The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations
Abstract
:1. Introduction
2. Geologic Setting
3. Data and Methods
3.1. Remote Sensing by an Unoccupied Aircraft System (UAS)
3.2. Seismic Observations
3.3. Time-Lapse Camera Observations
4. Results
4.1. General Geomorphology and Structural Analysis
4.2. Explosions Observed by Instrumental Network, Geomorphology and Structural Analysis
5. Discussion
5.1. Limitations and Performance
5.2. Structural Influence
5.3. Eruption Dynamics
5.4. Eruption Deposition and Isopach Analysis
5.5. Final Remark on Hazard Aspects
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gudmundsson, A. Volcanotectonics: Understanding the Structure, Deformation, and Dynamics of Volcanoes; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Rowland, J.V.; Sibson, R.H. Structural controls on hydrothermal flow in a segmented rift system, Taupo Volcanic Zone, New Zealand. Geofluids 2004, 4, 259–283. [Google Scholar] [CrossRef]
- Caliro, S.; Chiodini, G.; Galluzzo, D.; Granieri, D.; La Rocca, M.; Saccorotti, G.; Ventura, G. Recent activity of Nisyros volcano (Greece) inferred from structural, geochemical and seismological data. Bull. Volcanol. 2005, 67, 358–369. [Google Scholar] [CrossRef]
- Fridriksson, T.; Kristjansson, B.R.; Armannsson, H.; Margretardottir, E.; Olafsdottir, S.; Chiodini, G. CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Appl. Geochem. 2006, 21, 1551–1569. [Google Scholar] [CrossRef]
- Muller, D.; Walter, T.R.; Schopa, A.; Witt, T.; Steinke, B.; Gudmundsson, M.T.; Durig, T. High-Resolution Digital Elevation Modeling from TLS and UAV Campaign Reveals Structural Complexity at the 2014/2015 Holuhraun Eruption Site, Iceland. Front. Earth Sci. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Wilson, L.; Sparks, R.S.J.; Walker, G.P.L. Explosive volcanic eruptions—IV. The control of magma properties and conduit geometry on eruption column behaviour. Geophys. J. R. Astron. Soc. 1980, 63, 117–148. [Google Scholar] [CrossRef]
- Thouret, J.C. Volcanic geomorphology—An overview. Earth-Sci. Rev. 1999, 47, 95–131. [Google Scholar] [CrossRef]
- Paulsen, T.S.; Wilson, T.J. New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics 2010, 482, 16–28. [Google Scholar] [CrossRef]
- Fairbridge, R.W. Crater. In Encyclopedia of Geomorphology; Fairbridge, R.W., Ed.; Reinhold: New York, NY, USA, 1968; pp. 207–218. [Google Scholar]
- Jenness, M.H.; Clifton, A.E. Controls on the geometry of a Holocene crater row: A field study from southwest Iceland. Bull. Volcanol. 2009, 71, 715–728. [Google Scholar] [CrossRef]
- Mastin, L.G.; Pollard, D.D. Surface Deformation and Shallow Dike Intrusion Processes at Inyo Craters, Long Valley, California. J. Geophys. Res. Solid Earth 1988, 93, 13221–13235. [Google Scholar] [CrossRef]
- Lagmay, A.M.F.; de Vries, B.V.; Kerle, N.; Pyle, D.M. Volcano instability induced by strike-slip faulting. Bull. Volcanol. 2000, 62, 331–346. [Google Scholar] [CrossRef]
- Schopa, A.; Pantaleo, M.; Walter, T.R. Scale-dependent location of hydrothermal vents: Stress field models and infrared field observations on the Fossa Cone, Vulcano Island, Italy. J. Volcanol. Geotherm. Res. 2011, 203, 133–145. [Google Scholar] [CrossRef]
- Pantaleo, M.; Walter, T.R. The ring-shaped thermal field of Stefanos crater, Nisyros Island: A conceptual model. Solid Earth 2014, 5, 183–198. [Google Scholar] [CrossRef] [Green Version]
- Hutchison, W.; Mather, T.A.; Pyle, D.M.; Biggs, J.; Yirgu, G. Structural controls on fluid pathways in an active rift system: A case study of the Aluto volcanic complex. Geosphere 2015, 11, 542–562. [Google Scholar] [CrossRef] [Green Version]
- Walter, T.R.; Jousset, P.; Allahbakhshi, M.; Witt, T.; Gudmundsson, M.T.; Hersir, G.P. Underwater and drone based photogrammetry reveals structural control at Geysir geothermal field in Iceland. J. Volcanol. Geotherm. Res. 2020, 391. [Google Scholar] [CrossRef]
- Maccaferri, F.; Richter, N.; Walter, T.R. The effect of giant lateral collapses on magma pathways and the location of volcanism. Nat. Commun. 2017, 8, 1097. [Google Scholar] [CrossRef] [Green Version]
- Zorn, E.U.; Le Corvec, N.; Varley, N.R.; Salzer, J.T.; Walter, T.R.; Navarro-Ochoa, C.; Vargas-Bracamontes, D.M.; Thiele, S.T.; Mendoza, R.A. Load Stress Controls on Directional Lava Dome Growth at Volcan de Colima, Mexico. Front. Earth Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Pyle, D.M.; Elliott, J.R. Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosphere 2006, 2, 253–268. [Google Scholar] [CrossRef]
- Cashman, K.V.; Soule, S.A.; Mackey, B.H.; Deligne, N.I.; Deardorff, N.D.; Dietterich, H.R. How lava flows: New insights from applications of lidar technologies to lava flow studies. Geosphere 2013, 9, 1664–1680. [Google Scholar] [CrossRef]
- Patrick, M.R.; Dietterich, H.R.; Lyons, J.J.; Diefenbach, A.K.; Parcheta, C.; Anderson, K.R.; Namiki, A.; Sumita, I.; Shiro, B.; Kauahikaua, J.P. Cyclic lava effusion during the 2018 eruption of Kilauea Volcano. Science 2019, 366, 1213. [Google Scholar] [CrossRef]
- Crowley, J.K.; Zimbelman, D.R. Mapping hydrothermally altered rocks on Mount Rainier, Washington, with Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data. Geology 1997, 25, 559–562. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Carr, B.; D’Arcy, F.; Diefenbach, A.; Dietterich, H.; Fornaciai, A.; Lev, E.; Liu, E.; Pieri, D.; Rodgers, M.; et al. Volcanological applications of unoccupied aircraft systems (UAS): Developments, strategies, and future challenges. Volcanica 2020, 3, 67–114. [Google Scholar] [CrossRef] [Green Version]
- Jordan, B.R. Collecting field data in volcanic landscapes using small UAS (sUAS)/drones. J. Volcanol. Geotherm. Res. 2019, 385, 231–241. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A.; Nannipieri, L.; Harris, A.; Calvari, S.; Lormand, C. UAV-based remote sensing surveys of lava flow fields: A case study from Etna’s 1974 channel-fed lava flows. Bull. Volcanol. 2018, 80. [Google Scholar] [CrossRef]
- McGonigle, A.J.S.; Aiuppa, A.; Giudice, G.; Tamburello, G.; Hodson, A.J.; Gurrieri, S. Unmanned aerial vehicle measurements of volcanic carbon dioxide fluxes. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Pering, T.D.; Liu, E.J.; Wood, K.; Wilkes, T.C.; Aiuppa, A.; Tamburello, G.; Bitetto, M.; Richardson, T.; McGonigle, A.J.S. Combined ground and aerial measurements resolve vent-specific gas fluxes from a multi-vent volcano. Nat. Commun. 2020, 11, 3039. [Google Scholar] [CrossRef]
- Zorn, E.U.; Walter, T.R.; Johnson, J.B.; Mania, R. UAS-based tracking of the Santiaguito Lava Dome, Guatemala. Sci. Rep. UK 2020. [Google Scholar] [CrossRef]
- Nakano, T.; Kamiya, I.; Tobita, M.; Iwahashi, J.; Nakajima, H. Landform Monitoring in Active Volcano by Uav and Sfm-Mvs Technique. Int. Arch. Photogramm. 2014, 40, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Syahbana, D.K.; Kasbani, K.; Suantika, G.; Prambada, O.; Andreas, A.S.; Saing, U.B.; Kunrat, S.L.; Andreastuti, S.; Martanto, M.; Kriswati, E.; et al. The 2017-19 activity at Mount Agung in Bali (Indonesia): Intense unrest, monitoring, crisis response, evacuation, and eruption. Sci. Rep. UK 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Darmawan, H.; Walter, T.R.; Brotopuspito, K.S.; Nandaka, I.G.M.A. Morphological and structural changes at the Merapi lava dome monitored in 2012-15 using unmanned aerial vehicles (UAVs). J. Volcanol. Geotherm. Res. 2018, 349, 256–267. [Google Scholar] [CrossRef]
- Walter, T.R.; Salzer, J.; Varley, N.; Navarro, C.; Arambula-Mendoza, R.; Vargas-Bracamontes, D. Localized and distributed erosion triggered by the 2015 Hurricane Patricia investigated by repeated drone surveys and time lapse cameras at Volcan de Colima, Mexico. Geomorphology 2018, 319, 186–198. [Google Scholar] [CrossRef]
- Schellenberg, B.; Richardson, T.; Watson, M.; Greatwood, C.; Clarke, R.; Thomas, R.; Wood, K.; Freer, J.; Thomas, H.; Liu, E.; et al. Remote sensing and identification of volcanic plumes using fixed-wing UAVs over Volcán de Fuego, Guatemala. J. Field Robot. 2019, 36, 1192–1211. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, A.; Kuri, M.; Nagatani, K. Field Report: Autonomous Lake Bed Depth Mapping by a Portable Semi-submersible USV at Mt. Zao Okama Crater Lake. IEEE Int. Symp. Saf. 2016, 214–219. [Google Scholar]
- Dering, G.M.; Micklethwaite, S.; Thiele, S.T.; Vollgger, S.A.; Cruden, A.R. Review of drones, photogrammetry and emerging sensor technology for the study of dykes: Best practises and future potential. J. Volcanol. Geotherm. Res. 2019, 373, 148–166. [Google Scholar] [CrossRef]
- Konagai, K.; Kiyota, T.; Shiga, M.; Tomita, H.; Okuda, H.; Kajihara, K. Ground fissures that appeared in aso caldera basin in the 2016 Kumamoto earthquake, Japan. JSCE J. Disaster Fact-Sheets 2016, 1, FS2016-E-0003. [Google Scholar]
- Turner, N.R.; Perroy, R.L.; Hon, K. Lava flow hazard prediction and monitoring with UAS: A case study from the 2014–2015 Pāhoa lava flow crisis, Hawai‘i. J. Appl. Volcanol. 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Avdeiko, G.P.; Volynets, O.N.; Antonov, A.Y.; Tsvetkov, A.A. Kurile Island-Arc Volcanism - Structural and Petrological Aspects. Tectonophysics 1991, 199, 271–287. [Google Scholar] [CrossRef]
- Avdeiko, G.P.; Antonov, A.Y.; Volynets, O.N. Submarine Volcanism and Zoning of the Kuril Island Arc. Nauka, Moscow (528 pp. in Russian). In Submarine Volcanism and Zoning of the Kuril Island Arc; Pushcharovskii, Y.M., Ed.; Nauka: Moscow, Russia, 1992; p. 529. [Google Scholar]
- Menyailov, I.A.; Nikitina, L.P.; Shapar, V.N. Results of geochemical monitoring of the activity of Ebeko volcano (Kurile Islands) used for eruption prediction. J. Geodyn. 1985, 3, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Kotenko, T.A.; Kotenko, L.V.; Shapar, V.N. Increased Activity on Ebeko Volcano, Paramushir I., North Kurils in 2005–2006. J. Volcanol. Seismol. 2007, 1, 285–295. [Google Scholar] [CrossRef]
- Kotenko, T.A.; Panin, G.L.; Balkov, E.V.; Fadeev, D.I. The application of shallow electrical tomography to the study of hydrothermal objects of the Ebeko Volcano (Paramushir Island, Kuriles). Vestn. DVO RAN 2018, 2, 101–109. [Google Scholar] [CrossRef]
- Gorshkov, G. Volcanism and the Upper Mantle: Investigations in the Kurile Island Arc; Springer: New York, NY, USA, 1970; p. 385. [Google Scholar] [CrossRef]
- Rychagov, S.N.; Belousov, V.I.; Kotenko, T.; Kotenko, L.V. Gas-Hydrothermal System of the Ebeko Volcano (Paramushir Island)—Zone of Ascending Fluid Flow in the Structure of the North-Kuril Geothermal Deposit. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010; pp. 1–4. [Google Scholar]
- Martynov, Y.A.; Khanchuk, A.I.; Kimura, J.I.; Rybin, A.V.; Martynov, A.Y. Geochemistry and Petrogenesis of Volcanic Rocks in the Kuril Island Arc. Petrology 2010, 18, 489–513. [Google Scholar] [CrossRef]
- Shevko, E.P.; Bortnikova, S.B.; Abrosimova, N.A.; Kamenetsky, V.S.; Bortnikova, S.P.; Panin, G.L.; Zelenski, M. Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles. Geofluids 2018. [Google Scholar] [CrossRef] [Green Version]
- Gorshkov, G. The Volcanism of the Kurile Island Arc; Nauka: Moscow, Russia, 1967; pp. 1–287. [Google Scholar]
- Menyailov, I.A.; Nikitina, L.P.; Khramova, G.G. The gashydrothermal eruption of Ebeko volcano in February-April, 1967. Bull. Volcanot. Stn. 1969, 45, 3–6. [Google Scholar]
- Basov, E.I.; van Weering, T.C.E.; Gaedike, C.; Baranov, B.V.; Lelikov, E.P.; Obzhirov, A.I.; Belykh, I.N. Seismic fades and specific character of the bottom simulating reflector on the western margin of Paramushir Island, Sea of Okhotsk. Geo. Mar. Lett. 1996, 16, 297–304. [Google Scholar] [CrossRef]
- Kalacheva, E.; Kotenko, T.; Voloshina, E. Chemical weathering fluxes from Paramushir volcanic island (Kuril Island arc, Russia). E3s Web Conf. 2019, 98. [Google Scholar] [CrossRef]
- Kotenko, T.A.; Kotenko, L.V. Hydrothermal manifestations and heat flux of volcanoes Ebeko and Krasheninnikov (Paramushir, Kuril Islands). Vestn. Kraunts 2006, 1, 129–137. [Google Scholar]
- Melnikov, D.; Malik, N.; Kotenko, T. A New Estimate of Gas Emissions from Ebeko Volcano, Kurile Islands. In Proceedings of the Goldschmidt Conference, Yokohama, Japan, 26 June–1 July 2016; p. 2047. [Google Scholar]
- Taran, Y.; Zelenski, M.; Chaplygin, I.; Malik, N.; Campion, R.; Inguaggiat, S.; Pokrovsky, B.; Kalacheva, E.; Melnikov, D.; Kazahaya, R.; et al. Gas Emissions From Volcanoes of the Kuril Island Arc (NW Pacific): Geochemistry and Fluxes. Geochem. Geophys. Geosyst. 2018, 19, 1859–1880. [Google Scholar] [CrossRef]
- Panin, G.L.; Gora, M.P.; Bortnikova, S.P.; Shevko, E.P. Subsurface structure of the northeastern fumarole field of the Ebeko Volcano (Paramushir Island) according to the data of geoelectrical and geochemical studies. Russ. J. Pac. Geol. 2015, 9, 301–311. [Google Scholar] [CrossRef]
- Kotenko, T.A.; Kotenko, L.V.; Sandimirova, E.I.; Shapar, V.N.; Timofeeva, I.F. Eruption activity of Ebeko volcano (Paramushir i.) in 2010–2011. Vestn. Kraunts 2012, 1, 160–167. [Google Scholar]
- Kalacheva, E.; Taran, Y.; Kotenko, T.; Hattori, K.; Kotenko, L.; Solis-Pichardo, G. Volcano-hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: Geochemistry and solute fluxes of magmatic chlorine and sulfur. J. Volcanol. Geotherm. Res. 2016, 310, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Ball, M.; Pinkerton, H. Factors affecting the accuracy of thermal imaging cameras in volcanology. J. Geophys. Res.-Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Stevenson, J.A.; Varley, N. Fumarole monitoring with a handheld infrared camera; Volcan de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 2008, 177, 911–924. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ’Structure-from-motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Kalacska, M.; Lucanus, O.; Arroyo-Mora, J.P.; Laliberté, É.; Elmer, K.; Leblanc, G.; Groves, A. Accuracy of 3d landscape reconstruction without ground control points using different uas platforms. Drones 2020, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Heimann, S.; Vasyura-Bathke, H.; Sudhaus, H.; Isken, M.P.; Kriegerowski, M.; Steinberg, A.; Dahm, T. A Python framework for efficient use of pre-computed Green’s functions in seismological and other physical forward and inverse source problems. Solid Earth 2019, 10, 1921–1935. [Google Scholar] [CrossRef] [Green Version]
- Witt, T.; Walter, T.R. Video monitoring reveals pulsating vents and propagation path of fissure eruption during the March 2011 Pu’u ‘O’o eruption, Kilauea volcano. J. Volcanol. Geotherm. Res. 2017, 330, 43–55. [Google Scholar] [CrossRef]
- Witt, T.; Walter, T.R.; Muller, D.; Gudmundsson, M.T.; Schopa, A. The Relationship Between Lava Fountaining and Vent Morphology for the 2014-2015 Holuhraun Eruption, Iceland, Analyzed by Video Monitoring and Topographic Mapping. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Heap, M.J.; Troll, V.R.; Kushnir, A.R.L.; Gilg, H.A.; Collinson, A.S.D.; Deegan, F.M.; Darmawan, H.; Seraphine, N.; Neuberg, J.; Walter, T.R. Hydrothermal alteration of andesitic lava domes can lead to explosive volcanic behaviour. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Akbashev, R.F.; Firstov, P.P. The response of the atmospheric electric potential gradient to the ash clouds of v. Shiveluch and v. Ebeko (Peninsula Kamchatka, Island Paramushir, Russia). IOP Conf. Ser. Mater. Sci. Eng. 2019, 698, 044042. [Google Scholar] [CrossRef]
- Pering, T.D.; Tamburello, G.; McGonigle, A.J.S.; Aiuppa, A.; James, M.R.; Lane, S.J.; Sciotto, M.; Cannata, A.; Patane, D. Dynamics of mild strombolian activity on Mt. Etna. J. Volcanol. Geotherm. Res. 2015, 300, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Ripepe, M.; Donne, D.D.; Harris, A.; Marchetti, E.; Ulivieri, G. Dynamics of Strombolian Activity. In The Stromboli Volcano: An Integrated Study of the 2002–2003 Eruption; Calvari, S., Inguaggiato, S., Puglisi, G., Ripepe, M., Rosi, M., Eds.; AGU Geophysical Monograph Series; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 39–48. [Google Scholar] [CrossRef]
- Eibl, E.P.S.; Hainzl, S.; Vesely, N.I.K.; Walter, T.R.; Jousset, P.; Hersir, G.P.; Dahm, T. Eruption Interval Monitoring at Strokkur Geyser, Iceland. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Inza, L.A.; Metaxian, J.P.; Mars, J.I.; Bean, C.J.; O’Brien, G.S.; Macedo, O.; Zandomeneghi, D. Analysis of dynamics of vulcanian activity of Ubinas volcano, using multicomponent seismic antennas. J. Volcanol. Geotherm. Res. 2014, 270, 35–52. [Google Scholar] [CrossRef]
- Pyle, D.M. The thickness, volume and grainsize of tephra fall deposits. Bull. Volcanol. 1989, 51, 1–15. [Google Scholar] [CrossRef]
- Cioni, R.; Longo, A.; Macedonio, G.; Santacroce, R.; Sbrana, A.; Sulpizio, R.; Andronico, D. Assessing pyroclastic fall hazard through field data and numerical simulations: Example from Vesuvius. J. Geophys. Res. Solid Earth 2003, 108. [Google Scholar] [CrossRef] [Green Version]
- Marzocchi, W.; Sandri, L.; Selva, J. BET_VH: A probabilistic tool for long-term volcanic hazard assessment. Bull. Volcanol. 2010, 72, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Walker, G.P.L.; Croasdale, R. Characteristics of some basaltic pyroclastics. Bull. Volcanol. 1971, 35, 303–317. [Google Scholar] [CrossRef]
- Yang, Q.Y.; Bursik, M.; Pitman, E.B. A new method to identify the source vent location of tephra fall deposits: Development, testing, and application to key Quaternary eruptions of Western North America (vol 81, 51, 2019). Bull. Volcanol. 2019, 81. [Google Scholar] [CrossRef] [Green Version]
- Klawonn, M.; Houghton, B.F.; Swanson, D.A.; Fagents, S.A.; Wessel, P.; Wolfe, C.J. Constraining explosive volcanism: Subjective choices during estimates of eruption magnitude. Bull. Volcanol. 2014, 76. [Google Scholar] [CrossRef]
- Melekestsev, I.V.; Dvigalo, V.N.; Kirianov, V.Y. Ebeko volcano (Kuril Islands): History of the eruptive activity and a future volcanic hazard. Vulcanol. Seismol. 1993, 3, 69–81. [Google Scholar]
- Kirianov, V.Y. Volcanic ash in Kamchatka as a source of potential hazard to air traffic. In Proceedings of the Volcanic Ash and Aviation Safety: First International Symposium, Seattle, DC, USA, 8–12 July 1991; pp. 57–64. [Google Scholar]
- Melekestsev, I.V.; Braitseva, O.A.; Ponomareva, V.V.; Sulerzhitskiy, L.D. Age and Dynamics of Formation of Active Volcanos of Kuril-Kamchatka Region. Izv. Akad. Nauk SSSR Seriya Geol. 1990, 4, 17–31. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walter, T.R.; Belousov, A.; Belousova, M.; Kotenko, T.; Auer, A. The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations. Remote Sens. 2020, 12, 1961. https://doi.org/10.3390/rs12121961
Walter TR, Belousov A, Belousova M, Kotenko T, Auer A. The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations. Remote Sensing. 2020; 12(12):1961. https://doi.org/10.3390/rs12121961
Chicago/Turabian StyleWalter, Thomas R., Alexander Belousov, Marina Belousova, Tatiana Kotenko, and Andreas Auer. 2020. "The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations" Remote Sensing 12, no. 12: 1961. https://doi.org/10.3390/rs12121961
APA StyleWalter, T. R., Belousov, A., Belousova, M., Kotenko, T., & Auer, A. (2020). The 2019 Eruption Dynamics and Morphology at Ebeko Volcano Monitored by Unoccupied Aircraft Systems (UAS) and Field Stations. Remote Sensing, 12(12), 1961. https://doi.org/10.3390/rs12121961