Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic
Abstract
:1. Introduction
2. Study Area
3. Methodology and Data
3.1. Ground Subsidence Area Inventory
3.2. Conditioning Factors
3.3. Data Overlay Analysis
3.4. Frequency Ratio (FR)
3.5. Fuzzy Logic (FL)
3.6. Validation
4. Results
4.1. GSS Map 2003–2009
4.1.1. GSSFR Mapping (Analysis by FR)
4.1.2. GSSFL Mapping (Analysis by FL)
- The membership function of lithology defined the first two classes (alluvial and colluvial deposits) as the most susceptible units and it was applied as a user-defined function, since any defined curve could be assumed. The fuzzy membership values were assigned in the range of 0.8, meaning the highest susceptibility to class 1 and 2 (extreme value as 1.0 in the assignation of fuzzy values has been left out) and 0.0, meaning that a pixel is at the lowest susceptibility.
- The membership function assigned to land use factor followed a bell-shaped Gaussian curve with a linear shape due to the categorical-type of data with nominal classes. The highest fuzzy membership value of 1 (midpoint of the function) was assigned to class 5 (cropland) since 98% of the subsidence pixels in the study area falls into this land use class. The maximum spread value of 1 was chosen, since it results in a steeper distribution around the midpoint.
- The membership function of the cover thickness factor was a S-shaped curve, since it followed a sinusoidal directly proportional function, meaning the greater the value of the class factor, the greater susceptibility. The shape was chosen as sigmoidal since the factor is continuous-type grid data, with larger class values (class 5–7) having a membership closer to 1, midpoint of the range of values as 4 and the spread as 5 corresponding to the steepest distribution from the midpoint.
- The membership function of the aquifer unit factor followed an user-defined function where the highest value (0.8) was assigned to class 5, as more than 98% of the subsidence pixels in the study area falls into this class, and the lowest value (0.0) was assigned to the other classes, as no subsiding pixels were recognized within them.
- The membership function of the distance to fault factor followed a bell-shaped sigmoidal curve because the central classes showed the highest amount of subsiding pixels and the data type is continuous. The midpoint of the function was centered at class 3, with spread value of 0.1, meaning a medium steepness of the curve.
4.1.3. Validation of GSSFR and GSSFL Maps 2003–2009
4.2. GSS Map 2014–2019
4.2.1. GSSFR Mapping (Analysis by FR)
4.2.2. GSSFL Mapping (Analysis by FL)
4.2.3. Validation of GSSFR and GSSFL Maps 2014–2019
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Conditioning Factor | Npixels in Class, %*1 (a) | Npixels Subs in Class, %*2 (b) | FR (b/a) | FL Fuzzy MF (μ) |
---|---|---|---|---|
Lithology | ||||
1—alluvial | 67.5 | 97.0 | 1.4 | User defined Highest value 0.8 Lowest value 0 |
2—colluvial, landfill | 5.4 | 2.9 | 0.5 | |
3—cavernous limestones | 0.3 | 0.0 | 0.0 | |
4—marls, shales | 1.6 | 0.0 | 0.0 | |
5—sand, silt | 6.1 | 0.1 | 0.0 | |
6—conglomerates | 1.8 | 0.0 | 0.0 | |
7—limestones, cherts | 3.3 | 0.0 | 0.0 | |
8—sandstones quartzites | 14.1 | 0.0 | 0.0 | |
Land use | ||||
1—pasture | 1.7 | 0.0 | 0.0 | Bell-shaped Linear Midpoint 5 Spread 1 |
2—scrubs | 7.3 | 0.0 | 0.0 | |
3 – urban | 13.0 | 0.2 | 0.0 | |
4—semi-natural/natural | 1.0 | 0.0 | 0.0 | |
5—crops | 62.8 | 98.1 | 1.5 | |
6—bare soils, dunes, quarries | 0.7 | 1.4 | 2.2 | |
7—water | 4.7 | 0.0 | 0.0 | |
8—vegetation | 2.6 | 0.0 | 0.0 | |
9—olive groves and such | 6.2 | 0.0 | 0.0 | |
Cover thickness | ||||
1—no data | 32.2 | 0.6 | 0.0 | S-shaped Sigmoidal Midpoint 4 Spread 5 |
2—uncovered | 10.4 | 1.5 | 0.1 | |
3—10 m < | 21.5 | 9.2 | 0.4 | |
4—10–20 m | 13.6 | 18.1 | 1.3 | |
5—20–35 m | 11.7 | 23.1 | 3.7 | |
6—35–50 m | 6.3 | 24.0 | 3.8 | |
7—> 50 m | 4.4 | 24.3 | 5.6 | |
Aquifer unit | ||||
1—impermeable rock complex | 1.9 | 0.0 | 0.0 | User defined Highest value 0.8 Lowest value 0 |
2—crystalline rock complex | 3.8 | 0.0 | 0.0 | |
3—calcareous rock complex | 4.4 | 0.0 | 0.0 | |
4—sand complex | 12.1 | 0.1 | 0.0 | |
5—basin fill alluvial complex | 77.8 | 99.9 | 1.3 | |
Distance to fault | ||||
1—0–1 km | 38.5 | 4.3 | 0.1 | Bell-shaped Sigmoidal Midpoint 3 Spread 0.1 |
2—1–2.5 km | 25.2 | 38.3 | 1.5 | |
3—2.5–4 km | 18.7 | 32.8 | 1.8 | |
4—4–6 km | 11.0 | 19.1 | 1.7 | |
5—6–10 km | 6.5 | 5.5 | 0.8 |
Conditioning Factor | Npixels in Class, %*1 (a) | Npixels Subs in Class, %*2 (b) | FR b/a | FL^Fuzzy MF (μ) |
---|---|---|---|---|
Lithology | ||||
1—alluvial | 67.5 | 96.3 | 1.4 | User defined Highest value 0.8 Lowest value 0 |
2—colluvial, landfill | 5.4 | 3.1 | 0.6 | |
3—cavernous limestones | 0.3 | 0.0 | 0.0 | |
4—marls, shales | 1.6 | 0.0 | 0.0 | |
5—sand, silt | 6.1 | 0.5 | 0.1 | |
6—conglomerates | 1.8 | 0.0 | 0.0 | |
7—limestones, cherts | 3.3 | 0.0 | 0.0 | |
8—sandstones quartzites | 14.1 | 0.0 | 0.0 | |
Land use | ||||
1—pasture | 1.7 | 0.0 | 0.0 | Bell-shaped Linear Midpoint 6 Spread 1 |
2—scrubs | 7.3 | 0.0 | 0.0 | |
3—urban | 13.0 | 0.0 | 0.0 | |
4—semi-natural/natural | 1.0 | 0.2 | 0.2 | |
5—crops | 62.8 | 97.1 | 1.5 | |
6—bare soils, dunes, quarries | 0.7 | 1.9 | 2.7 | |
7—water | 4.7 | 0.0 | 0.0 | |
8—vegetation | 2.6 | 0.0 | 0.0 | |
9—olive groves and such | 6.2 | 0.0 | 0.0 | |
Cover thickness | ||||
1—no data | 32.2 | 0.6 | 0.0 | S-shaped Sigmoidal Midpoint 3 Spread 5 |
2—uncovered | 10.4 | 0.9 | 0.1 | |
3—10 m < | 21.5 | 5.0 | 0.2 | |
4—10–20 m | 13.6 | 18.0 | 1.3 | |
5—20–35 m | 11.7 | 35.0 | 3.0 | |
6—35–50 m | 6.3 | 23.8 | 3.8 | |
7—> 50 m | 4.4 | 16.8 | 3.9 | |
Aquifer unit | ||||
1—impermeable rock complex | 1.9 | 0.0 | 0.0 | User defined Highest value 0.8 Lowest value 0 |
2—crystalline rock complex | 3.8 | 0.0 | 0.0 | |
3—calcareous rock complex | 4.4 | 0.0 | 0.0 | |
4—sand complex | 12.1 | 1.5 | 0.2 | |
5—basin fill alluvial complex | 77.8 | 98.5 | 1.2 | |
Distance to fault | ||||
1—0–1 km | 38.5 | 3.4 | 0.1 | Bell-shaped Sigmoidal Midpoint 3 Spread 0.1 |
2—1–2.5 km | 25.2 | 30.6 | 1.2 | |
3—2.5–4 km | 18.7 | 26.2 | 1.4 | |
4—4–6 km | 11.0 | 15.2 | 1.3 | |
5—6–10 km | 6.5 | 4.4 | 0.6 |
References
- Holzer, T.L.; Galloway, D.L. Impacts of land subsidence caused by withdrawal of underground fluids in the United States. In Humans as Geologic Agents; Ehlen, J., Haneberg, W.C., Larson, R.A., Eds.; The Geological Society of America: Boulder, CO, USA, 2005; Volume 16, pp. 87–100. [Google Scholar]
- Galloway, D.L.; Burbey, T.J. Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Tomás, R.; Romero, R.; Mulas, J.; Marturià, J.J.; Mallorquí, J.J.; Lopez-Sanchez, J.M.; Herrera, G.; Gutiérrez, F.; González, P.J.; Fernández, J.; et al. Radar interferometry techniques for the study of ground subsidence phenomena: A review of practical issues through cases in Spain. Environ. Earth Sci. 2014, 71, 163–181. [Google Scholar] [CrossRef]
- Bianchini, S.; Moretti, S. Analysis of recent ground subsidence in the Sibari plain (Italy) by means of satellite SAR interferometry-based methods. Int. J. Remote Sens. 2015, 36, 4550–4569. [Google Scholar] [CrossRef]
- Pradhan, B.; Abokharima, M.H.; Jebur, M.N.; Tehrany, M.S. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Nat. Hazards 2014, 73, 1019–1042. [Google Scholar] [CrossRef]
- Solari, L.; Ciampalini, A.; Raspini, F.; Bianchini, S.; Moretti, S. PSInSAR analysis in the Pisa urban area (Italy): A case study of subsidence related to stratigraphical factors and urbanization. Remote Sens. 2016, 8, 120. [Google Scholar] [CrossRef]
- Ng, A.H.M.; Ge, L.; Li, X.; Abidin, H.Z.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 232–242. [Google Scholar] [CrossRef]
- Lee, S.; Park, I. Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. J. Environ. Manag. 2013, 127, 166–176. [Google Scholar] [CrossRef]
- Pulido-Bosch, A.; Delgado, J.; Sola, F.; Vallejos, Á.; Vicente, F.; López-Sánchez, J.M.; Mallorquí, J.J. Identification of potential subsidence related to pumping in the Almería basin (SE Spain). Hydrol. Process. 2012, 26, 731–740. [Google Scholar] [CrossRef]
- Notti, D.; Mateos, R.M.; Monserrat, O.; Devanthéry, N.; Peinado, T.; Roldán, F.J.; Fernández-Chacón, F.; Galve, J.P.; Lamas, F.; Azañón, J.M. Lithological control of land subsidence induced by groundwater withdrawal in new urban areas (Granada Basin, SE Spain). Multiband DInSAR monitoring. Hydrol. Process. 2016, 30, 2317–2331. [Google Scholar] [CrossRef]
- Bozzano, F.; Esposito, C.; Franchi, S.; Mazzanti, P.; Perissin, D.; Rocca, A.; Romano, E. Analysis of a Subsidence Process by Integrating Geological and Hydrogeological Modelling with Satellite InSAR Data. In Engineering Geology for Society and Territory; Lollino, G., Mancoli, A., Guzzetti, F., Culshaw, M., Bobrowsky, P., Luino, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, pp. 155–159. [Google Scholar]
- Julio-Miranda, P.; Ortíz-Rodríguez, A.J.; Palacio-Aponte, A.G.; López-Doncel, R.; Barboza-Gudiño, R. Damage assessment associated with land subsidence in the San Luis Potosi-Soledad de Graciano Sanchez metropolitan area, Mexico, elements for risk management. Nat. Hazards 2012, 64, 751–765. [Google Scholar] [CrossRef]
- Singh, K.B.; Dhar, B.B. Sinkhole subsidence due to mining. Geotech. Geol. Eng. 1997, 15, 327–341. [Google Scholar] [CrossRef]
- Billi, A.; Valle, A.; Brilli, M.; Faccenna, C.; Funiciello, R. Fracture-controlled fluid circulation and dissolutional weathering in sinkhole-prone carbonate rocks from central Italy. J. Struct. Geol. 2007, 29, 385–395. [Google Scholar] [CrossRef]
- Chung, C.J.F.; Fabbri, A.G. Probabilistic prediction models for landslide hazard mapping. Photogramm. Eng. Remote Sens. 1999, 65, 1389–1399. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Lee, S.; Park, I.; Choi, J.K. Spatial prediction of ground subsidence susceptibility using an artificial neural network. Environ. Manag. 2012, 49, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Lan, H.X.; Zhau, C.H.; Whang, L.J. Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang Watershed, Yunnan, China. Eng. Geol. 2004, 76, 109–128. [Google Scholar] [CrossRef]
- Trabelsi, F.; Lee, S.; Khlifi, S.; Arfaoui, A. Frequency Ratio model for mapping groundwater potential zones using GIS and remote sensing: Medjerda Watershed Tunisia. In Advances in Sustainable and Environmental Hydrology, Hydrogeology, Hydrochemistry and Water Resources; Chaminè, H.I., Barbieri, M., Kisi, O., Chen, M., Merkel, B.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 80, pp. 341–345. [Google Scholar]
- Oh, H.J.; Lee, S. Assessment of ground subsidence using GIS and the weights-of-evidence model. Eng. Geol. 2010, 115, 36–48. [Google Scholar] [CrossRef]
- Lee, S.; Oh, H.J.; Kim, K.D. Statistical Spatial Modeling of Ground Subsidence Hazard near an Abandoned Underground Coal Mine. Disaster Adv. 2010, 3, 11–23. [Google Scholar]
- Ambrožiˇc, T.; Turk, G. Prediction of subsidence due to underground mining by artificial neural networks. Comput. Geosci. 2003, 29, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Zhou, J.; Wang, J.; Chen, Z.; Wang, D.; Xu, S. Risk assessment of land subsidence at Tianjin coastal area in China. Environ. Earth Sci. 2009, 59, 269. [Google Scholar] [CrossRef]
- Abdollahi, S.; Pourghasemi, H.R.; Ghanbarian, G.A.; Safaeian, R. Prioritization of effective factors in the occurrence of land subsidence and its susceptibility mapping using an SVM model and their different kernel functions. Bull. Eng. Geol. Environ. 2018, 78, 4017–4034. [Google Scholar] [CrossRef]
- Oh, H.J.; Ahn, S.C.; Choi, J.K.; Lee, S. Sensitivity analysis for the GIS-based mapping of the ground subsidence hazard near abandoned underground coal mines. Environ. Earth Sci. 2011, 64, 347–358. [Google Scholar] [CrossRef]
- Tien Bui, D.; Shahabi, H.; Shirzadi, A.; Chapi, K.; Pradhan, B.; Chen, W.; Khosravi, K.; Panahi, M.; Bin Ahmad, B.; Saro, L. Land subsidence susceptibility mapping in south korea using machine learning algorithms. Sensors 2018, 18, 2464. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Lee, J.; Saro, L. Ensemble of ground subsidence hazard maps using fuzzy logic. Open Geosci. 2014, 6, 207–218. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Aryal, J.; Gholaminia, K. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. J. Spat. Sci. 2018, 94, 497–517. [Google Scholar] [CrossRef]
- Park, I.; Choi, J.; Lee, M.J.; Lee, S. Application of an adaptive neuro-fuzzy inference system to ground subsidence hazard mapping. Comput. Geosci. 2012, 48, 228–238. [Google Scholar] [CrossRef]
- Del Soldato, M.; Farolfi, G.; Rosi, A.; Raspini, F.; Casagli, N. Subsidence evolution of the Firenze–Prato–Pistoia plain (Central Italy) combining PSI and GNSS data. Remote Sens. 2018, 10, 1146. [Google Scholar] [CrossRef]
- Heleno, S.I.; Oliveira, L.G.; Henriques, M.J.; Falcão, A.P.; Lima, J.N.; Cooksley, G.; Ferretti, A.; Fonseca, A.M.; Lobo-Ferreira, J.P.; Fonseca, J.F. Persistent scatterers interferometry detects and measures ground subsidence in Lisbon. Remote Sens. Environ. 2011, 115, 2152–2167. [Google Scholar] [CrossRef]
- Calderhead, A.I.; Therrien, R.; Rivera, A.; Martel, R.; Garfias, J. Simulating pumping-induced regional land subsidence with the use of InSAR and field data in the Toluca Valley, Mexico. Adv. Water Resour. 2011, 34, 83–97. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Yang, H.; Zhang, Z.; Tao, J. Subsidence prediction and susceptibility zonation for collapse above goaf with thick alluvial cover: A case study of the Yongcheng coalfield, Henan Province, China. Bull. Eng. Geol. Environ. 2016, 75, 1117–1132. [Google Scholar] [CrossRef]
- Rosi, A.; Tofani, V.; Agostini, A.; Tanteri, L.; Stefanelli, C.T.; Catani, F.; Casagli, N. Subsidence mapping at regional scale using persistent scatters interferometry (PSI): The case of Tuscany region (Italy). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 328–337. [Google Scholar] [CrossRef]
- Bianchini, S.; Raspini, F.; Solari, L.; Del Soldato, M.; Ciampalini, A.; Rosi, A.; Casagli, N. From Picture to Movie: Twenty Years of Ground Deformation Recording Over Tuscany Region (Italy) With Satellite InSAR. Front. Earth Sci. 2018, 6, 177. [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci. Rep. 2018, 8, 7253. [Google Scholar] [CrossRef]
- Solari, L.; Del Soldato, M.; Bianchini, S.; Ciampalini, A.; Ezquerro, P.; Montalti, R.; Raspini, F.; Moretti, S. 2018 From ERS 1/2 to Sentinel-1: Subsidence monitoring in Italy in the last two decades. Front. Earth Sci. 2018, 6, 149. [Google Scholar] [CrossRef]
- Del Greco, O.; Garbarino, E.; Oggeri, C.; Pioli, F. Esame del fenomeno di subsidenza del Bottegone (Grosseto). In Proceedings of the First Workshop Stato Dell’arte Sullo Studio Dei Fenomeni Di Sinkholes e Ruolo Delle Amministrazioni Statali e Locali Nel Governo Del Territorio, Rome, Italy, 20–21 May 2004; pp. 347–360. [Google Scholar]
- Nisio, S. The sinkholes in the Tuscany region. Mem. Descr. Carta Geol. d’It. 2015, LXXXV, 213–268. [Google Scholar]
- Yilmaz, I.; Marschalko, M.; Bednarik, M. An assessment on the use of bivariate, multivariate and soft computing techniques for collapse susceptibility in GIS environ. J. Earth Syst. Sci. 2013, 122, 371–388. [Google Scholar] [CrossRef] [Green Version]
- Sahana, M.; Patel, P.P. A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India. Environ. Earth Sci. 2019, 78, 289. [Google Scholar] [CrossRef]
- Zhu, A.X.; Wang, R.; Qiao, J.; Qin, C.Z.; Chen, Y.; Liu, J.; Du, F.; Lin, Y.; Zhu, T. An expert knowledge-based approach to landslide susceptibility mapping using GIS and fuzzy logic. Geomorphology 2014, 214, 128–138. [Google Scholar] [CrossRef]
- Biserni, G.; van Geel, B. Reconstruction of Holocene palaeoenvironment and sedimentation history of the Ombrone alluvial plain (South Tuscany, Italy). Rev. Palaeobot. Palynol. 2005, 136, 16–28. [Google Scholar] [CrossRef]
- Boccaletti, M.; Conedera, C.; Dainelli, P.; Gočev, P. The recent (miocene-quaternary) regmatic system of the western mediterranean region: A New Model of Ensialic Geodynamic Evolution, in a Context of Plastic/Rigid Deformation. J. Petrol. Geol. 1982, 5, 31–49. [Google Scholar] [CrossRef]
- Mazzarini, F. Carta Geologica della regione Toscana 1:10.000. In CARG (Geological CARtography) Project; Italian Institute for Environmental Protection and Research, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale), Eds.; A.T.I. – S.EL.CA Publisher: Florence, Italy, 2007; Volume 625, pp. 1–2. [Google Scholar]
- Pranzini, G.; Bencini, A. Groundwater salinization in Southern Tuscany. In Proceedings of the 14th Salt Water Intrusion Meeting, Malmö, Sweden, 16–21 June 1996; Sveriges Geologiska Undersokning Publisher: Uppsala, Sweden, 1996; pp. 261–270. [Google Scholar]
- Giménez Forcada, E.; Bencini, A.; Pranzini, G. Salinization in coastal plain of Grosseto: Hydrochemical study. In Proceedings of the 10th International Symposium on Water-Rock Interaction WRI, Villasimius, Italy, 10–15 July 2001; Cidu, R., Ed.; Balkema Publisher: Exton, PA, USA, 2001; Volume 1, pp. 517–520. [Google Scholar]
- Bravetti, L.; Pranzini, G. L’evoluzione quaternaria della pianura di Grosseto (Toscana): Prima interpretazione dei dati del sottosuolo. Geogr. Fis. Din. Quat. 1987, 10, 85–92. [Google Scholar]
- Bellotti, P.; Caputo, C.; Davoli, L.; Evangelista, S.; Garzanti, E.; Pugliese, F.; Valeri, P. Morpho-sedimentary characteristics and Holocene evolution of the emergent part of the Ombrone River delta (southern Tuscany). Geomorphology 2004, 61, 71–90. [Google Scholar] [CrossRef]
- Mazzanti, R. Il punto sul Quaternario della fascia costiera e dell.arcipelago di Toscana. Boll. Soc. Geol. It. 1983, 102, 419–556. [Google Scholar]
- GEOPROGETTI Company. Studio di un Fenomeno di Subsidenza Originato da un Collasso Gravitativo Profondo Loc. Bottegone, Report for the Grosseto Municipality, Italy. 2003. Available online: http://web.comune.grosseto.it (accessed on 28 June 2019).
- Jennings, J.N. Karst Geomorphology; Kateprint Co. Ltd.: Oxford, UK, 1985; p. 293. [Google Scholar]
- Salvati, R.; Sasowsky, I.D. Development of collapse sinkholes in areas of groundwater discharge. J. Hydrol. 2002, 264, 1–11. [Google Scholar] [CrossRef]
- Censini, G.; Costantini, A. Il sottosuolo della pianura tra Grosseto e Ribolla: Ipotesi sul suo assetto strutturale. In Le Voragini Catastrofiche–Un Nuovo Problema Per la Toscana; Tuscany Region Authority Publisher: Florence, Italy, 2002; pp. 231–241. [Google Scholar]
- Berti, G.; Canuti, P.; Casagli, N.; Micheli, L.; Pranzini, G. Risultati preliminari sullo sprofondamento in località Bottegone (Grosseto). Le voragini catastrofiche, un nuovo problema per la Toscana. Att. Conv. 2000, 31, 242–256. [Google Scholar]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent Scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- MATTM. Italian Ministry of the Environment and Protection of Land and Sea (MATTM). Piano Straordinario di Telerilevamento Ambientale (PSTA). In Linee Guida Per L’analisi Dei Dati Interferometrici Satellitari in Aree Soggette a Dissesti Idrogeologici; MATTM: Rome, Italy, 2010; p. 108. [Google Scholar]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric datastacks: SqueeSARTM. IEEE Trans. Geosci. Remote Sens. 2011, 99, 1–11. [Google Scholar]
- Bartier, P.M.; Keller, C.P. Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (idw). Comput. Geosci. 1996, 22, 795–799. [Google Scholar] [CrossRef]
- CLC. Technical Guidelines; Technical report volume 17/2007; EEA Publications: Copenaghen, Denmark, 2017; Available online: http://www.eea.europa.eu/publications/technical_report_2007_17 (accessed on 26 June 2019).
- Cerrina Feroni, A.; Da Prato, S.; Doveri, M.; Ellero, A.; Lelli, M.; Marini, L.; Masetti, G.; Nisi, B.; Raco, B.; Scozzari, A. Geological, hydrogeological, hydrogeochemical characterization of groundwater bodies in the Tuscany region (Italy) Geophysical Research Abstracts. In Proceedings of the EGU General Assembly 2009, Wien, Austria, 19–24 April 2009; Volume 11. [Google Scholar]
- Italian Institute for Environmental Protection and Research, ISPRA (Istituto Superiore per la Protezione e la Ricerca Ambientale). Available online: http://www.sinanet.isprambiente.it/it (accessed on 26 August 2019).
- Jenks, G.F. Geographic logic in line generalization. Cartographica 1989, 26, 27–42. [Google Scholar] [CrossRef]
- Zimmerman, H.J. Fuzzy Set Theory and Its Applications; Kluwer Academic Publisher: Dordrecht, The Netherlnads, 1996. [Google Scholar]
- Zadeh, L.A. Fuzzy sets. IEEE Inform. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. B Cybern. 1993, 23, 665–685. [Google Scholar] [CrossRef]
- Bonham-Carter, G.F. Geographic Information Systems for Geoscientists: Modeling with GIS; Pergamon Press: Toronto, Canada, 1994. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recogn. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Bianchini, S.; Del Soldato, M.; Solari, L.; Nolesini, T.; Pratesi, F.; Moretti, S. Badland susceptibility assessment in Volterra municipality (Tuscany, Italy) by means of GIS and statistical analysis. Environ. Earth Sci. 2016, 75, 889. [Google Scholar] [CrossRef]
- Clerici, A.; Perego, S.; Tellini, C.; Vescovi, P. A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 2002, 48, 349–364. [Google Scholar]
- Schernthanner, H. Fuzzy Logic Method for Landslide Susceptibility Mapping, “Rio Blanco”, Nicaragua. In Proceedings of the 9th International Conference on GeoComputation, National Centre for Geocomputation, National University of Ireland, Maynooth, Ireland, 3–5 September 2007; Volume 35. [Google Scholar]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Akgun, A.; Sezer, E.A.; Nefeslioglu, H.A.; Gokceoglu, C.; Pradhan, B. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Comput. Geosci. 2012, 38, 23–34. [Google Scholar] [CrossRef]
Satellite | Acquisition Period | Look Angle (°) | Processing Approach | Ground Resolution (m) | PS Density 1 (n° PS/km2) | Standard Deviation (σ) |
---|---|---|---|---|---|---|
ENVISAT | Asc: 2003–2009 Desc: 2003–2009 | ~23 ~23 | PSInSAR | 28 × 28 | 94 (47,381/503) | ± 1.6 |
SENTINEL-1 | Asc: 2014–2019 Desc: 2014–2019 | ~36 ~40 | SqueeSAR | 20 × 4 | 63 (31,611/503) | ± 1.8 |
Conditioning Factor X | Classes e | Data Type |
---|---|---|
Lithology | (1) Alluvial; (2) colluvial, landfill; (3) cavernous limestones; (4) marls, shales; (5) sand, silt; (6) conglomerates; (7) limestones, cherts; (8) sandstones, quartzites | Categorical |
Land use | (1) Pasture; (2) scrubs; (3) urban; (4) semi-natural/natural; (5) crops; (6) bare soil, dunes; (7) water, river; (8) vegetation; (9) olive grove, vineyard, orchard | Categorical |
Cover thickness | (1) No data; (2) uncovered; (3) 10 m <; (4) 10–20 m; (5) 20–35 m; (6) 35–50 m; (7) > 50 m | Continuous |
Aquifer unit | (1) Impermeable rock complex; (2) crystalline rock complex; (3) calcareous rock complex; (4) sand complex; (5) basin fill alluvial complex | Categorical |
Distance to fault | (1) 0–1 km; (2) 1–2.5 km; (3) 2.5–4 km; (4) 4–6 km; (5) 6–10 km | Continuous |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchini, S.; Solari, L.; Del Soldato, M.; Raspini, F.; Montalti, R.; Ciampalini, A.; Casagli, N. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sens. 2019, 11, 2015. https://doi.org/10.3390/rs11172015
Bianchini S, Solari L, Del Soldato M, Raspini F, Montalti R, Ciampalini A, Casagli N. Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic. Remote Sensing. 2019; 11(17):2015. https://doi.org/10.3390/rs11172015
Chicago/Turabian StyleBianchini, Silvia, Lorenzo Solari, Matteo Del Soldato, Federico Raspini, Roberto Montalti, Andrea Ciampalini, and Nicola Casagli. 2019. "Ground Subsidence Susceptibility (GSS) Mapping in Grosseto Plain (Tuscany, Italy) Based on Satellite InSAR Data Using Frequency Ratio and Fuzzy Logic" Remote Sensing 11, no. 17: 2015. https://doi.org/10.3390/rs11172015