeld, F.; Faude, U.; He, K.S.; Rocchini, D.; Schmidtlein, S. Assessing floristic composition with multispectral sensors—A comparison based on monotemporal and multiseasonal field spectra. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 218–229. [Google Scholar] [CrossRef]
- Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple Classifier System for Remote Sensing Image Classification: A Review. Sensors 2012, 12, 4764. [Google Scholar] [CrossRef]
- Ouyang, Z.-T.; Gao, Y.; Xie, X.; Guo, H.-Q.; Zhang, T.-T.; Zhao, B. Spectral Discrimination of the Invasive Plant Spartina alterniflora at Multiple Phenological Stages in a Saltmarsh Wetland. PLoS ONE 2013, 8, e67315. [Google Scholar] [CrossRef]
- Löw, F.; Conrad, C.; Michel, U. Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS J. Photogramm. Remote Sens. 2015, 108, 191–204. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T.; Vanhuysse, S.; Lennert, M.; Shimoni, M.; Kalogirou, S.; Wolff, E. Less is more: Optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application. GIScience Remote Sens. 2018, 55, 221–242. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving land cover classification in an urbanized coastal area by random forests: The role of variable selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Rapinel, S.; Mony, C.; Lecoq, L.; Clément, B.; Thomas, A.; Hubert-Moy, L. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 2019, 223, 115–129. [Google Scholar] [CrossRef]
- DeVries, B.; Verbesselt, J.; Kooistra, L.; Herold, M. Robust monitoring of small-scale forest disturbances in a tropical montane forest using Landsat time series. Remote Sens. Environ. 2015, 161, 107–121. [Google Scholar] [CrossRef]
- Suess, S.; van der Linden, S.; Okujeni, A.; Griffiths, P.; Leitão, P.J.; Schwieder, M.; Hostert, P. Characterizing 32 years of shrub cover dynamics in southern Portugal using annual Landsat composites and machine learning regression modeling. Remote Sens. Environ. 2018, 219, 353–364. [Google Scholar] [CrossRef]
Sensor | Date | Center Longitude/Latitude | Sensor | Date | Center Longitude/Latitude |
---|---|---|---|---|---|
WFV2 | 9 January 2015 | E121.0/N32.6 | WFV3 | 13 July 2015 | E120.2/N33.9 |
WFV2 | 11 February 2015 | E120.1/N34.3 | WFV1 | 6 August 2015 | E119.5/N33.0 |
WFV3 | 12 March 2015 | E120.3/N33.9 | WFV2 | 3 September 2016 | E120.7/N34.3 |
WFV3 | 26 April 2015 | E120.9/N33.9 | WFV2 | 15 October 2015 | E121.2/N32.6 |
WFV1 | 20 May 2015 | E119.9/N33.0 | WFV2 | 29 November 2015 | E121.2/N32.6 |
WFV3 | 6 June 2015 | E120.9/N33.9 | WFV1 | 15 December 2015 | E119.9/N33.5 |
Variable Name | Equation | Citation |
---|---|---|
GF-1 WFV bands | Blue, Green, Red, NIR | |
Normalized Difference Vegetation Index (NDVI) | (NIR − Red)/(NIR + Red) | [39] |
Difference Vegetation Index (DVI) | NIR − Red | [40] |
Ratio Vegetation Index (RVI) | NIR/Red | [41] |
Enhanced Vegetation Index (EVI) | 6.5 × (NIR − Red)/(NIR + 7.5 × Red − 2.5 × Blue + 1) | [42] |
Soil-Adjusted Vegetation Index (SAVI) | 1.5 × (NIR − Red)/(NIR + Red + 0.5) | [43] |
Principal Component Analysis (PCA) | PC1, PC2, PC3 |
Accuracy Metrics | SVM | EOCC | MaxEnt | PUDNN | BSVM | |||||
---|---|---|---|---|---|---|---|---|---|---|
All | RF-RFE | All | RF-RFE | All | RF-RFE | All | RF-RFE | All | RF-RFE | |
OA (%) | 84.60 | 84.91 | 85.52 | 85.56 | 84.57 | 84.80 | 84.44 | 81.00 | 85.11 | 85.11 |
(6.05) | (6.06) | (4.99) | (4.95) | (5.85) | (5.76) | (5.37) | (9.93) | (4.69) | (4.58) | |
Kappa | 0.663 | 0.668 | 0.669 | 0.669 | 0.654 | 0.655 | 0.643 | 0.589 | 0.659 | 0.658 |
(0.121) | (0.121) | (0.112) | (0.111) | (0.111) | (0.111) | (0.125) | (0.187) | (0.105) | (0.104) | |
TSS | 0.665 | 0.665 | 0.646 | 0.647 | 0.637 | 0.633 | 0.627 | 0.586 | 0.639 | 0.638 |
(0.069) | (0.073) | (0.059) | (0.059) | (0.073) | (0.071) | (0.073) | (0.124) | (0.063) | (0.067) | |
Sensitivity | 0.791 | 0.780 | 0.723 | 0.722 | 0.733 | 0.717 | 0.715 | 0.739 | 0.720 | 0.712 |
(0.063) | (0.067) | (0.067) | (0.070) | (0.052) | (0.054) | (0.104) | (0.103) | (0.076) | (0.084) | |
Specificity | 0.874 | 0.885 | 0.923 | 0.925 | 0.904 | 0.916 | 0.912 | 0.847 | 0.919 | 0.923 |
(0.075) | (0.078) | (0.051) | (0.047) | (0.093) | (0.088) | (0.042) | (0.144) | (0.051) | (0.049) |
Rank | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(12) | (12) | (11) | (8) | (12) | (10) | (3) | (12) | (4) | (6) | (3) | (12) | |
1 | B | PC3 | B | NIR | PC3 | NIR | PC2 | G | R | R | NDVI | NDVI |
2 | G | G | G | PC1 | NDVI | PC1 | R | NDVI | PC3 | PC1 | RVI | RVI |
3 | PC1 | B | EVI | PC2 | RVI | PC2 | NIR | RVI | PC1 | RVI | R | EVI |
4 | R | EVI | NDVI | NDVI | NIR | B | \ | EVI | B | NDVI | \ | PC3 |
5 | NDVI | RVI | RVI | RVI | EVI | G | \ | DVI | \ | B | \ | R |
6 | RVI | NDVI | PC3 | G | SAVI | R | \ | SAVI | \ | PC3 | \ | SAVI |
7 | EVI | SAVI | PC1 | R | DVI | EVI | \ | PC3 | \ | \ | \ | DVI |
8 | SAVI | DVI | SAVI | EVI | R | SAVI | \ | B | \ | \ | \ | G |
9 | PC3 | PC1 | DVI | \ | G | NDVI | \ | PC1 | \ | \ | \ | PC2 |
10 | DVI | PC2 | PC2 | \ | PC1 | RVI | \ | NIR | \ | \ | \ | NIR |
11 | NIR | R | NIR | \ | B | \ | \ | PC2 | \ | \ | \ | PC1 |
12 | PC2 | NIR | \ | \ | PC2 | \ | \ | R | \ | \ | \ | B |
Accuracy Metrics | Binary Classifier | OCC Classifiers | |||
---|---|---|---|---|---|
SVM | EOCC | MaxEnt | PUDNN | BSVM | |
Kappa | 0.698 | 0.698 | 0.685 | 0.677 | 0.689 |
(0.130) | (0.116) | (0.118) | (0.132) | (0.113) | |
OA (%) | 86.24 | 86.79 | 85.98 | 85.89 | 86.43 |
(6.36) | (5.17) | (5.97) | (5.63) | (5.00) | |
Sensitivity | 0.811 | 0.745 | 0.750 | 0.743 | 0.740 |
(0.070) | (0.078) | (0.063) | (0.110) | (0.083) | |
Specificity | 0.889 | 0.931 | 0.917 | 0.919 | 0.929 |
(0.073) | (0.048) | (0.086) | (0.040) | (0.049) | |
TSS | 0.700 | 0.676 | 0.667 | 0.662 | 0.669 |
(0.072) | (0.063) | (0.075) | (0.075) | (0.132) |
Scenarios | Input Predictors | Sensitivity | Specificity | OA (%) | Kappa | TSS |
---|---|---|---|---|---|---|
Best SSA | 12 variables (November) | 0.752 | 0.991 | 91.92 | 0.813 | 0.743 |
NDVI-TSA | 12 variables | 0.770 | 0.974 | 90.43 | 0.778 | 0.744 |
Optimal 6 variables | 0.878 | 0.956 | 92.92 | 0.841 | 0.834 | |
Top 3 variables | 0.851 | 0.959 | 92.22 | 0.824 | 0.810 |
Schemes | Algorithms | Specificity | Sensitivity | OA (%) | Kappa | TSS |
---|---|---|---|---|---|---|
Best SSA | SVM | 0.575 | 0.995 | 74.61 | 0.520 | 0.570 |
EOCC | 0.857 | 0.952 | 89.57 | 0.789 | 0.809 | |
PB-NDVI-TSA | SVM | 0.764 | 0.995 | 85.83 | 0.721 | 0.759 |
EOCC | 0.897 | 0.928 | 90.94 | 0.815 | 0.825 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Liu, H.; Datta, P.; Frey, J.; Koch, B. Mapping an Invasive Plant Spartina alterniflora by Combining an Ensemble One-Class Classification Algorithm with a Phenological NDVI Time-Series Analysis Approach in Middle Coast of Jiangsu, China. Remote Sens. 2020, 12, 4010. https://doi.org/10.3390/rs12244010
Liu X, Liu H, Datta P, Frey J, Koch B. Mapping an Invasive Plant Spartina alterniflora by Combining an Ensemble One-Class Classification Algorithm with a Phenological NDVI Time-Series Analysis Approach in Middle Coast of Jiangsu, China. Remote Sensing. 2020; 12(24):4010. https://doi.org/10.3390/rs12244010
Chicago/Turabian StyleLiu, Xiang, Huiyu Liu, Pawanjeet Datta, Julian Frey, and Barbara Koch. 2020. "Mapping an Invasive Plant Spartina alterniflora by Combining an Ensemble One-Class Classification Algorithm with a Phenological NDVI Time-Series Analysis Approach in Middle Coast of Jiangsu, China" Remote Sensing 12, no. 24: 4010. https://doi.org/10.3390/rs12244010
APA StyleLiu, X., Liu, H., Datta, P., Frey, J., & Koch, B. (2020). Mapping an Invasive Plant Spartina alterniflora by Combining an Ensemble One-Class Classification Algorithm with a Phenological NDVI Time-Series Analysis Approach in Middle Coast of Jiangsu, China. Remote Sensing, 12(24), 4010. https://doi.org/10.3390/rs12244010