A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements
Abstract
:1. Introduction
2. DInSAR Techniques
3. GeoNode Platform
- spatial search of the data and metadata;
- management and sharing of raster, vector data and metadata;
- management of security policies on data sharing;
- data visualization and integration from different sources, both stored on infrastructures and from services supplied from outside through the Web Map Service (WMS) [79], by using an integrated WebGis environment to build interactive maps.
- DJango: a high-level Python Web framework [81], used to develop GeoNode;
- GeoExplorer: a webGIS component for GeoNode [86];
- GeoWebCache: a Java web application used to cache map to accelerate and optimize map image delivery [87];
- PostgreSQL: an object-relational database, allowing efficient storage, query, and analysis of the location information [88];
- PostGIS: a spatial database extender for PostgreSQL object-relational database. It adds support for geographic objects allowing location queries to be run in the Structured Query Language (SQL), a standard language for storing, manipulating and retrieving data in databases [89].
- it permits development of geospatial services within a fully free and open source framework;
- it is an environment originally developed to manage geographic content that easily allows the extension of its functionalities.
- GeoNode is a dedicated environment to the SDIs development which is build in Django, an environment that allows the easy extension of the GeoNode functionalities by using Python codes. Instead, Easy SDI is developed as a plug-in of the Joomla [98] Content Management System (CMS), a system not originally developed to manage geographic contents.
4. GeoNode Modifications for the Advanced DInSAR Processing Results Integration
5. Results
6. Discussion
- (a)
- permits development of geospatial services within a fully free and open source framework;
- (b)
- is an environment originally developed to manage geographic contents that easily allows the extension of its functionalities.
7. Conclusions
- upload/update of the DInSAR measurements in a PostgreSQL/PostGIS geodatabase;
- visualization and analysis of the DInSAR deformation time-series, with the possibility to compare on the same graph the temporal evolution of multiple data pixels on different temporal spans belonging to the same processed dataset or to different ones;
- visualization and analysis of the DInSAR mean deformation velocity cross-sections for each pixel belonging to a drawn segment on the map;
- visualization and analysis of the DInSAR mean deformation velocity maps;
- generation of a personalized color table (palette) for an appropriate visualization of the DInSAR mean deformation velocity values;
- download of data belonging to a selected area;
- creation of “png” format images to save the visualized layers in the GeoNode webGIS interface (GeoExplorer).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
CMS | Content Management System |
CPAN | Comprehensive Perl Archive Network |
CSK | COSMO-SkyMed |
DInSAR | Differential Interferometric Synthetic Aperture Radar |
DS | Distributed Scatterers |
EO | Earth Observation |
EPOS | European Plate Observing System |
ESFRI | European Strategy Forum on Research Infrastructure |
GPL | GNU General Public Licence |
InSAR | SAR Interferometry |
IWS | Interferometric Wide Swath |
OGC | Open Geospatial Consortium |
OS | Operating System |
OSGeo | Open Source Geospatial Foundation |
PS | Persistent Scatterer technique |
S1 | Sentinel-1 |
SB | Small Baseline technique |
SDI | Spatial Data Infrastructure |
SAR | Synthetic Aperture RADAR |
SBAS | Small BAseline Subset |
SLD | Styled Layer Descriptor |
TSX | TerraSAR-X |
TOPS | Terrain Observation with Progressive Scans |
References
- VV.AA. 2019. Available online: https://business.esa.int/newcomers-earth-observation-guide (accessed on 31 July 2019).
- Mathieu, P.P.; Borgeaud, M.; Desnos, Y.L.; Rast, M.; Brockmann, C.; See, L.; Kapur, R.; Mahecha, M.; Benz, U.; Fritz, S. The ESA’s Earth Observation Open Science Program [Space Agencies]. IEEE Geosci. Remote Sens. Mag. 2017, 5, 86–96. [Google Scholar] [CrossRef]
- Borowitz, M. Open Space: The Global Effort for Open Access to Environmental Satellite Data; Information Policy; MIT Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Kiyoo, M. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Earthq. Res. Inst. 1958, 36, 99–134. [Google Scholar]
- Chinnery, M.A. The deformation of the ground around surface faults. Bull. Seismol. Soc. Am. 1961, 51, 355–372. [Google Scholar]
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Massonnet, D.; Briole, P.; Arnaud, A. Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 1995, 375, 567. [Google Scholar] [CrossRef]
- Peltzer, G.; Rosen, P. Surface Displacement of the 17 May 1993 Eureka Valley, California, Earthquake Observed by SAR Interferometry. Science 1995, 268, 1333–1336. [Google Scholar] [CrossRef]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 MW7.1 Hector Mine Earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef]
- Cascini, L.; Ferlisi, S.; Fornaro, G.; Lanari, R.; Peduto, D.; Zeni, G. Subsidence monitoring in Sarno urban area via multi-temporal DInSAR technique. Int. J. Remote Sens. 2006, 27, 1709–1716. [Google Scholar] [CrossRef]
- Colesanti, C.; Wasowski, J. Investigating landslides with space-borne Synthetic Aperture Radar (SAR) interferometry. Eng. Geol. 2006, 88, 173–199. [Google Scholar] [CrossRef]
- Clough, R.; Woodward, R. Analysis of Embankment Stresses and Deformations; Soil Mechanics and Bituminous Materials Laboratory, University of California: Berkeley, CA, USA, 1966. [Google Scholar]
- Yerkes, R.; Castle, R. Surface deformation associated with oil and gas field operations in the United States. Land Subsid. 1969, 1, 55–64. [Google Scholar]
- Farrell, W.E. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Orr, M., Jr. CO2 capture and storage: Are we ready? Energy Environ. Sci. 2009, 2, 449–458. [Google Scholar] [CrossRef]
- O’Reilly, M.; New, B. Settlements above tunnels in the United Kingdom—Their magnitude and prediction. In Proc. Tunnelling ’82; Institution of Mining & Metallurgy: London, UK, 1982; pp. 173–181. [Google Scholar]
- Hsieh, P.A. Deformation-Induced Changes in Hydraulic Head During Ground-Water Withdrawal. Groundwater 1996, 34, 1082–1089. [Google Scholar] [CrossRef]
- Gourmelen, N.; Amelung, F.; Casu, F.; Manzo, M.; Lanari, R. Mining-related ground deformation in Crescent Valley, Nevada: Implications for sparse GPS networks. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Rackley, S.A. Carbon Capture and Storage; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Solid Earth 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Bürgmann, R.; Rosen, P.A.; Fielding, E.J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation. Annu. Rev. Earth Planet. Sci. 2000, 28, 169–209. [Google Scholar] [CrossRef]
- Zebker, H.A.; Villasenor, J. Decorrelation in interferometric radar echoes. IEEE Trans. Geosci. Remote Sens. 1992, 30, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Franceschetti, G.; Lanari, R. Synthetic Aperture Radar Processing; CRC: Boca Raton, FL, USA, 1999. [Google Scholar]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 7, pp. 4362–4364. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Mora, O.; Mallorqui, J.J.; Broquetas, A. Linear and nonlinear terrain deformation maps from a reduced set of interferometric SAR images. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2243–2253. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small baseline approach for investigating deformations on full resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Sansosti, E.; Berardino, P.; Bonano, M.; Calò, F.; Castaldo, R.; Casu, F.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; et al. How second generation SAR systems are impacting the analysis of ground deformation. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Copernicus. 2019. Available online: https://www.copernicus.eu/ (accessed on 31 July 2019).
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- VV.AA. SDI Cookbook; Technical Report; Global Spatial Data Infrastructure Association: Gilbertville, IA, USA, 2012. [Google Scholar]
- The White House; Office of Management and Budget (OMB). Circular No. A-16 Revised; 19 August 2002; Office of Management and Budget, US Government: Executive Office of the President of the United States: Washington, DC, USA, 2002.
- VV.AA. 2019. Available online: https://www.opengeospatial.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://interoperability-definition.info/en/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.opengeospatial.org/ogc/glossary/i (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://researchguides.library.wisc.edu/c.php?g=178144&p=1169699 (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://geonode.org/ (accessed on 31 July 2019).
- Elachi, C.; Geoscience, I.; Society, R.S. Spaceborne Radar Remote Sensing: Applications and Techniques; IEEE Press: New York, NY, USA, 1987. [Google Scholar]
- Curlander, J.C.; McDonough, R.N. Synthetic Aperture Radar—Systems And Signal Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1991. [Google Scholar]
- Cumming, I.; Wong, F. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Rignot, E. Radar interferometry detection of hinge-line migration on Rutford Ice Stream and Carlson Inlet, Antarctica. Ann. Glaciol. 1998. [Google Scholar] [CrossRef]
- Tesauro, M.; Berardino, P.; Lanari, R.; Sansosti, E.; Fornaro, G.; Franceschetti, G. Urban subsidence inside the city of Napoli (Italy) Observed by satellite radar interferometry. Geophys. Res. Lett. 2000, 27, 1961–1964. [Google Scholar] [CrossRef]
- Hanssen, R. Radar Interferometry: Data Interpretation and Error Analysis (Remote Sensing and Digital Image Processing); Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Lanari, R.; De Natale, G.; Berardino, P.; Sansosti, E.; Ricciardi, G.P.; Borgstrom, S.; Capuano, P.; Pingue, F.; Troise, C. Evidence for a peculiar style of ground deformation inferred at Vesuvius volcano. Geophys. Res. Lett. 2002, 29, 6-1–6-4. [Google Scholar] [CrossRef]
- Manzo, M.; Ricciardi, G.; Casu, F.; Ventura, G.; Zeni, G.; Borgström, S.; Berardino, P.; Gaudio, C.D.; Lanari, R. Surface deformation analysis in the Ischia Island (Italy) based on spaceborne radar interferometry. J. Volcanol. Geotherm. Res. 2006, 151, 399–416. [Google Scholar] [CrossRef]
- Lanari, R.; Zeni, G.; Manunta, M.; Guarino, S.; Berardino, P.; Sansosti, E. An integrated SAR/GIS approach for investigating urban deformation phenomena: A case study of the city of Naples, Italy. Int. J. Remote Sens. 2004, 25, 2855–2867. [Google Scholar] [CrossRef]
- Perrone, A.; Zeni, G.; Piscitelli, S.; Pepe, A.; Loperte, A.; Lapenna, V.; Lanari, R. Joint analysis of SAR interferometry and electrical resistivity tomography surveys for investigating ground deformation: The case-study of Satriano di Lucania (Potenza, Italy). Eng. Geol. 2006, 88, 260–273. [Google Scholar] [CrossRef]
- Fernández, J.; Tizzani, P.; Manzo, M.; Borgia, A.; González, P.J.; Martí, J.; Pepe, A.; Camacho, A.G.; Casu, F.; Berardino, P.; et al. Gravity-driven deformation of Tenerife measured by InSAR time series analysis. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Ruch, J.; Manconi, A.; Zeni, G.; Solaro, G.; Pepe, A.; Shirzaei, M.; Walter, T.R.; Lanari, R. Stress transfer in the Lazufre volcanic area, central Andes. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Hunstad, I.; Pepe, A.; Atzori, S.; Tolomei, C.; Salvi, S.; Lanari, R. Surface deformation in the Abruzzi region, Central Italy, from multitemporal DInSAR analysis. Geophys. J. Int. 2009, 178, 1193–1197. [Google Scholar] [CrossRef] [Green Version]
- Manconi, A.; Walter, T.R.; Manzo, M.; Zeni, G.; Tizzani, P.; Sansosti, E.; Lanari, R. On the effects of 3-D mechanical heterogeneities at Campi Flegrei caldera, southern Italy. J. Geophys. Res. 2010, 115, B08405. [Google Scholar] [CrossRef]
- Lanari, R.; Berardino, P.; Bonano, M.; Casu, F.; Manconi, A.; Manunta, M.; Manzo, M.; Pepe, A.; Pepe, S.; Sansosti, E.; et al. Surface displacements associated with the L’Aquila 2009 Mw 6.3 earthquake (central Italy): New evidence from SBAS-DInSAR time series analysis. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Zeni, G.; Bonano, M.; Casu, F.; Manunta, M.; Manzo, M.; Marsella, M.; Pepe, A.; Lanari, R. Long-term deformation analysis of historical buildings through the advanced SBAS-DInSAR technique: The case study of the city of Rome, Italy. J. Geophys. Eng. 2011, 8, S1. [Google Scholar] [CrossRef]
- Manzo, M.; Fialko, Y.; Casu, F.; Pepe, A.; Lanari, R. A Quantitative Assessment of DInSAR Measurements of Interseismic Deformation: The Southern San Andreas Fault Case Study. Pure Appl. Geophys. 2011, 166, 1–20. [Google Scholar] [CrossRef]
- Calò, F.; Ardizzone, F.; Castaldo, R.; Lollino, P.; Tizzani, P.; Guzzetti, F.; Lanari, R.; Angeli, M.G.; Pontoni, F.; Manunta, M. Enhanced landslide investigations through advanced DInSAR techniques: The Ivancich case study, Assisi, Italy. Remote Sens. Environ. 2014, 142, 69–82. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Pepe, A.; Gao, W.; Lu, Z.; Bonano, M.L.; He, M.; Wang, J.; Tang, X. A DInSAR Investigation of the Ground Settlement Time Evolution of Ocean-Reclaimed Lands in Shanghai. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1–19. [Google Scholar] [CrossRef]
- Notti, D.; Caló, F.; Cigna, F.; Manunta, M.; Herrera, G.; Berti, M.; Meisina, C.; Tapete, D.; Zucca, F. A User-Oriented Methodology for DInSAR Time Series Analysis and Interpretation: Landslides and Subsidence Case Studies. Pure Appl. Geophys. 2015, 172, 1–25. [Google Scholar] [CrossRef]
- Diao, F.; Walter, T.R.; Solaro, G.; Wang, R.; Bonano, M.; Manzo, M.; Ergintav, S.; Zheng, Y.; Xiong, X.; Lanari, R. Fault locking near Istanbul: Indication of earthquake potential from InSAR and GPS observations. Geophys. J. Int. 2016, 205, ggw048. [Google Scholar] [CrossRef]
- Scifoni, S.; Bonano, M.; Marsella, M.; Sonnessa, A.; Tagliafierro, V.; Manunta, M.; Lanari, R.; Ojha, C.; Sciotti, M. On the joint exploitation of long-term DInSAR time series and geological information for the investigation of ground settlements in the town of Roma (Italy). Remote Sens. Environ. 2016, 182, 113–127. [Google Scholar] [CrossRef]
- Bonano, M.; Manzo, M.; Casu, F.; Manunta, M.; Lanari, R. DinSAR for the monitoring of cultural heritage sites. In Sensing the Past; Springer: Berlin/Heidelberg, Germany, 2017; pp. 117–134. [Google Scholar]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Zinno, I.; Bonano, M.; Manunta, M.; Moretti, S.; Casagli, N. Combined Use of C- and X-Band SAR Data for Subsidence Monitoring in an Urban Area. Geosciences 2017, 7, 21. [Google Scholar] [CrossRef]
- Casu, F.; Manzo, M.; Lanari, R. A quantitative assessment of the SBAS algorithm performance for surface deformation retrieval from DInSAR data. Remote Sens. Environ. 2006, 102, 195–210. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Pepe, A.; Paglia, L.; Lanari, R. From Previous C-Band to New X-Band SAR Systems: Assessment of the DInSAR Mapping Improvement for Deformation Time-Series Retrieval in Urban Areas. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1973–1984. [Google Scholar] [CrossRef]
- Golub, G.H.; Van Loan, C.F. Matrix Computations, 3rd ed.; Johns Hopkins University Press: Baltimore, MD, USA, 1996. [Google Scholar]
- Manunta, M.; Marsella, M.; Zeni, G.; Sciotti, M.; Atzori, S.; Lanari, R. Two-scale surface deformation analysis using the SBAS-DInSAR technique: A case study of the city of Rome, Italy. Int. J. Remote Sens. 2008, 29, 1665–1684. [Google Scholar] [CrossRef]
- Pepe, A.; Sansosti, E.; Berardino, P.; Lanari, R. On the generation of ERS/ENVISAT DInSAR time-series via the SBAS technique. IEEE Geosci. Remote Sens. Lett. 2005, 2, 265–269. [Google Scholar] [CrossRef]
- Bonano, M.; Manunta, M.; Marsella, M.; Lanari, R. Long-term ERS/ENVISAT deformation time-series generation at full spatial resolution via the extended SBAS technique. Int. J. Remote Sens. 2012, 33, 4756–4783. [Google Scholar] [CrossRef]
- ASI. 2019. Available online: https://www.asi.it/scienze-della-terra/cosmo-skymed/ (accessed on 31 July 2019).
- DLR. 2019. Available online: https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10377/565_read-436/#/gallery/350 (accessed on 31 July 2019).
- De Zan, F.; Monti Guarnieri, A. TOPSAR: Terrain Observation by Progressive Scans. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2352–2360. [Google Scholar] [CrossRef]
- Manunta, M.; De Luca, C.; Zinno, I.; Casu, F.; Manzo, M.; Bonano, M.; Fusco, A.; Pepe, A.; Onorato, G.; Berardino, P.; et al. The Parallel SBAS Approach for Sentinel-1 Interferometric Wide Swath Deformation Time-Series Generation: Algorithm Description and Products Quality Assessment. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1–23. [Google Scholar] [CrossRef]
- Zinno, I.; Bonano, M.; Buonanno, S.; Casu, F.; De Luca, C.; Manunta, M.; Manzo, M.; Lanari, R. National Scale Surface Deformation Time Series Generation through Advanced DInSAR Processing of Sentinel-1 Data within a Cloud Computing Environment. IEEE Trans. Big Data 2019, 1. [Google Scholar] [CrossRef]
- VV.AA. 2019. Available online: http://www.opengeospatial.org/standards/wms (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.python.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.djangoproject.com/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.java.com/it/download/faq/whatis_java.xml (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://geoserver.org/about/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.opengeospatial.org/standards/cat (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://pycsw.org (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://93.187.166.52:8081/opengeo-docs/geoexplorer/index.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.osgeo.org/projects/geowebcache/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.postgresql.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://postgis.net/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://qgis.org/it/site/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.arcgis.com/index.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.openstreetmap.org/#map=6/42.088/12.564 (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.google.com/maps/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://www.easysdi.org (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.osgeo.org (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.oracle.com/it/MySQL/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.oracle.com/index.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.joomla.org (accessed on 31 July 2019).
- European Research Infrastructure on Solid Earth. Available online: https://www.epos-ip.org/tcs/satellite-data (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://www.esfri.eu/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.perl.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://perldoc.perl.org/threads.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://perldoc.perl.org/perlthrtut.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: hhttps://www.cpan.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://dbi.perl.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://docs.geoserver.org/stable/en/user/rest/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.opengeospatial.org/standards/sld/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://geonodegeonode.readthedocs.io/en/latest/tutorials/admin/admin_mgmt_commands/index.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://docs.geoserver.org/stable/en/user/geowebcache/rest/index.html (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.opengeospatial.org/standards/wmts (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://www.pchart.net/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://bokeh.pydata.org/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.opengeospatial.org/standards/wps (accessed on 31 July 2019).
- VV.AA. 2019. Available online: http://www.ubuntu.com/ (accessed on 31 July 2019).
- NASA. 2019. Available online: https://www2.jpl.nasa.gov/srtm/ (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference (accessed on 31 July 2019).
- Von Hertzen, N. 2017. Available online: https://html2canvas.hertzen.com/e (accessed on 31 July 2019).
- Ministero dell’Ambiente e della Tutela del Territorio e del Mare. 2017. Available online: http://wms.pcn.minambiente.it/ogc?map=%2Fms_ogc%2FWMS_v1.3%2FVettoriali%2FClassificazione_sismica_2012.map (accessed on 31 July 2019).
- VV.AA. 2019. Available online: https://www.gnu.org/licenses/licenses.en.html (accessed on 31 July 2019).
- Fugazza, C.; Pepe, M.; Oggioni, A.; Tagliolato, P.; Pavesi, F.; Carrara, P. Describing Geospatial Assets in the Web of Data: A Metadata Management Scenario. ISPRS Int. J. Geo-Inf. 2016, 5, 229. [Google Scholar] [CrossRef]
Attribute Name | Attribute Type | Description |
---|---|---|
ID | long integer | numeric identification of the pixel |
PLOT button | string | link calling a PHP module to visualize the deformation time-series, as specified in more detail later in this Section |
lat | float | pixel latitude |
lon | float | pixel longitude |
topo | float | pixel altitude |
vel | float | pixel deformation velocity |
cohe | float | pixel coherence |
cose | float | east direction cosine |
cosn | float | north direction cosine |
cosu | float | up direction cosine |
zYYYY_xxxx (1) | float | reference deformation value of the time-series |
zYYYY_xxxx (2) | float | second deformation value of the time-series |
⋮ | ⋮ | ⋮ |
zYYYY_xxxx (n) | float | nth deformation value of the time-series |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buonanno, S.; Zeni, G.; Fusco, A.; Manunta, M.; Marsella, M.; Carrara, P.; Lanari, R. A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements. Remote Sens. 2019, 11, 2133. https://doi.org/10.3390/rs11182133
Buonanno S, Zeni G, Fusco A, Manunta M, Marsella M, Carrara P, Lanari R. A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements. Remote Sensing. 2019; 11(18):2133. https://doi.org/10.3390/rs11182133
Chicago/Turabian StyleBuonanno, Sabatino, Giovanni Zeni, Adele Fusco, Michele Manunta, Maria Marsella, Paola Carrara, and Riccardo Lanari. 2019. "A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements" Remote Sensing 11, no. 18: 2133. https://doi.org/10.3390/rs11182133
APA StyleBuonanno, S., Zeni, G., Fusco, A., Manunta, M., Marsella, M., Carrara, P., & Lanari, R. (2019). A GeoNode-Based Platform for an Effective Exploitation of Advanced DInSAR Measurements. Remote Sensing, 11(18), 2133. https://doi.org/10.3390/rs11182133