Using 250-M Surface Reflectance MODIS Aqua/Terra Product to Estimate Turbidity in a Macro-Tidal Harbour: Darwin Harbour, Australia
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area
2.2. Observational Data
2.3. MODIS Data
2.4. Turbidity Retrieval Algorithm
3. Results and Discussion
3.1. Seasonal Variation of Turbidity in Darwin Harbour
Factors Controlling the Seasonal Variability of Turbidity
3.2. The Effect of Spring and Neap Tides on Turbidity Variation
3.3. Intra-Tidal Variation of Turbidity in Darwin Harbour
3.4. TMZ near Nightcliff and East Point, and Near Charles Point
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moreno-Madrinan, M.J.; Al-Hamdan, M.Z.; Rickman, D.L.; Muller-Karger, F.E. Using the Surface Reflectance MODIS Terra Product to Estimate Turbidity in Tampa Bay, Florida. Remote Sens. 2010, 2, 2713–2728. [Google Scholar] [CrossRef]
- Doxaran, D.; Froidefond, J.; Castaing, P.; Babin, M. Dynamics of the turbidity maximum zone in a macrotidal estuary (the Gironde, France): Observations from field and MODIS satellite data. Estuar. Coast. Shelf Sci. 2009, 81, 321–332. [Google Scholar] [CrossRef]
- Petus, C.; Chust, G.; Gohin, F.; Doxaran, D.; Froidefond, J.; Sagarminaga, Y. Estimating turbidity and total suspended matter in the Adour River plume (South Bay of Biscay) using MODIS 250-m imagery. Cont. Shelf Res. 2010, 30, 379–392. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, X.H.; Paull, D.; Gao, J. Application of the Geostationary Ocean Color Imager to Mapping the Diurnal and Seasonal Variability of Surface Suspended Matter in a Macro-Tidal Estuary. Remote Sens. 2016, 8, 244. [Google Scholar] [CrossRef]
- Wang, Z.; Qiao, L.; Wang, Y. Progress on Retrieval Models of Suspended Sediment Concentration from Satellite Images in the Eastern China Seas. Acta Sedimentol. Sin. 2016, 34, 292–301. (In Chinese) [Google Scholar]
- Doxaran, D.; Froidefond, J.; Castaing, P. Remote-sensing reflectance of turbid sediment-dominated waters Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios. Appl. Opt. 2003, 42, 2623–2632. [Google Scholar] [CrossRef] [PubMed]
- Vos, R.J.; Hakvoort, J.H.M.; Jordans, R.W.J.; Ibelings, B.W. Multiplatform optical monitoring of eutrophication in temporally and spatially variable lakes. Sci. Total Environ. 2003, 312, 221–243. [Google Scholar] [CrossRef]
- Warrick, J.A.; Mertes, L.A.K.; Siegel, D.A.; Mackenzie, C. Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS. Int. J. Remote Sens. 2004, 25, 1995–2002. [Google Scholar] [CrossRef]
- Fettweis, M.; Nechad, B.; Van den Eynde, D. An estimate of the suspended particulate matter (SPM) transport in the southern North Sea using SeaWiFS images, in situ measurements and numerical model results. Cont. Shelf Res. 2007, 27, 1568–1583. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.L.; McKee, B.A. Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Hu, C.; Muller-Karger, F. Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery. Remote Sens. Environ. 2007, 109, 207–220. [Google Scholar] [CrossRef]
- Petus, C.; Marieu, V.; Novoa, S.; Chust, G.; Bruneau, N.; Froidefond, J. Monitoring spatio-temporal variability of the Adour River turbid plume (Bay of Biscay, France) with MODIS 250-m imagery. Cont. Shelf Res. 2014, 74, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Han, L.; Chen, X.; Li, D.; Sun, L.; Li, Y. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method. ISPRS J. Photogramm. 2015, 99, 58–69. [Google Scholar] [CrossRef]
- Mertes, L.A.K.; Smith, M.O.; Adams, J.B. Estimating suspended sediment concentrations in surface waters of the Amazon River wetlands from Landsat images. Remote Sens. Environ. 1993, 43, 281–301. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Zhou, Y.; Troy, A. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int. J. Remote Sens. 2006, 27, 1177–1191. [Google Scholar] [CrossRef]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.; Pyhälahti, T. Landsat ETM+ Images in the Estimation of Seasonal Lake Water Quality in Boreal River Basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A. Water Quality Retrieval from Landsat TM Imagery. Procedia Comput. Sci. 2011, 6, 475–480. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef]
- Ruddick, K.; Vanhellemont, Q.; Yan, J.; Neukermans, G.; Wei, G.; Shang, S. Variability of suspended particulate matter in the Bohai Sea from the geostationary Ocean Color Imager (GOCI). Ocean Sci. J. 2012, 47, 331–345. [Google Scholar] [CrossRef]
- Lyu, H.; Zhang, J.; Zha, G.; Wang, Q.; Li, Y. Developing a two-step retrieval method for estimating total suspended solid concentration in Chinese turbid inland lakes using Geostationary Ocean Colour Imager (GOCI) imagery. Int. J. Remote Sens. 2015, 36, 1385–1405. [Google Scholar] [CrossRef]
- Moore, G.F.; Aiken, J.; Lavender, S.J. The atmospheric correction of water colour and the quantitative retrieval of suspended particulate matter in Case II waters: Application to MERIS. Int. J. Remote Sens. 1999, 20, 1713–1733. [Google Scholar] [CrossRef]
- Shen, F.; Verhoef, W.; Zhou, Y.; Salama, M.S.; Liu, X. Satellite Estimates of Wide-Range Suspended Sediment Concentrations in Changjiang (Yangtze) Estuary Using MERIS Data. Estuar. Coast. 2010, 33, 1420–1429. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.; Pang, D.; Kidd, I.; Moreno-Madriñán, M. Spatio-Temporal Variability in a Turbid and Dynamic Tidal Estuarine Environment (Tasmania, Australia): An Assessment of MODIS Band 1 Reflectance. ISPRS Int. J. Geo-Inf. 2017, 6, 320. [Google Scholar] [CrossRef]
- Hamidi, S.; Hosseiny, H.; Ekhtari, N.; Khazaei, B. Using MODIS remote sensing data for mapping the spatio-temporal variability of water quality and river turbid plume. J. Coast. Conserv. 2017, 21, 939–950. [Google Scholar] [CrossRef]
- Andutta, F.P.; Wang, X.H.; Li, L.; Williams, D. Hydrodynamics and Sediment Transport in a Macro-Tidal Estuary: Darwin Harbour, Australia; Springer: Dordrecht, The Netherlands, 2013; pp. 111–129. [Google Scholar]
- Wang, X.H.; Andutta, F.P. Sediment transport dynamics in ports, estuaries and other coastal environments. In Sediment Transport; Manning, A.J., Ed.; Intech: London, UK, 2012; pp. 3–35. ISBN 980-953-307-557-5. [Google Scholar]
- Li, L. Modelling the Tidal and Sediment Dynamics in Darwin Harbour, Northern Territory, Australia. Ph.D. Thesis, The University of New South Wales, Canberra, Australia, 2013. [Google Scholar]
- Fortune, J. The Grainsize and Heavy Metal Content of Sediment in Darwin Harbour; Report No.: 14/2006D; Aquatic Health Unit, Environmental Protection Agency, Department of Natural Resources, Environment and the Arts: Darwin, NT, USA, 2016; 74p. [Google Scholar]
- McKinnon, A.D.; Smit, N.; Townsend, S.; Duggan, S. Darwin Harbour: Water quality and ecosystem structure in a tropical harbour in the early stages of urban development. In The Environment in Asia Pacific Harbour; Wolanski, E., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 433–459. [Google Scholar]
- Padovan, A. The Water Quality of Darwin Harbour October 1990-November 1991; Water Quality Branch, Water Resources Division, Department of Lands, Planning and Environment: Darwin, Australia, 1997. [Google Scholar]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Dorji, P.; Fearns, P.; Broomhall, M. A Semi-Analytic Model for Estimating Total Suspended Sediment Concentration in Turbid Coastal Waters of Northern Western Australia Using MODIS-Aqua 250 m Data. Remote Sens. 2016, 8, 556. [Google Scholar] [CrossRef]
- Dorji, P.; Fearns, P. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia. PLoS ONE 2017, 12, e0175042. [Google Scholar] [CrossRef] [PubMed]
- Joshi, I.D.; D’Sa, E.J.; Osburn, C.L.; Bianchi, T.S. Turbidity in Apalachicola Bay, Florida from Landsat 5 TM and Field Data: Seasonal Patterns and Response to Extreme Events. Remote Sens. 2017, 9, 367. [Google Scholar] [CrossRef]
- Carballo, R.; Iglesias, G.; Castro, A. Residual circulation in the Ría de Muros (NW Spain): A 3D numerical model study. J. Mar. Syst. 2009, 75, 116–130. [Google Scholar] [CrossRef]
- Williams, D.; Wolanski, E.; Spagnol, S. Hydrodynamics of Darwin Harbour. In The Environment in Asia Pacific Harbours; Wolanski, E., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 461–476. [Google Scholar]
- Li, L.; Wang, X.H.; Andutta, F.P.; Williams, D. Effects of mangroves and tidal flats on suspended-sediment dynamics: Observational and numerical study of Darwin Harbour, Australia. J. Geophys. Res. 2014, 119, 5854–5873. [Google Scholar] [CrossRef] [Green Version]
- Green, M.O.; Coco, G. Review of wave-driven sediment resuspension and transport in estuaries. Rev. Geophys. 2014, 52, 77–117. [Google Scholar] [CrossRef] [Green Version]
- Gao, A.; Zhao, H.; Yang, S.; Dai, S.; Chen, S.; Li, P. Seasonal and Tidal Variations in Suspended Sediment Concentration Under the Influence of River Runoff, Tidal Current and Wind Waves. Adv. Mar. Sci. 2008, 26, 44–48. (In Chinese) [Google Scholar]
- Guillou, N.; Rivier, A.; Chapalain, G.; Gohin, F. The impact of tides and waves on near-surface suspended sediment concentrations in the English Channel. Oceanologia 2017, 59, 28–36. [Google Scholar] [CrossRef]
- Utne-Palm, A. The effect of prey mobility, prey contrast, turbidity and spectral composition on the reaction distance of Gobiusculus flavescens to its planktonic prey. J. Fish Biol. 1999, 54, 1244–1258. [Google Scholar] [CrossRef]
- Wang, X.H.; Pinardi, N. Modeling the dynamics of sediment transport and resuspension in the northern Adriatic Sea. J. Geophys. Res. 2002, 107, 18:1–18:23. [Google Scholar] [CrossRef]
- Van Senden, D.; Taylor, D.; Branson, P. Realtime turbidity monitoring and modelling for dredge impact assessment in Darwin Harbour. In Proceedings of the Australasian Port and Harbour Conference, Sydney, Australia, 27–29 November 2017; pp. 797–802. [Google Scholar]
- Allen, G.P.; Salomon, J.C.; Bassoullet, P.; Du Penhoat, Y.; De Grandpré, C. Effects of tides on mixing and suspended sediment transport in macrotidal estuaries. Sediment. Geol. 1980, 26, 69–90. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Rao, P.S.; Rao, K.H.; Thwin, S.; Rao, N.S.; Raiker, V. Tidal influence on suspended sediment distribution and dispersal in the northern Andaman Sea and Gulf of Martaban. Mar. Geol. 2004, 208, 33–42. [Google Scholar] [CrossRef]
- Unverricht, D.; Nguyen, T.C.; Heinrich, C.; Szczuciński, W.; Lahajnar, N.; Stattegger, K. Suspended sediment dynamics during the intra-monsoon season in the subaqueous Mekong Delta and adjacent shelf, southern Vietnam. J. Asian Earth Sci. 2014, 79, 509–519. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef]
- Byun, D.S.; Wang, X.H. The effect of sediment stratification on tidal dynamics and sediment transport patterns. J. Geophys. Res. 2005, 110, C3. [Google Scholar] [CrossRef]
RMSE(NTU) | MAPE | r | |
---|---|---|---|
Aqua | 1.18 | 33% | 0.89 |
Terra | 2.25 | 34% | 0.84 |
2013 | 2014 | 2015 | 2016 | 2017 | |
---|---|---|---|---|---|
Wet season | 13 | 14 | 11 | 19 | 9 |
Dry season | 19 | 32 | 25 | 23 | 26 |
2013 | 2014 | 2015 | 2016 | 2017 | ||
---|---|---|---|---|---|---|
Significant wave height (m) | Wet season | 0.45 | 0.52 | 0.51 | 0.40 | 0.54 |
Dry season | 0.17 | 0.27 | 0.25 | 0.26 | 0.27 | |
Wind speed (m/s) | Wet season | 4.11 | 4.70 | 4.76 | 4.20 | 4.42 |
Dry season | 4.00 | 3.69 | 3.70 | 3.92 | 3.77 |
2013 | 2014 | 2015 | 2016 | 2017 | |
---|---|---|---|---|---|
Spring | 19 | 32 | 25 | 23 | 26 |
Neap | 28 | 27 | 27 | 27 | 17 |
2013 | 2014 | 2015 | 2016 | 2017 | |
---|---|---|---|---|---|
Ebb tide | 30 | 37 | 34 | 22 | 20 |
Low water level | 19 | 32 | 25 | 23 | 26 |
Flood tide | 6 | 7 | 9 | 4 | 4 |
High water level | 24 | 15 | 13 | 13 | 14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Wang, X.; Ritchie, E.A.; Qiao, L.; Li, G.; Cheng, Z. Using 250-M Surface Reflectance MODIS Aqua/Terra Product to Estimate Turbidity in a Macro-Tidal Harbour: Darwin Harbour, Australia. Remote Sens. 2018, 10, 997. https://doi.org/10.3390/rs10070997
Yang G, Wang X, Ritchie EA, Qiao L, Li G, Cheng Z. Using 250-M Surface Reflectance MODIS Aqua/Terra Product to Estimate Turbidity in a Macro-Tidal Harbour: Darwin Harbour, Australia. Remote Sensing. 2018; 10(7):997. https://doi.org/10.3390/rs10070997
Chicago/Turabian StyleYang, Gang, Xiaohua Wang, Elizabeth A. Ritchie, Lulu Qiao, Guangxue Li, and Zhixin Cheng. 2018. "Using 250-M Surface Reflectance MODIS Aqua/Terra Product to Estimate Turbidity in a Macro-Tidal Harbour: Darwin Harbour, Australia" Remote Sensing 10, no. 7: 997. https://doi.org/10.3390/rs10070997
APA StyleYang, G., Wang, X., Ritchie, E. A., Qiao, L., Li, G., & Cheng, Z. (2018). Using 250-M Surface Reflectance MODIS Aqua/Terra Product to Estimate Turbidity in a Macro-Tidal Harbour: Darwin Harbour, Australia. Remote Sensing, 10(7), 997. https://doi.org/10.3390/rs10070997