Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. NDVI Data Acquisition
2.2.1. NDVI Data Acquisition by GreenSeeker Handheld Spectrometer
2.2.2. MODIS NDVI Data
2.3. FVC Data Collection
2.3.1. Extracting FVC by UAVRS
2.3.2. FVC Inversion Based on MODIS-NDVI Data
2.4. Collection and Processing of Meteorological Data
2.5. Accuracy Verification
2.6. Data Analysis
3. Results
3.1. Variation Characteristics of FVC, NDVI, and Meteorological Elements in Alxa
3.2. Impact of Scale on this Experiment
3.3. Verifying the Accuracy of MODIS-NDVI Data and FVCM
3.4. FVC Changes with Hydrothermal Gradient
4. Discussion
4.1. Impact of Scale on This Experiment
4.2. The Influence of NDVI Image Data on the Inversion Results
4.3. The Effects of Meteorological Factors on Vegetation Coverage Obtained by Different Collection Methods
4.4. Impact of Human Disturbance on Vegetation Coverage
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, L.L.; Jia, Z.Q.; Li, Q.X.; Zhao, A.Z.; Zhao, Y.L.; Zhang, Z.J. Spatiotemporal change of sparse vegetation coverage in northern China. J. Indian Soc. Remote Sens. 2019, 47, 359–366. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Pilmanis, A.M. Plant-soil interactions in deserts. Biogeochemistry 1998, 42, 169–187. [Google Scholar] [CrossRef]
- Iizuka, K.; Kato, T.; Silsigia, S.; Soufiningrum, A.Y.; Kozan, O. Estimating and examining the sensitivity of different vegetation indices to fractions of vegetation cover at different scaling grids for early stage acacia plantation forests using a fixed-wing UAS. Remote Sens. 2019, 11, 1816. [Google Scholar] [CrossRef] [Green Version]
- Baret, F.; Clevers, J.; Steven, M.D. The robustness of canopy gap fraction estimates from red and near-infrared reflectances – a comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Huete, A.R.; Tucker, C.J. Investigation of soil influences in AVHRR and near – infrared vegetation index imagery. Int. J. Remote Sens. 1991, 12, 1223–1242. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Weltzin, J.F.; Loik, M.E.; Schwinning, S.; Williams, D.G.; Fay, P.A.; Haddad, B.M.; Harte, J.; Huxman, T.E.; Knapp, A.K.; Lin, G.H.; et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation. Bioscience 2003, 53, 941–952. [Google Scholar] [CrossRef]
- Keeling, C.D.; Chin, J.F.S.; Whorf, T.P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 1996, 382, 146–149. [Google Scholar] [CrossRef]
- Curran, P.J.; Williamson, H.D. Sample size for ground and remotely sensed sata. Remote Sens. Environ. 1986, 20, 31–41. [Google Scholar] [CrossRef]
- Nemani, R.R.; Running, S.W.; Pielke, R.A.; Chase, T.N. Global vegetation cover changes from coarse resolution satellite data. J. Geophys. Res.-Atmos. 1996, 101, 7157–7162. [Google Scholar] [CrossRef] [Green Version]
- Okin, G.S.; Clarke, K.D.; Lewis, M.M. Comparison of methods for estimation of absolute vegetation and soil fractional cover using MODIS normalized BRDF-adjusted reflectance data. Remote Sens. Environ. 2013, 130, 266–279. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Tao, J.; Xiao, Y.; Qian, F. Monitoring vegetation cover in Chongqing between 2001 and 2010 using remote sensing data. Environ. Monit. Assess. 2017, 189. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices. Int. J. Remote Sens. 2013, 34, 6054–6066. [Google Scholar] [CrossRef]
- Okin, G.S. Relative spectral mixture analysis—A multitemporal index of total vegetation cover. Remote Sens. Environ. 2007, 106, 467–479. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Tottrup, C.; Rasmussen, M.S.; Eklundh, L.; Jonsson, P. Mapping fractional forest cover across the highlands of mainland Southeast Asia using MODIS data and regression tree modelling. Int. J. Remote Sens. 2007, 28, 23–46. [Google Scholar] [CrossRef]
- Leprieur, C.; Kerr, Y.H.; Mastorchio, S.; Meunier, J.C. Monitoring vegetation cover across semi-arid regions: Comparison of remote observations from various scales. Int. J. Remote Sens. 2000, 21, 281–300. [Google Scholar] [CrossRef]
- Xiao, J.F.; Moody, A. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sens. Environ. 2005, 98, 237–250. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SfM) point clouds. Remote Sens. 2012, 4, 1392–1410. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Wu, F.; Hu, T.; Chen, L.; Liu, J.; Zhao, X.; Gao, S.; Pang, S. Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodivers. Sci. 2016, 24, 1267–1278. [Google Scholar] [CrossRef]
- Iizuka, K.; Yonehara, T.; Itoh, M.; Kosugi, Y. Estimating tree height and diameter at breast height (DBH) from digital surface models and orthophotos obtained with an unmanned aerial system for a Japanese cypress (chamaecyparis obtusa) forest. Remote Sens. 2018, 10, 13. [Google Scholar] [CrossRef] [Green Version]
- Fang, S.H.; Tang, W.C.; Peng, Y.; Gong, Y.; Dai, C.; Chai, R.H.; Liu, K. Remote estimation of vegetation fFraction and flower fraction in oilseed rape with unmanned aerial vehicle Data. Remote Sens. 2016, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Yi, S.; Qin, Y.; Wang, X. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai-Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Riihimaki, H.; Luoto, M.; Heiskanen, J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Ming-zhu, H.E.; Zhi-shan, Z.; Xiao-jun, L.I.; Rong-liang, J.I.A.; Jing-guang, Z.; Jing-gang, Z. Environmental effects on distribution and composition of desert vegetations in Alxa Plateau: Ⅰ. Environmental effects on the distribution patterns of vegetation in Alxa Plateau. J. Desert Res. 2010, 30, 46–56. [Google Scholar]
- Yi, S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2017, 38, 2686–2697. [Google Scholar] [CrossRef]
- Sun, Y.; Yi, S.; Hou, F. Unmanned aerial vehicle methods makes species composition monitoring easier in grasslands. Ecolog. Indic. 2018, 95, 825–830. [Google Scholar] [CrossRef]
- Junlong, L.I.; Jian, Z.; Cong, Z.; Quangong, C. Analyze and compare the spatial Interpolation methods for climate factor. Pratacultural Sci. 2006, 23, 6–11. [Google Scholar]
- John, F.; Sanford, W. An. {R} Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Chris, W.R.; Ralph, M.N. Hier.part: Hierarchical Partitioning; R package version 1.0-4. Available online: https://CRAN.R-project.org/package=hier.part (accessed on 26 April 2020).
- Souza, H.B.; Baio, F.H.R.; Neves, D.C. Using passive and active multispectral sensors on the correlation with the phenological indices of cotton. Eng. Agric. 2017, 37, 782–789. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Tao, X.; Zhang, Z.; Du, Y.X.; Lu, X. Monitoring of Aphis gossypii Using Greenseeker and SPAD Meter. J. Indian Soc. Remote Sens. 2017, 45, 361–367. [Google Scholar] [CrossRef]
- Martin, D.E.; Latheef, M.A. Active optical sensor assessment of spider mite damage on greenhouse beans and cotton. Exp. Appl. Acarol. 2018, 74, 147–158. [Google Scholar] [CrossRef]
- Ji, R.T.; Min, J.; Wang, Y.; Cheng, H.; Zhang, H.L.; Shi, W.M. In-Season yield prediction of cabbage with a hand-held active canopy sensor. Sensors 2017, 17, 2287. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.M.; Abou-Amer, I.; Ibrahim, S.M. Using GreenSeeker active optical sensor for optimizing maize nitrogen fertilization in calcareous soils of Egypt. Arch. Agron. Soil Sci. 2018, 64, 1083–1093. [Google Scholar] [CrossRef]
- Enciso, J.; Maeda, M.; Landivar, J.; Jung, J.; Chang, A. A ground based platform for high throughput phenotyping. Comput. Electron. Agricul. 2017, 141, 286–291. [Google Scholar] [CrossRef]
- Duan, T.; Chapman, S.C.; Guo, Y.; Zheng, B. Dynamic monitoring of NDVI in wheat agronomy and breeding trials using an unmanned aerial vehicle. Field Crop. Res. 2017, 210, 71–80. [Google Scholar] [CrossRef]
- Friedl, M.A.; Davis, F.W.; Michaelsen, J.; Moritz, M.A. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables: An analysis using a scene simulation model and data from FIFE. Remote Sens. Environ. 1995, 54, 233–246. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, Z.; Liu, Y.; Yan, Y. A Review of the Scaling Issues of Geospatial Data. Adv. Earth Sci. 2013, 28, 297–304. [Google Scholar]
- Dark, S.J.; Bram, D. The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 2007, 31, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Snyder, W.C.; Wan, Z.M.; Zhang, Y.L.; Feng, Y.Z. Requirements for satellite land surface temperature validation using a silt playa. Remote Sens. Environ. 1997, 61, 279–289. [Google Scholar] [CrossRef]
- Huawei, W.A.N.; Jindi, W.; Yonghua, Q.U.; Ziti, J.; Hao, Z. Preliminary research on scale effect and scaling-up of the vegetation spectrum. J. Remote Sens. 2008, 12, 538–545. [Google Scholar]
- Luan, H.; Tian, Q.; Yu, T.; Hu, X.; Huang, Y.; Liu, L.; Du, L.; Wei, X. Review of up-scaling of quantitative remote sensing. Adv. Earth Sci. 2013, 28, 657–664. [Google Scholar]
- Huete, A.R.; Liu, H.Q.; Batchily, K.; van Leeuwen, W. A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens. Environ. 1997, 59, 440–451. [Google Scholar] [CrossRef]
- Huete, A.R.; Jackson, R.D.; Post, D.F. Spectral response of a plant canopy with different soil backgrounds. Remote Sens. Environ. 1985, 17, 37–53. [Google Scholar] [CrossRef]
- Diaz, B.M.; Blackburn, G.A. Remote sensing of mangrove biophysical properties: Evidence from a laboratory simulation of the possible effects of background variation on spectral vegetation indices. Int. J. Remote Sens. 2003, 24, 53–73. [Google Scholar] [CrossRef]
- Ding, Y.; Zheng, X.; Zhao, K.; Xin, X.; Liu, H. Quantifying the impact of NDVIsoil determination methods and NDVIsoil variability on the estimation of fractional vegetation cover in northeast China. Remote Sens. 2016, 8, 29. [Google Scholar] [CrossRef] [Green Version]
- Baumgardner, M.F.; Silva, L.F.; Biehl, L.L.; Stoner, E.R. Reflectance properties of soils. Adv. Agron. 1985, 38, 1–44. [Google Scholar]
- Johnson, B.; Tateishi, R.; Kobayashi, T. Remote sensing of fractional green vegetation cover using spatially-interpolated endmembers. Remote Sens. 2012, 4, 2619–2634. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.H.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.J.; Zhao, W.Q.; Jia, K. Evaluation of spatiotemporal variations of global fractional vegetation cover based on GIMMS NDVI data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.B.; Dickinson, R.E.; Walker, A.; Shaikh, M.; DeFries, R.S.; Qi, J.G. Derivation and evaluation of global 1-km fractional vegetation cover data for land modeling. J. Appl. Meteorol. 2000, 39, 826–839. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Huete, A.R.; Chen, J.; Chen, Y.H.; Li, J.; Yan, G.J.; Zhang, X.Y. Analysis of NDVI and scaled difference vegetation index retrievals of vegetation fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Spring Science+Business Media. LLC: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Li, C.; Wang, J.; Hu, R.; Yin, S.; Bao, Y.; Ayal, D.Y. Relationship between vegetation change and extreme climate indices on the Inner Mongolia Plateau, China, from 1982 to 2013. Ecolog. Indic. 2018, 89, 101–109. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, X.; Zhou, C.; Zhang, H.; Ouyang, H. Responses of vegetation changes to climatic variations in Hulun Buir grassland in past 30 Years. Acta Geogr. Sin. 2011, 66, 47–58. [Google Scholar]
- Zhong, L.; Ma, Y.M.; Salama, M.S.; Su, Z.B. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim. Change. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Sanaei, A.; Li, M.; Ali, A. Topography, grazing, and soil textures control over rangelands’ vegetation quantity and quality. Sci. Total Environ. 2019, 697. [Google Scholar] [CrossRef]
Element | Range | Mean | Standard Deviation | Ration less than Average | Ratio below a Certain Threshold |
---|---|---|---|---|---|
NDVIR | 0.0645–0.3980 | 0.1544 | 0.0702 | 67% | 79% |
NDVIM | 0.0689–0.3906 | 0.1591 | 0.0745 | 63% | 78% |
FVCU | 0.0130–0.5354 | 0.1573 | 0.1214 | 63% | 70% |
FVCM | 0.0338–0.4503 | 0.1506 | 0.0965 | 63% | 78% |
Temperature (°C) | 8.39–10.49 | 9.51 | 0.54 | 43% | - |
Precipitation (mm) | 93.31–325.95 | 168.55 | 59.58 | 62% | 79% |
Evaporation (mm) | 1275.30–2203.54 | 1790.41 | 293.37 | 54% | 37% |
Land surface temperature (°C ) | 11.36–13.84 | 12.94 | 0.66 | 55% | - |
Height(metres) | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|
Length(metres) | 17.2 | 34.4 | 51.6 | 68.8 | 86 | 103.2 | 120.4 | 137.6 | 154.8 | 172 |
Width(metres) | 12.8 | 25.6 | 38.4 | 51.2 | 64 | 76.8 | 89.6 | 102.4 | 115.2 | 128 |
Vegetation Index | Fitting Equation | R2 | RMSE | NRMSE | AIC |
---|---|---|---|---|---|
FVCR | FVCR = −10.53 + 1.939T + 0.01585P − 0.0003876T:V + 0.0002772V:L − 0.001559T:P − 0.06309T:L | 0.7364 | 0.0623 | 53.28% | −546.55 |
FVCM | FVCM = −0.9219 − 0.002354V + 0.5962T + 0.001268P + 0.0001761V:L − 0.038T:L | 0.8342 | 0.0393 | 180.18% | −641.85 |
Vegetation Index | V | T | P | L | V:L | T:L | T:P | T:V | R2 |
---|---|---|---|---|---|---|---|---|---|
FVCR | - | 0.0429 | 0.1868 | - | 0.1500 | 0.0274 | 0.1999 | 0.1294 | 0.7364 |
FVCM | 0.2357 | 0.0278 | 0.2991 | - | 0.2393 | 0.0323 | - | - | 0.8342 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, L.; He, M.; Li, X. Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology. Remote Sens. 2020, 12, 1742. https://doi.org/10.3390/rs12111742
Tang L, He M, Li X. Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology. Remote Sensing. 2020; 12(11):1742. https://doi.org/10.3390/rs12111742
Chicago/Turabian StyleTang, Liang, Mingzhu He, and Xinrong Li. 2020. "Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology" Remote Sensing 12, no. 11: 1742. https://doi.org/10.3390/rs12111742
APA StyleTang, L., He, M., & Li, X. (2020). Verification of Fractional Vegetation Coverage and NDVI of Desert Vegetation via UAVRS Technology. Remote Sensing, 12(11), 1742. https://doi.org/10.3390/rs12111742