A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets of Spectra and Coverage of BSCs on a Hoop Scale
2.2.1. In-Situ Hyperspectral Dataset
2.2.2. Simulated Multispectral Dataset
2.2.3. BSC Coverage on a Hoop Scale obtained from Digital Photos
2.3. Datasets of Spectra and BSC Coverage on a “Pixel Scale”
2.3.1. Satellite Multispectral Dataset
2.3.2. BSC Coverage on Pixel Scale obtained from Quadrat Survey Data
2.4. Methods
2.4.1. Band Combinations from BSC Indices
2.4.2. Random Forest (RF) Regression Models
2.4.3. Accuracy Assessment
3. Results
3.1. BSC Reflectance Features from In-Situ Spectral Measurements
3.2. Implementation of RF Model with the Simulated Multispectral Dataset
3.3. Quantification of BSC Surface Cover in Mu Us Sandy Land
4. Discussion
4.1. Reflectance Features of BSCs
4.2. Implementation of RF Model with the Simulated Multispectral Dataset
4.3. Quantification of BSC Surface Cover in Mu Us Sandy Land
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Belnap, J.; Lange, O.L. Biological Soil Crusts: Structure, Function, and Management, 2nd ed.; Springer: Berlin, Germany, 2003; pp. 401–471. [Google Scholar]
- Evans, R.D.; Lange, O.L. Biological Soil Crusts and Ecosystem Nitrogen and Carbon Dynamics. In Biological Soil Crusts: Structure, Function, and Management; Baldwin, I.T., Caldwell, M.M., Eds.; Springer: Berlin, Germany, 2001; Volume 150, pp. 263–280. [Google Scholar]
- Belnap, J.; Gillette, D.A. Disturbance of biological soil crusts: Impacts on potential wind erodibility of sand desert soils in Southeastern Utah. Land Degrad. Dev. 1997, 8, 355–362. [Google Scholar]
- Li, X. Biological soil crust as a bio-mediator alters hydrological processes in stabilized dune system of the Tengger Desert, China. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 17–22 April 2016. [Google Scholar]
- Rodríguez-Caballero, E.; Escribano, P.; Cantón, Y. Advanced image processing methods as a tool to map and quantify different types of biological soil crust. ISPRS J. Photogramm. Remote Sens. 2014, 90, 59–67. [Google Scholar] [CrossRef]
- Weber, B.; Büdel, B.; Belnap, J. Biological Soil Crusts: An Organizing Principle in Drylands, 1st ed.; Springer: New York, NY, USA, 2016; pp. 37–236. [Google Scholar]
- Karnieli, A.; Shachak, M.; Tsoar, H.; Zaady, E.; Kaufman, Y.; Danin, A.; Porter, W. The effect of microphytes on the spectral reflectance of vegetation in semiarid regions. Remote Sens. Environ. 1996, 57, 88–96. [Google Scholar] [CrossRef]
- Weber, B.; Olehowski, C.; Knerr, T.; Hill, J.; Deutschewitz, K.; Wessels, D.C.; Eitel, B.; Büdel, B. A new approach for mapping of Biological Soil Crusts in semidesert areas with hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2187–2201. [Google Scholar] [CrossRef]
- Chamizo, S.; Stevens, A.; Cantón, Y.; Miralles, I.; Domingo, F.; Van Wesemael, B. Discriminating soil crust type, development stage and degree of disturbance in semiarid environments from their spectral characteristics. Eur. J. Soil Sci. 2012, 63, 42–53. [Google Scholar] [CrossRef]
- Karnieli, A. Development and implementation of spectral crust index over dune sands. Int. J. Remote Sens. 1997, 18, 1207–1220. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, M.Y.; Wang, L.; Shimazaki, H.; Tamura, M. A new index for mapping lichen-dominated biological soil crusts in desert areas. Remote Sens. Environ. 2005, 96, 165–175. [Google Scholar] [CrossRef]
- Rozenstein, O.; Karnieli, A. Identification and characterization of Biological Soil Crusts in a sand dune desert environment across Israel–Egypt border using LWIR emittance spectroscopy. J. Arid. Environ. 2015, 112, 75–86. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, E.; Escribano, P.; Olehowski, C.; Chamizo, S.; Hill, J.; Cantón, Y.; Weber, B. Transferability of multi- and hyperspectral optical biocrust indices. ISPRS J. Photogramm. Remote Sens. 2017, 126, 94–107. [Google Scholar] [CrossRef]
- Escribano, P.; Palacios-Orueta, A.; Oyonarte, C.; Chabrillat, S. Spectral properties and sources of variability of ecosystem components in a Mediterranean semiarid environment. J. Arid. Environ. 2010, 74, 1041–1051. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Abulimiti, A.; Cai, L. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS-NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ 2018, 6, e4703. [Google Scholar] [CrossRef] [PubMed]
- Meyer, H.; Lehnert, L.W.; Wang, Y.; Reudenbach, C.; Nauss, T.; Bendix, J. From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information? Int. J. Appl. Earth Obs. Geoinf. 2017, 55, 21–31. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Zhang, J.; Wu, B.; Li, Y.; Yang, W.; Lei, Y.; Han, H.; He, J. Biological soil crust distribution in Artemisia ordosica communities along a grazing pressure gradient in Mu Us Sandy Land, Northern China. J. Arid Land 2013, 5, 172–179. [Google Scholar] [CrossRef]
- Cheng, X.; An, S.; Liu, S.; Li, G. Micro-scale spatial heterogeneity and the loss of carbon, nitrogen and phosphorus in degraded grassland in Ordos Plateau, northwestern China. Plant Soil 2004, 259, 29–37. [Google Scholar] [CrossRef]
- Wu, B.; Ci, L.J. Landscape change and desertification development in the Mu Us Sandland, Northern China. J. Arid Environ. 2002, 50, 429–444. [Google Scholar] [CrossRef]
- Landsat 8 Surface Reflectance Code LaSRC Product Guide. Available online: https://www.usgs.gov/media/files/landsat-8-surface-reflectance-code-lasrc-product-guide (accessed on 17 December 2018).
- Sentinel-2 User Handbook. Available online: https://sentinels.copernicus.eu/web/sentinel/user-guides/document-library/-/asset_publisher/xlslt4309D5h/content/sentinel-2-user-handbook (accessed on 24 July 2015).
- Meyer, H. Data-Driven Model Development in Environmental Geography. Ph.D. Thesis, The Philipps-University of Marburg, Marburg, Germany, 17 July 2017. [Google Scholar]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat Data Continuity Mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Sen2Cor Configuration and User Manual. Available online: http://step.esa.int/main/third-party-plugins-2/sen2cor/ (accessed on 6 April 2018).
- Elzinga, C.L.; Salzer, D.W.; Willoughby, J.W. Measuring & Monitoring Plant Populations; U.S. Bureau of Land Management: Lincoln, NE, USA, 1998.
- Abdel-Rahman, E.M.; Ahmed, F.B.; Ismail, R. Random forest regression and spectral band selection for estimating sugarcane leaf nitrogen concentration using EO-1 Hyperion hyperspectral data. Int. J. Remote Sens. 2012, 34, 712–728. [Google Scholar] [CrossRef]
- Ramasubramanian, K.; Singh, A. Machine Learning Using R, 1st ed.; Apress: New York, NY, USA, 2016; pp. 297–329. [Google Scholar]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the International Joint Conference on Articial Intelligence (IJCAI), Montreal, QC, Canada, 20–25 August 1995. [Google Scholar]
- Lehnert, L.W.; Meyer, H.; Obermeier, W.A.; Silva, B.; Regeling, B.; Bendix, J. Hyperspectral Data Analysis in R: The hsdar Package. J. Stat. Softw. 2019, 89, 877. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Package ‘Rgdal’. Available online: https://cran.r-project.org/web/packages/rgdal/index.html (accessed on 14 March 2019).
- Weber, B.; Hill, J. Remote Sensing of Biological Soil Crusts at Different Scales. In Biological Soil Crusts: An Organizing Principle in Drylands, 1st ed.; Weber, B., Büdel, B., Belnap, J., Eds.; Springer: New York, NY, USA, 2016; Volume 226, pp. 215–234. [Google Scholar]
- Pirotti, F.; Sunar, F.; Piragnolo, M. Benchmark of Machine Learning Methods for Classification of a Sentinel-2 Image. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 335–340. [Google Scholar] [CrossRef]
- Yan, F.; Wu, B.; Wang, Y. Estimating spatiotemporal patterns of aboveground biomass using Landsat TM and MODIS images in the Mu Us Sandy Land, China. Agric. For. Meteorol. 2015, 200, 119–128. [Google Scholar] [CrossRef]
- Zichen, G.; Shulin, L.; Wenping, K.; Xiang, C.; Xueqin, Z. Change Trend of Vegetation Coverage in the Mu Us Sandy Region from 2000 to 2015. J. Desert Res. 2018, 38, 1099–1107. [Google Scholar]
- Wang, T. Atlas of Sandy Desert and Aeolian Desertification in Northern China, 1st ed.; Science Press: Beijing, China, 2014; pp. 182–187. [Google Scholar]
- Li, X. Eco-Physiology of Biological Soil Crusts in Desert Regions of China, 1st ed.; Higher Education Press: Beijing, China, 2016; pp. 1–51. [Google Scholar]
- Danin, A.; Ganor, E. Trapping of airborne dust by mosses in the Negev Desert, Israel. Earth Surf. Process. Landf. 1991, 16, 153–162. [Google Scholar] [CrossRef]
- Fang, S.; Yu, W.; Qi, Y. Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 261–266. [Google Scholar] [CrossRef]
- Karnieli, A.; Kokaly, R.F.; West, N.E.; Clark, R.N. Remote Sensing of Biological Soil Crusts. In Biological Soil Crusts: Structure, Function, and Management, 2nd ed.; Belnap, J., Lange, O.L., Eds.; Springer: Berlin, Germany, 2003; Volume 150, pp. 431–455. [Google Scholar]
Landsat-8 OLI | Sentinel-2 MSI | ||||
---|---|---|---|---|---|
Band | Range/nm | Resolution/m | Band | Range/nm | Resolution/m |
Band1 (Coastal) | 430–450 | 30 | Band2 (Blue) | 457–523 | 10 |
Band2 (Blue) | 450–510 | 30 | Band3 (Green) | 543–578 | 10 |
Band3 (Green) | 530–590 | 30 | Band4 (Red) | 653–683 | 10 |
Band4 (Red) | 640–670 | 30 | Band5 (Red Edge) | 698–713 | 20 |
Band5 (Near-infrared, NIR) | 850–880 | 30 | Band6 (Red Edge) | 732–748 | 20 |
Band7 (Red Edge) | 773–793 | 20 | |||
Band8A (NIR) | 855–875 | 10 |
Landsat-8 OLI | Sentinel-2 MSI | ||
---|---|---|---|
Path/Row | Acquisition Date (y-m-d) | Tiles | Acquisition Date (y-m-d) |
128/33, 128/34 | 2018-10-04 | 48SYG | 2018-09-29 |
129/32 | 2018-10-11 | 49SBD | 2018-10-04 |
129/33, 129/34 | 2018-10-27 | 49TDE | 2018-10-06 |
48SXH, 48SYH, 49SBB, 49SBC | 2018-10-09 | ||
49SDC | 2018-10-11 | ||
49SCB, 49SCC, 49SCD, 49SDD, 49TCE | 2018-10-26 | ||
48SXG, 48SYG | 2018-10-29 |
10-Fold Cross Validation on “Hoop Scale” | 10-Fold Cross Validation on “Pixel Scale” | ||||||
---|---|---|---|---|---|---|---|
Dataset | Band Combination | SD | MSE | Dataset | Band Combination | SD | MSE |
Landsat-8 | CI | 0.0074 | 0.005 | Landsat-8 | CI | 0.0047 | 0.010 |
Landsat-8 | BSCI | 0.0035 | 0.009 | Landsat-8 | BSCI | 0.0031 | 0.011 |
Sentinel-2 | CI | 0.0044 | 0.004 | Sentinel-2 | CI | 0.0056 | 0.010 |
Sentinel-2 | BSCI | 0.0012 | 0.006 | Sentinel-2 | BSCI | 0.0025 | 0.010 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wang, T.; Liu, S.; Peng, F.; Tsunekawa, A.; Kang, W.; Guo, Z.; Feng, K. A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China. Remote Sens. 2019, 11, 1286. https://doi.org/10.3390/rs11111286
Chen X, Wang T, Liu S, Peng F, Tsunekawa A, Kang W, Guo Z, Feng K. A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China. Remote Sensing. 2019; 11(11):1286. https://doi.org/10.3390/rs11111286
Chicago/Turabian StyleChen, Xiang, Tao Wang, Shulin Liu, Fei Peng, Atsushi Tsunekawa, Wenping Kang, Zichen Guo, and Kun Feng. 2019. "A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China" Remote Sensing 11, no. 11: 1286. https://doi.org/10.3390/rs11111286
APA StyleChen, X., Wang, T., Liu, S., Peng, F., Tsunekawa, A., Kang, W., Guo, Z., & Feng, K. (2019). A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China. Remote Sensing, 11(11), 1286. https://doi.org/10.3390/rs11111286