Hyperspectral Image Classification Based on Fusion of Curvature Filter and Domain Transform Recursive Filter
Abstract
:1. Introduction
- (1)
- CF with the minimal projection operator has superior characteristics of small calculation amounts and fast convergence [46], which can efficiently extract the spatial features of a hyperspectral image. The spatial correlation information of obtained by DTRF benefits the spatial texture information to improve classification accuracy.
- (2)
- The effective fusion of the two spatial information is conducive to the LDM classification and is superior to other methods.
2. Methodology
2.1. Classification Method for HSI
2.2. Spatial Information Extraction
2.2.1. Curvature Filter
2.2.2. Domain Transform Recursive Filter (DTRF)
2.3. CFDTRF-LDM
3. Experiments
3.1. Hyperspectral Data Description
3.2. Parameter Setting
- (1)
- SVM [18]: according to the raw features of hyperspectral images, SVM was applied with the Gaussian radial basis function kernel.
- (2)
- PCA-SVM (PCA with SVM): the use of PCA reduced the hyperspectral dimension and selected the top 10% components for the SVM.
- (3)
- LDM: gaussian radial basis function kernel was applied according to the raw features of hyperspectral images.
- (4)
- PCA-LDM (PCA with LDM): PCA reduced the hyperspectral dimension and selected the top 10% components for the LDM.
- (5)
- EPF [39]: in this method, SVM classified hyperspectral images. Next, edge-preserving filter was conducted for each probabilistic map. Last, the class of every pixel was selected based on the maximum probability.
- (6)
- IFRF [41]: this method acquired the classified results with SVM according to the image fusion and recursive filter.
- (7)
- PCA-EPFs [40]: the spatial information constructed by applying edge-preserving filters was stacked to form the fused feature, and the dimension was reduced by PCA for the classifier of SVM.
- (8)
- LDM and feature learning-based(LDM-FL) [20]: this method attained the classified results with LDM from the recursive filter.
- (9)
- CF-SVM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal components were selected for SVM based on CF.
- (10)
- CF-LDM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal component were selected for LDM based on CF.
- (11)
- DTRF-SVM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal components were selected for SVM according to DTRF.
- (12)
- DTRF-LDM: the hyperspectral dimensionality was reduced with PCA, and the first 10% principal components were picked for LDM based on DTRF.
- (13)
- CFDTRF-LDM: the advanced method in this paper.
- (14)
- CFDTRF-SVM: in addition to the classification results, the advanced method was generated by SVM in this paper.
3.3. The Validation Test of CF and DTRF
3.4. Test of Spatial Correlation Information
3.5. Investigation of the Proposed Method
3.5.1. Optimization of DTRF
3.5.2. Experiment of Indian Pines
3.5.3. Experiment of Salinas Valley
3.5.4. Experiment of Kennedy Space Center
3.5.5. Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, Y.; Cao, H.; Bai, J.; Bai, Y. High Efficient Deep Feature Extraction and Classification of Spectral-Spatial Hyperspectral Image Using Cross Domain Convolutional Neural Networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 345–356. [Google Scholar] [CrossRef]
- Yu, C.; Wang, Y.; Song, M.; Chang, C. Class Signature-Constrained Background-Suppressed Approach to Band Selection for Classification of Hyperspectral Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 14–31. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, Y.; Zhang, L.; Xu, Y. Spatial Group Sparsity Regularized Nonnegative Matrix Factorization for Hyperspectral Unmixing. IEEE Trans. Geosci. Remote Sens. 2017, 51, 6287–6304. [Google Scholar]
- Xu, X.; Li, J.; Wu, C.; Plaza, A. Regional clustering-based spatial preprocessing for hyperspectral unmixing. Remote Sens. Environ. 2018, 204, 333–346. [Google Scholar] [CrossRef]
- Chinsu, L.; Shih-Yu, C.; Chia-Chun, C.; Chia-Huei, T. Detecting newly grown tree leaves from unmanned-aerial-vehicle images using hyperspectral target detection techniques. Isprs J. Photogramm. Remote Sens. 2018, 142, 174–189. [Google Scholar]
- Dong, Y.; Du, B.; Zhang, L.; Hu, X. Hyperspectral Target Detection via Adaptive Information—Theoretic Metric Learning with Local Constraints. Remote Sens. 2018, 10, 1415. [Google Scholar]
- Shivers, S.W.; Roberts, D.A.; McFadden, J.P. Using paired thermal and hyperspectral aerial imagery to quantify land surface temperature variability and assess crop stress within California orchards. Remote Sens. Environ. 2019, 222, 215–231. [Google Scholar] [CrossRef]
- Awad, M. Sea water chlorophyll-a estimation using hyperspectral images and supervised artificial neural network. Ecol. Inform. 2014, 24, 60–68. [Google Scholar] [CrossRef]
- Ramirez, F.J.R.; Navarro-Cerrillo, R.M.; Varo-Martínez, M.Á.; Quero, J.L.; Doerr, S.; Hernández-Clemente, R. Determination of forest fuels characteristics in mortality-affected Pinus forests using integrated hyperspectral and ALS data. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 157–167. [Google Scholar] [CrossRef]
- Laakso, K.; Turner, D.J.; Rivard, B.; Sánchez-Azofeifa, A. The long-wave infrared (8–12 μm) spectral features of selected rare earth element—Bearing carbonate, phosphate and silicate minerals. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 77–83. [Google Scholar] [CrossRef]
- Awad, M.M. Forest mapping: A comparison between hyperspectral and multispectral images and technologies. J. For. Res. 2018, 29, 1395–1405. [Google Scholar] [CrossRef]
- Li, C.; Ma, Y.; Mei, X.; Ma, J. Hyperspectral image classification with robust sparse representation. IEEE Geosci. Remote Sens. Lett. 2016, 13, 641–645. [Google Scholar] [CrossRef]
- Golipour, M.; Ghassemian, H.; Mirzapour, F. Integrating hierarchical segmentation maps with MRF prior for classification of hyperspectral images in a Bayesian framework. IEEE Trans. Geosci. Remote Sens. 2016, 54, 805–816. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, H.; Han, S.; Sun, Y.; Bai, Y. Spectral-Spatial Hyperspectral Image Classification with K-Nearest Neighbor and Guided Filter. IEEE Access 2018, 6, 18582–18591. [Google Scholar] [CrossRef]
- Richards, J.A.; Jia, X. Using Suitable Neighbors to Augment the Training Set in Hyperspectral Maximum Likelihood Classification. IEEE Geosci. Remote Sens. Lett. 2008, 5, 774–777. [Google Scholar] [CrossRef]
- Cao, F.; Yang, Z.; Ren, J.; Ling, W.K.; Zhao, H.; Marshall, S. Extreme sparse multinomial logistic regression: A fast and robust framework for hyperspectral image classification. Remote Sens. 2017, 9, 1255. [Google Scholar] [CrossRef]
- Aptoula, E.; Ozdemir, M.C.; Yanikoglu, B. Deep learning with attribute profiles for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1970–1974. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, Z.H. Large margin distribution machine. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, New York, NY, USA, 24–27 August 2014; pp. 313–322. [Google Scholar]
- Zhan, K.; Wang, H.; Huang, H.; Xie, Y. Large margin distribution machine for hyperspectral image classification. J. Electron. Imaging 2016, 25, 063024. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Jón Atli, B. Segmentation and Classification of Hyperspectral Images Using Minimum Spanning Forest Grown from Automatically Selected Markers. IEEE Trans. Syst. Manand Cybern. Part B (Cybern.) 2010, 40, 1267–1279. [Google Scholar] [CrossRef]
- Ghamisi, P.; Couceiro, M.S.; Fauvel, M.; Benediktsson, J.A. Integration of Segmentation Techniques for Classification of Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2014, 11, 342–346. [Google Scholar] [CrossRef]
- Huang, X.; Guan, X.; Benediktsson, J.A.; Zhang, L.; Plaza, A.; Mura, M.D. Multiple Morphological Profiles from Multicomponent-Base Images for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4653–4669. [Google Scholar] [CrossRef]
- Xue, Z.; Li, J.; Cheng, L.; Du, P. Spectral–Spatial Classification of Hyperspectral Data via Morphological Component Analysis-Based Image Separation. IEEE Trans. Geosci. Remote Sens. 2015, 53, 70–84. [Google Scholar]
- Gastal, E.S.L.; Oliveira, M.M. Domain transform for edge-aware image and video processing. In Proceedings of the ACM Transactions on Graphics (ToG), Vancouver, BC, Canada, 7–11 August 2011; Volume 30, p. 69. [Google Scholar]
- Liao, J.; Wang, L.; Hao, S. Hyperspectral image classification based on adaptive optimisation of morphological profile and spatial correlation information. Int. J. Remote Sens. 2018, 39, 9159–9180. [Google Scholar] [CrossRef]
- Zhang, Y.; Brady, M.; Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med Imaging 2001, 20, 45–57. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Z.; Liu, J.; Xiao, L.; Wei, Z. Supervised Spectral–Spatial Hyperspectral Image Classification with Weighted Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1490–1503. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Jiao, L.; Zhou, H. Multifeature Hyperspectral Image Classification with Local and Nonlocal Spatial Information via Markov Random Field in Semantic Space. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1409–1424. [Google Scholar] [CrossRef]
- He, K.; Sun, J.; Tang, X. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 1397–1409. [Google Scholar] [CrossRef] [PubMed]
- Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the IEEE Sixth International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846. [Google Scholar]
- Jones, J.P.; Palmer, L.A. An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 1987, 58, 1233–1258. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, H.; Zhang, L.; Xue, J.H. Discriminatively guided filtering (DGF) for hyperspectral image classification. Neurocomputing 2018, 275, 1981–1987. [Google Scholar] [CrossRef]
- Guo, Y.; Han, S.; Li, Y.; Zhang, C.; Bai, Y. K-Nearest Neighbor combined with guided filter for hyperspectral image classification. Procedia Comput. Sci. 2018, 129, 159–165. [Google Scholar] [CrossRef]
- Wang, Y.; Song, H.; Zhang, Y. Spectral-Spatial Classification of Hyperspectral Images Using Joint Bilateral Filter and Graph Cut Based Model. Remote Sens. 2016, 8, 748. [Google Scholar] [CrossRef]
- Sahadevan, A.S.; Routray, A.; Das, B.S.; Ahmad, S. Hyperspectral image preprocessing with bilateral filter for improving the classification accuracy of support vector machines. J. Appl. Remote Sens. 2016, 10, 025004. [Google Scholar] [CrossRef]
- Qiao, T.; Yang, Z.; Ren, J.; Yuen, P.; Zhao, H.; Sun, G.; Marshall, S.; Benediktsson, J.A. Joint bilateral filtering and spectral similarity-based sparse representation: A generic framework for effective feature extraction and data classification in hyperspectral imaging. Pattern Recognit. 2018, 77, 316–328. [Google Scholar] [CrossRef]
- Moore, B.C. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control 2003, 26, 17–32. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-based edge-preserving features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7140–7151. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Feature extraction of hyperspectral images with image fusion and recursive filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3742–3752. [Google Scholar] [CrossRef]
- Jia, S.; Wu, K.; Zhu, J.; Jia, X. Spectral-Spatial Gabor Surface Feature Fusion Approach for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1142–1154. [Google Scholar] [CrossRef]
- Li, H.C.; Zhou, H.L.; Pan, L.; Du, Q. Gabor feature-based composite kernel method for hyperspectral image classification. Electron. Lett. 2018, 54, 628–630. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, L.; Ghamisi, P.; Jia, S.; Li, G.; Tang, L. Hyperspectral images classification with Gabor filtering and convolutional neural network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2355–2359. [Google Scholar] [CrossRef]
- Tu, B.; Zhang, X.; Wang, J.; Zhang, G.; Ou, X. Spectral-Spatial Hyperspectral Image Classification via Non-local Means Filtering Feature Extraction. Sens. Imaging 2018, 19, 11. [Google Scholar] [CrossRef]
- Gong, Y.; Sbalzarini, I.F. Curvature filters efficiently reduce certain variational energies. IEEE Trans. Image Process. 2017, 26, 1786–1798. [Google Scholar] [CrossRef]
- Zhang, H.; Jin, X.; Wu, Q.; Jonathan, W.Q.M.; He, Z.; Wang, Y. Automatic visual detection method of railway surface defects based on curvature filtering and improved GMM. Chin. J. Sci. Instrum. 2018, 39, 181–194. [Google Scholar]
- Gao, W.; Zhou, Z.H. On the doubt about margin explanation of boosting. Artif. Intell. 2013, 203, 1–18. [Google Scholar] [CrossRef]
- Moran, P.A.P. The interpretation of statistical maps. J. R. Stat. Soc. Ser. B (Methodol.) 1948, 10, 243–251. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Wang, W.; Ye, Y.; Li, Y.; Bruzzone, L. A deep network architecture for super-resolution-aided hyperspectral image classification with classwise loss. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4650–4663. [Google Scholar] [CrossRef]
- Cheng, G.; Li, Z.; Han, J.; Yao, X.; Guo, L. Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6712–6722. [Google Scholar] [CrossRef]
Ground | Sum | Train | SVM | PCA-SVM | LDM | PCA-LDM | EPF | IFRF | PCA-EPFs |
---|---|---|---|---|---|---|---|---|---|
Alfalfa | 54 | 11 | 45.59 | 73.20 | 90.08 | 83.42 | 55.88 | 89.51 | 83.28 |
Corn-no-till | 1434 | 72 | 64.06 | 67.16 | 72.90 | 74.16 | 84.55 | 89.87 | 86.18 |
Corn-min-till | 834 | 42 | 72.28 | 71.24 | 67.41 | 57.38 | 88.49 | 78.09 | 91.12 |
Corn | 234 | 12 | 15.73 | 34.51 | 56.38 | 60.08 | 19.11 | 69.25 | 78.80 |
Grass-pasture | 497 | 25 | 87.22 | 84.36 | 88.90 | 91.85 | 91.56 | 92.72 | 91.49 |
Grass-trees | 747 | 37 | 94.11 | 95.83 | 94.98 | 94.35 | 99.89 | 97.97 | 93.53 |
Grass-pasture-mowed | 26 | 5 | 45.46 | 73.57 | 83.57 | 69.11 | 43.86 | 64.18 | 60.59 |
Hay-windrowed | 489 | 24 | 98.26 | 96.96 | 96.46 | 94.62 | 100.00 | 99.51 | 99.83 |
Oats | 20 | 4 | 29.46 | 26.68 | 73.53 | 87.85 | 18.30 | 41.29 | 42.32 |
Soybeans-no-till | 968 | 48 | 65.89 | 61.67 | 67.49 | 72.83 | 86.69 | 84.51 | 87.86 |
Soybeans-min-till | 2468 | 123 | 82.38 | 82.87 | 79.34 | 73.30 | 97.83 | 94.58 | 96.35 |
Soybeans-clean-till | 614 | 31 | 76.40 | 76.03 | 80.35 | 73.29 | 95.47 | 89.31 | 88.21 |
Wheat | 212 | 11 | 95.66 | 98.28 | 99.51 | 99.01 | 99.88 | 99.16 | 76.38 |
Woods | 1294 | 65 | 95.64 | 97.25 | 92.65 | 91.81 | 99.57 | 98.55 | 98.36 |
Bldg-grass-tree | 380 | 19 | 41.31 | 33.53 | 61.07 | 56.65 | 53.77 | 76.75 | 91.20 |
Stone-steel-towers | 95 | 5 | 81.22 | 57.49 | 86.38 | 76.38 | 93.87 | 67.63 | 58.59 |
OA/% | - | 77.47 | 77.81 | 79.85 | 78.49 | 90.35 | 90.64 | 91.62 | |
AA/% | - | 68.17 | 70.66 | 80.69 | 78.51 | 76.80 | 83.31 | 82.76 | |
Kappa/% | - | 74.12 | 74.52 | 77.03 | 77.36 | 88.92 | 89.30 | 90.43 |
Ground | Sum | Train | LDM-FL | CF-SVM | CF-LDM | DTRF-SVM | DTRF-LDM | CFDTRFF-SVM | CFDTRF-LDM |
---|---|---|---|---|---|---|---|---|---|
Alfalfa | 54 | 11 | 93.13 | 86.69 | 89.41 | 92.38 | 98.73 | 76.32 | 93.62 |
Corn-no-till | 1434 | 72 | 92.17 | 84.60 | 86.26 | 87.98 | 91.07 | 94.74 | 96.85 |
Corn-min-till | 834 | 42 | 89.89 | 83.40 | 81.41 | 92.51 | 92.21 | 92.29 | 94.71 |
Corn | 234 | 12 | 77.60 | 69.97 | 73.33 | 78.79 | 94.72 | 73.56 | 88.17 |
Grass-pasture | 497 | 25 | 93.43 | 94.71 | 94.67 | 89.58 | 96.36 | 92.68 | 92.29 |
Grass-trees | 747 | 37 | 96.56 | 97.39 | 98.51 | 94.76 | 97.01 | 97.32 | 99.01 |
Grass-pasture-mowed | 26 | 5 | 100.0 | 74.11 | 97.50 | 27.94 | 100.0 | 98.61 | 93.45 |
Hay-windrowed | 489 | 24 | 100.00 | 98.65 | 98.80 | 99.78 | 100.00 | 99.40 | 99.78 |
Oats | 20 | 4 | 93.74 | 52.35 | 98.33 | 5.88 | 93.20 | 70.31 | 100.00 |
Soybeans-no-till | 968 | 48 | 91.57 | 78.69 | 85.60 | 86.39 | 92.45 | 87.69 | 95.21 |
Soybeans-min-till | 2468 | 123 | 92.56 | 91.60 | 86.97 | 95.57 | 95.02 | 96.80 | 96.97 |
Soybeans-clean-till | 614 | 31 | 91.17 | 87.21 | 86.19 | 89.96 | 90.69 | 91.53 | 92.06 |
Wheat | 212 | 11 | 99.14 | 99.12 | 99.26 | 97.24 | 94.09 | 99.25 | 99.75 |
Woods | 1294 | 65 | 98.98 | 98.34 | 96.48 | 98.74 | 99.67 | 98.82 | 99.96 |
Bldg-grass-tree | 380 | 19 | 90.20 | 48.87 | 68.97 | 92.66 | 93.68 | 91.12 | 99.16 |
Stone-steel-towers | 95 | 5 | 92.09 | 84.00 | 88.38 | 67.51 | 81.45 | 70.04 | 95.67 |
OA/% | - | 93.31 | 88.09 | 88.54 | 92.29 | 94.60 | 94.13 | 96.64 | |
AA/% | - | 93.26 | 83.11 | 89.38 | 81.10 | 94.40 | 89.41 | 96.04 | |
Kappa/% | - | 92.39 | 86.36 | 86.94 | 91.20 | 93.84 | 93.29 | 96.16 |
Ground | Sum | Training | SVM | PCA-SVM | LDM | PCA-LDM | EPF | IFRF | PCA-EPFs |
---|---|---|---|---|---|---|---|---|---|
Broccoli-green-weeds-1 | 2009 | 16 | 96.68 | 98.91 | 99.06 | 99.32 | 99.84 | 99.93 | 99.86 |
Broccoli green-weeds-2 | 3726 | 30 | 99.03 | 98.59 | 99.08 | 99.03 | 100.00 | 98.88 | 99.43 |
Fallow | 1976 | 16 | 95.91 | 85.30 | 94.30 | 98.04 | 86.58 | 99.96 | 99.66 |
Fallow-rough-plough | 1394 | 11 | 96.34 | 94.50 | 99.06 | 99.35 | 99.87 | 95.11 | 92.39 |
Fallow-smooth | 2678 | 21 | 90.60 | 97.33 | 95.97 | 96.51 | 99.50 | 96.28 | 98.29 |
Stubble | 3959 | 32 | 99.57 | 99.50 | 99.84 | 99.76 | 100.00 | 99.62 | 99.84 |
Celery | 3579 | 29 | 99.35 | 99.34 | 99.61 | 99.46 | 100.00 | 99.16 | 99.18 |
Grapes-untrained | 11271 | 90 | 89.94 | 86.19 | 78.05 | 76.14 | 95.01 | 96.04 | 98.45 |
Soil-vineyard-develop | 6203 | 50 | 98.22 | 99.00 | 99.35 | 99.60 | 99.96 | 100.00 | 100.00 |
Corn-senesced-green weeds | 3278 | 26 | 89.33 | 83.14 | 92.17 | 93.11 | 92.23 | 99.02 | 99.41 |
Lettuce-romaine-4wk | 1068 | 9 | 70.95 | 66.80 | 92.34 | 91.60 | 97.76 | 90.80 | 88.48 |
Lettuce-romaine-5wk | 1927 | 15 | 98.29 | 93.45 | 99.69 | 99.62 | 100.00 | 98.08 | 98.45 |
Lettuce-romaine-6wk | 916 | 7 | 98.43 | 50.42 | 97.66 | 97.99 | 100.00 | 83.46 | 96.41 |
Lettuce-romaine-7wk | 1070 | 9 | 88.09 | 94.49 | 94.12 | 95.50 | 99.60 | 95.31 | 96.89 |
Vineyard-untrained | 7268 | 58 | 51.00 | 61.05 | 63.39 | 65.96 | 53.39 | 97.89 | 99.86 |
Vineyard-vertical-trellis | 1807 | 14 | 81.60 | 86.77 | 96.47 | 97.13 | 91.75 | 93.45 | 95.86 |
OA/% | - | 87.99 | 87.45 | 88.96 | 89.19 | 91.37 | 97.52 | 98.68 | |
AA/% | - | 90.21 | 87.17 | 93.76 | 94.26 | 94.72 | 96.44 | 97.65 | |
Kappa/% | - | 86.57 | 85.96 | 87.70 | 87.97 | 90.34 | 97.23 | 98.53 |
Ground | Sum | Training | LDM-FL | CF-SVM | CF-LDM | DTRF-SVM | DTRF-LDM | CFDTRFF-SVM | CFDTRF-LDM |
---|---|---|---|---|---|---|---|---|---|
Broccoli-green-weeds-1 | 2009 | 16 | 99.99 | 99.91 | 99.95 | 99.96 | 100.00 | 100.00 | 100.00 |
Broccoli green-weeds-2 | 3726 | 30 | 99.75 | 97.44 | 99.57 | 99.36 | 99.81 | 99.80 | 99.98 |
Fallow | 1976 | 16 | 99.96 | 92.66 | 99.95 | 97.74 | 98.31 | 97.05 | 100.00 |
Fallow-rough-plough | 1394 | 11 | 96.41 | 98.59 | 98.88 | 89.95 | 91.38 | 99.15 | 98.46 |
Fallow-smooth | 2678 | 21 | 99.03 | 96.73 | 99.04 | 94.93 | 94.79 | 98.07 | 98.73 |
Stubble | 3959 | 32 | 99.55 | 99.36 | 99.76 | 97.70 | 98.84 | 99.58 | 99.90 |
Celery | 3579 | 29 | 99.85 | 99.57 | 99.76 | 99.87 | 99.83 | 99.73 | 99.72 |
Grapes-untrained | 11271 | 90 | 98.50 | 87.98 | 83.92 | 97.82 | 99.24 | 97.54 | 99.18 |
Soil-vineyard-develop | 6203 | 50 | 100.00 | 99.87 | 99.67 | 100.00 | 100.00 | 99.63 | 100.00 |
Corn-senesced-green weeds | 3278 | 26 | 99.32 | 86.16 | 93.23 | 96.27 | 96.53 | 95.97 | 98.19 |
Lettuce-romaine-4wk | 1068 | 9 | 91.08 | 56.40 | 94.38 | 64.07 | 94.06 | 96.65 | 96.84 |
Lettuce-romaine-5wk | 1927 | 15 | 98.37 | 86.48 | 100.00 | 98.52 | 99.01 | 99.95 | 100.00 |
Lettuce-romaine-6wk | 916 | 7 | 93.09 | 97.61 | 97.04 | 93.30 | 94.46 | 93.36 | 98.26 |
Lettuce-romaine-7wk | 1070 | 9 | 95.06 | 89.91 | 97.41 | 74.42 | 94.66 | 91.38 | 93.20 |
Vineyard-untrained | 7268 | 58 | 99.16 | 64.93 | 76.36 | 98.21 | 99.40 | 96.37 | 99.03 |
Vineyard-vertical-trellis | 1807 | 14 | 96.24 | 88.78 | 97.80 | 95.21 | 99.43 | 95.69 | 97.82 |
OA/% | - | 98.76 | 89.20 | 92.60 | 96.71 | 98.52 | 97.93 | 99.16 | |
AA/% | - | 97.84 | 90.15 | 96.04 | 93.58 | 97.48 | 97.49 | 98.71 | |
Kappa/% | - | 98.62 | 87.92 | 91.76 | 96.33 | 98.35 | 97.70 | 99.06 |
Ground | Sum | Training | SVM | PCA-SVM | LDM | PCA-LDM | EPF | IFRF | PCA-EPFs |
---|---|---|---|---|---|---|---|---|---|
Scrub | 761 | 30 | 97.66 | 87.95 | 89.54 | 98.43 | 100.00 | 95.91 | 99.00 |
Swamp willow | 243 | 10 | 85.42 | 70.41 | 84.78 | 68.98 | 81.12 | 35.46 | 59.96 |
Cabbage palm hammock | 256 | 10 | 84.99 | 70.54 | 88.39 | 78.69 | 94.85 | 92.98 | 97.27 |
Cabbage palm/oak | 252 | 10 | 49.68 | 46.28 | 55.33 | 44.40 | 80.40 | 57.85 | 97.32 |
Slash pine | 161 | 6 | 8.28 | 38.67 | 52.71 | 26.32 | 12.83 | 63.77 | 64.70 |
Oak/broadleaf hammock | 229 | 9 | 25.68 | 35.82 | 56.79 | 0.23 | 21.37 | 60.51 | 77.86 |
Hardwood swamp | 105 | 4 | 38.89 | 57.99 | 66.96 | 41.09 | 48.51 | 77.87 | 81.76 |
Graminoid marsh | 431 | 17 | 75.44 | 63.40 | 72.97 | 71.72 | 93.46 | 91.28 | 99.71 |
Spartina marsh | 520 | 21 | 94.09 | 92.51 | 94.58 | 96.59 | 100.00 | 87.57 | 100.00 |
Cattail marsh | 404 | 16 | 90.81 | 92.34 | 94.56 | 92.54 | 95.80 | 97.04 | 92.78 |
Salt marsh | 419 | 17 | 93.85 | 92.56 | 90.71 | 88.33 | 98.33 | 88.03 | 99.83 |
Muld flats | 503 | 20 | 78.52 | 73.93 | 83.61 | 84.78 | 93.53 | 96.80 | 94.18 |
Water | 927 | 37 | 99.94 | 98.54 | 98.18 | 98.08 | 100.00 | 100.00 | 100.00 |
OA/% | - | 82.45 | 79.49 | 85.11 | 80.65 | 89.03 | 87.16 | 94.12 | |
AA/% | - | 71.02 | 70.84 | 79.16 | 68.47 | 78.48 | 80.39 | 89.57 | |
Kappa/% | - | 80.33 | 77.14 | 83.42 | 78.32 | 87.72 | 85.63 | 93.42 |
Ground | Sum | Training | LDM-FL | CF-SVM | CF-LDM | DTRF-SVM | DTRF-LDM | CFDTRFF-SVM | CFDTRF-LDM |
---|---|---|---|---|---|---|---|---|---|
Scrub | 761 | 30 | 93.73 | 98.42 | 94.80 | 99.41 | 99.01 | 99.76 | 98.08 |
Swamp willow | 243 | 10 | 74.77 | 83.89 | 87.59 | 65.14 | 85.82 | 98.07 | 82.52 |
Cabbage palm hammock | 256 | 10 | 84.72 | 86.24 | 88.07 | 82.80 | 100.00 | 96.34 | 98.80 |
Cabbage palm/oak | 252 | 10 | 78.55 | 66.98 | 75.04 | 63.97 | 93.04 | 89.69 | 94.77 |
Slash pine | 161 | 6 | 72.59 | 31.36 | 63.05 | 65.57 | 86.10 | 91.74 | 84.26 |
Oak/broadleaf hammock | 229 | 9 | 96.68 | 70.39 | 64.02 | 94.79 | 100.00 | 75.75 | 99.09 |
Hardwood swamp | 105 | 4 | 100.00 | 48.10 | 68.19 | 97.54 | 100.00 | 46.56 | 100.00 |
Graminoid marsh | 431 | 17 | 90.59 | 90.15 | 90.89 | 98.25 | 93.98 | 97.06 | 97.41 |
Spartina marsh | 520 | 21 | 100.00 | 99.50 | 96.84 | 100.00 | 100.00 | 100.00 | 100.00 |
Cattail marsh | 404 | 16 | 70.08 | 96.72 | 96.79 | 89.76 | 75.69 | 98.08 | 100.00 |
Salt marsh | 419 | 17 | 100.00 | 97.06 | 95.95 | 96.87 | 99.94 | 96.76 | 99.75 |
Muld flats | 503 | 20 | 83.57 | 91.74 | 91.50 | 95.26 | 92.08 | 98.38 | 94.99 |
Water | 927 | 37 | 98.57 | 100.00 | 100.00 | 99.89 | 99.89 | 99.78 | 100.00 |
OA/% | - | 90.17 | 90.07 | 91.02 | 92.62 | 95.24 | 95.89 | 97.33 | |
AA/% | - | 87.99 | 81.58 | 85.60 | 88.40 | 94.27 | 91.38 | 96.13 | |
Kappa/% | - | 89.05 | 88.92 | 89.99 | 91.77 | 94.70 | 95.42 | 97.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, J.; Wang, L. Hyperspectral Image Classification Based on Fusion of Curvature Filter and Domain Transform Recursive Filter. Remote Sens. 2019, 11, 833. https://doi.org/10.3390/rs11070833
Liao J, Wang L. Hyperspectral Image Classification Based on Fusion of Curvature Filter and Domain Transform Recursive Filter. Remote Sensing. 2019; 11(7):833. https://doi.org/10.3390/rs11070833
Chicago/Turabian StyleLiao, Jianshang, and Liguo Wang. 2019. "Hyperspectral Image Classification Based on Fusion of Curvature Filter and Domain Transform Recursive Filter" Remote Sensing 11, no. 7: 833. https://doi.org/10.3390/rs11070833
APA StyleLiao, J., & Wang, L. (2019). Hyperspectral Image Classification Based on Fusion of Curvature Filter and Domain Transform Recursive Filter. Remote Sensing, 11(7), 833. https://doi.org/10.3390/rs11070833