Detergent Plants of Northern Thailand: Potential Sources of Natural Saponins
Abstract
:1. Introduction
2. Cleansing Properties of Natural Products
2.1. Surfactant
2.2. Bio-Based Surfactants
2.3. Soaps and Detergents
2.4. Foam
3. Saponins
3.1. Chemical Structure and Type of Saponins
3.2. Documented Plant Sources of Saponin
4. Detergent Plants in Northern Thailand
4.1. Ethnobotanical Studies of Thai Detergent Plants
4.2. Frequently Mentioned Detergent Plants in Northern Thailand
4.2.1. Litsea glutinosa
4.2.2. Sapindus rarak
4.2.3. Acacia concinna
5. Discussion
5.1. Driving Factors for Conservation
5.1.1. Social Drivers
5.1.2. Environmental Drivers
5.1.3. Economical Drivers
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheikhyoussef, A.; Mapaure, I.; Shapi, M. The use of some indigenous plants for medicinal and other purposes by local communities in Namibia with emphasis on Oshikoto region: A review. Res. J. Med. Plant 2011, 5, 406–419. [Google Scholar]
- Van Seters, A.P. Forest based medicines in traditional and cosmopolitan health care. In Medicinal Plants for Forest Conservation and Health Care, Non-Wood Forest Products; Bodeker, G., Bhat, K.K.S., Burley, J., Vantomme, P., Eds.; Food and Agriculture Organization: Rome, Italy, 1997; pp. 5–11. [Google Scholar]
- Baimai, V. Biodiversity in Thailand. JR Inst. Thail. 2010, 2, 107–114. [Google Scholar]
- Trisurat, Y.; Alkemade, R.; Verburg, P.H. Projecting land-use change and its consequences for biodiversity in Northern Thailand. Environ. Manag. 2010, 45, 626–639. [Google Scholar] [CrossRef] [PubMed]
- Samal, K.; Das, C.; Mohanty, K. Eco-friendly biosurfactant saponin for the solubilization of cationic and anionic dyes in aqueous system. Dyes Pigments 2017, 140, 100–108. [Google Scholar] [CrossRef]
- Martín, R.S.; Briones, R. Industrial uses and sustainable supply of Quillaja saponaria (Rosaceae) saponins. Econ. Bot. 1999, 53, 302–311. [Google Scholar] [CrossRef]
- Ncube, B.; Finnie, J.F.; Van Staden, J. Seasonal variation in antimicrobial and phytochemical properties of frequently used medicinal bulbous plants from South Africa. S. Afr. J. Bot. 2011, 77, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Wina, E.; Muetzel, S.; Hoffmann, E.; Makkar, H.P.S.; Becker, K. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 2005, 121, 159–174. [Google Scholar] [CrossRef]
- Faizal, A.; Geelen, D. Saponins and their role in biological processes in plants. Phytochem. Rev. 2013, 12, 877–893. [Google Scholar] [CrossRef]
- Xia, P.; Guo, H.; Ru, M.; Yang, D.; Liang, Z.; Yan, X.; Liu, Y. Accumulation of saponins in Panax notoginseng during its growing seasons. Ind. Crops Prod. 2017, 104, 287–292. [Google Scholar] [CrossRef]
- Singh, B.; Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT—Food Sci. Technol. 2018, 87, 93–101. [Google Scholar] [CrossRef]
- Myers, D. Surfactant Science and Technology; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Pradhan, A.; Bhattacharyya, A. Quest for an eco-friendly alternative surfactant: Surface and foam characteristics of natural surfactants. J. Clean. Prod. 2017, 150, 127–134. [Google Scholar] [CrossRef]
- Sahu, S.S.; Gandhi, I.S.R.; Khwairakpam, S. State-of-the-Art Review on the Characteristics of Surfactants and Foam from Foam Concrete Perspective. J. Inst. Eng. (India) Ser. A 2018, 99, 391–405. [Google Scholar] [CrossRef]
- Tadros, T.F. Applied Surfactants: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Bouillon, C. Shampoos. Clin. Dermatol. 1996, 14, 113–121. [Google Scholar] [CrossRef]
- Holmberg, K. Natural surfactants. Curr. Opin. Colloid Interface Sci. 2001, 6, 148–159. [Google Scholar] [CrossRef]
- Bulbul, B.; Minti, G. Plant based natural surfactants. Asian J. Home Sci. 2013, 8, 759–762. [Google Scholar]
- Basu, A.; Basu, S.; Bandyopadhyay, S.; Chowdhury, R. Optimization of evaporative extraction of natural emulsifier cum surfactant from Sapindus mukorossi—Characterization and cost analysis. Ind. Crops Prod. 2015, 77, 920–931. [Google Scholar] [CrossRef]
- Muntaha, S.-T.; Khan, M.N. Natural surfactant extracted from Sapindus mukurossi as an eco-friendly alternate to synthetic surfactant—A dye surfactant interaction study. J. Clean. Prod. 2015, 93, 145–150. [Google Scholar] [CrossRef]
- Oleszek, W.; Hamed, A. Saponin-Based Surfactants. In Surfactants from Renewable Resources; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 239–249. [Google Scholar]
- Niven, W.W., Jr. Industrial Detergency; Reinhold Publishing Corporation: New York, NY, USA, 1955. [Google Scholar]
- Seddon, A.M.; Curnow, P.; Booth, P.J. Membrane proteins, lipids and detergents: Not just a soap opera. Biochimica et Biophysica Acta (BBA)—Biomembranes 2004, 1666, 105–117. [Google Scholar] [CrossRef]
- Bhat, R.; Prajna, P.; Menezez, V.P.; Shetty, P. Antimicrobial activities of soap and detergents. Adv. Biores. 2011, 2, 52–62. [Google Scholar]
- Gray, J. Hair care and hair care products. Clin. Dermatol. 2001, 19, 227–236. [Google Scholar] [CrossRef]
- Atolani, O.; Olabiyi, E.T.; Issa, A.A.; Azeez, H.T.; Onoja, E.G.; Ibrahim, S.O.; Zubair, M.F.; Oguntoye, O.S.; Olatunji, G.A. Green synthesis and characterisation of natural antiseptic soaps from the oils of underutilised tropical seed. Sustain. Chem. Pharm. 2016, 4, 32–39. [Google Scholar] [CrossRef]
- Durham, K. Surface Activity and Detergency; Macmillan: London, UK, 1961. [Google Scholar]
- Chen, X.W.; Yang, D.X.; Zou, Y.; Yang, X.Q. Stabilization and functionalization of aqueous foams by Quillaja saponin-coated nanodroplets. Food Res. Int. 2017, 99, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Dickinson, E. Food emulsions and foams: Stabilization by particles. Curr. Opin. Colloid Interface Sci. 2010, 15, 40–49. [Google Scholar] [CrossRef]
- Amankeldi, F.; Ospanova, Z.; Musabekov, K. Composite Foaming Agents on the Basis of High-Molecular Natural Surfactants. Colloids Interfaces 2018, 2, 2. [Google Scholar] [CrossRef]
- Kregiel, D.; Berlowska, J.; Witonska, I.; Antolak, H.; Proestos, C.; Babic, M.; Babic, L.; Zhang, B. Saponin-Based, Biological-Active Surfactants from Plants. In Application and Characterization of Surfactants; Najjar, R., Ed.; InTech: Rijeka, Croatia, 2017; 68062p. [Google Scholar] [Green Version]
- Osbourn, A. Saponins and plant defence—A soap story. Trends Plant Sci. 1996, 1, 4–9. [Google Scholar] [CrossRef]
- Hostettmann, K.; Marston, A. Saponins; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Vincken, J.P.; Heng, L.; de Groot, A.; Gruppen, H. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 2007, 68, 275–297. [Google Scholar] [CrossRef] [PubMed]
- Sparg, S.G.; Light, M.E.; van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 2004, 94, 219–243. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.; Kerem, Z.; Makkar, H.P.S.; Becker, K. The biological action of saponins in animal systems: A review. Br. J. Nutr. 2007, 88, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Güçlü Üstündağ, Ö.; Mazza, G. Saponins: Properties, Applications and Processing. Crit. Rev. Food Sci. Nutr. 2007, 47, 231–258. [Google Scholar] [CrossRef] [PubMed]
- Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry 2011, 72, 435–457. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Singh, N.; Kaur, A. Saponins in pulses and their health promoting activities: A review. Food Chem. 2017, 233, 540–549. [Google Scholar] [CrossRef] [PubMed]
- Tippel, J.; Gies, K.; Harbaum-Piayda, B.; Steffen-Heins, A.; Drusch, S. Composition of Quillaja saponin extract affects lipid oxidation in oil-in-water emulsions. Food Chem. 2017, 221, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Heng, W.; Ling, Z.; Na, W.; Youzhi, G.; Zhen, W.; Zhiyong, S.; Deping, X.; Yunfei, X.; Weirong, Y. Analysis of the bioactive components of Sapindus saponins. Ind. Crops Prod. 2014, 61, 422–429. [Google Scholar] [CrossRef]
- Ruiz, K.B.; Khakimov, B.; Engelsen, S.B.; Bak, S.; Biondi, S.; Jacobsen, S.-E. Quinoa seed coats as an expanding and sustainable source of bioactive compounds: An investigation of genotypic diversity in saponin profiles. Ind. Crops Prod. 2017, 104, 156–163. [Google Scholar] [CrossRef]
- Yang, Y.; Leser, M.E.; Sher, A.A.; McClements, D.J. Formation and stability of emulsions using a natural small molecule surfactant: Quillaja saponin (Q-Naturale®). Food Hydrocoll. 2013, 30, 589–596. [Google Scholar] [CrossRef]
- Arrau, S.; Delporte, C.; Cartagena, C.; Rodríguez-Díaz, M.; González, P.; Silva, X.; Cassels, B.K.; Miranda, H.F. Antinociceptive activity of Quillaja saponaria Mol. saponin extract, quillaic acid and derivatives in mice. J. Ethnopharmacol. 2011, 133, 164–167. [Google Scholar] [CrossRef] [PubMed]
- Sarkhel, S. Evaluation of the anti-inflammatory activities of Quillaja saponaria Mol. saponin extract in mice. Toxicol. Rep. 2016, 3, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, S.; Drusch, S. Saponins—Self-assembly and behavior at aqueous interfaces. Adv. Colloid Interface Sci. 2017, 243, 105–113. [Google Scholar] [CrossRef]
- Jia, Z.; Koike, K.; Nikaido, T.; Saponarioside, C. The first α-D-Galactose containing triterpenoid saponin, and five related compounds from Saponaria officinalis. J. Nat. Prod. 1999, 62, 449–453. [Google Scholar] [CrossRef]
- Sengul, M.; Ercisli, S.; Yildiz, H.; Gungor, N.; Kavaz, A.; Çetin, B. Antioxidant, Antimicrobial Activity and Total Phenolic Content within the Aerial Parts of Artemisia absinthum, Artemisia santonicum and Saponaria officinalis. Iran. J. Pharm. Res. 2011, 10, 49–56. [Google Scholar]
- Koike, K.; Jia, Z.; Nikaido, T. New triterpenoid saponins and sapogenins from Saponaria officinalis. J. Nat. Prod. 1999, 62, 1655–1659. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Kuo, P.-L.; Chen, Y.-H.; Huang, J.-C.; Ho, M.-L.; Lin, R.-J.; Chang, J.-S.; Wang, H.-M. Tyrosinase inhibition, free radical scavenging, antimicroorganism and anticancer proliferation activities of Sapindus mukorossi extracts. J. Taiwan Inst. Chem. Eng. 2010, 41, 129–135. [Google Scholar] [CrossRef]
- Samal, K.; Das, C.; Mohanty, K. Application of saponin biosurfactant and its recovery in the MEUF process for removal of methyl violet from wastewater. J. Environ. Manag. 2017, 203, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wu, Z.L.; Wang, Y.J.; Li, L.L. Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation. Ind. Crops Prod. 2013, 51, 163–170. [Google Scholar] [CrossRef]
- Sati, P.; Pandey, A.; Rawat, S.; Rani, A. Phytochemicals and antioxidants in leaf extracts of Ginkgo biloba with reference to location, seasonal variation and solvent system. J. Pharm. Res. 2013, 7, 804–809. [Google Scholar] [CrossRef]
- Damke, E.; Tsuzuki, J.K.; Chassot, F.; Cortez, D.A.; Ferreira, I.C.; Mesquita, C.S.; da-Silva, V.R.; Svidzinski, T.I.; Consolaro, M.E. Spermicidal and anti-Trichomonas vaginalis activity of Brazilian Sapindus saponaria. BMC Complement. Altern. Med. 2013, 13, 196. [Google Scholar] [CrossRef] [PubMed]
- Murgu, M.; Rodrigues-Filho, E. Dereplication of glycosides from Sapindus saponaria using liquid chromatography-mass spectrometry. J. Braz. Chem. Soc. 2006, 17, 1281–1290. [Google Scholar] [CrossRef]
- Amaral, L.S.; Murgu, M.; Rodrigues-Fo, E.; de Souza, A.Q.L.; de Moura Sarquis, M.I. A saponin tolerant and glycoside producer xylariaceous fungus isolated from fruits of Sapindus saponaria. World J. Microbiol. Biotechnol. 2008, 24, 1341–1348. [Google Scholar] [CrossRef]
- Meyer Albiero, A.L.; Aboin Sertié, J.A.; Bacchi, E.M. Antiulcer activity of Sapindus saponaria L. in the rat. J. Ethnopharmacol. 2002, 82, 41–44. [Google Scholar] [CrossRef]
- Tsuzuki, J.K.; Svidzinski, T.I.; Shinobu, C.S.; Silva, L.F.; Rodrigues-Filho, E.; Cortez, D.A.; Ferreira, I.C. Antifungal activity of the extracts and saponins from Sapindus saponaria L. Anais da Academia Brasileira de Ciencias 2007, 79, 577–583. [Google Scholar] [CrossRef]
- Panyadee, P.; Balslev, H.; Wangpakapattanawong, P.; Inta, A. Woody plant diversity in urban homegardens in Northern Thailand. Econ. Bot. 2016, 70, 285–302. [Google Scholar] [CrossRef]
- Srithi, K.; Balslev, H.; Wangpakapattanawong, P.; Srisanga, P.; Trisonthi, C. Medicinal plant knowledge and its erosion among the Mien (Yao) in Northern Thailand. J. Ethnopharmacol. 2009, 123, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Srithi, K.; Trisonthi, C.; Wangpakapattanawong, P.; Balslev, H. Medicinal plants used in Hmong women’s healthcare in northern Thailand. J. Ethnopharmacol. 2012, 139, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Songsangchun, A. Plants Usages of Khon Muang and Lawa in Phu Fah Subdistrict, Bo Klua District, Nan Province. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, July 2015. [Google Scholar]
- Moonjai, J.; Inta, A. Ethnobotanical study of the Lawa lived in La-Oob village, Mae La Noi district, Mae Hong Son province. Thai J. of Bot. 2016, 8, 181–199. [Google Scholar]
- Tovaranonte, J. Ethnobotanical Study of the Tai Lue, Hmong and Yao in Some Areas of Nan Province. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, July 1998. [Google Scholar]
- Panyadee, P. Plant Diversity in Homegardens of Tai Yai Communities in Pang Mapha District, Mae Hong Son Province. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, May 2012. [Google Scholar]
- Muangyen, N. Ethnobotany of Tai Lue and Tai Yuan in Samoeng District, Chiang Mai Province. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, March 2013. [Google Scholar]
- Kamwong, K. Ethnobotany of Karens at Ban Mai Sawan and Ban Huay Pu Ling, Ban Luang Sub-District, Chom Thong District, Chiang Mai Province. Master’s Thesis, Chiang Mai University, Chiang Mai, Thailand, February 2009. [Google Scholar]
- Chowdhury, J.U.; Bhuiyan, M.N.I.; Nandi, N.C. Aromatic plants of Bangladesh: Essential oils of leaves and fruits of Litsea glutinosa (Lour.) CB Robinson. Bangladesh J. Bot. 2008, 37, 81–83. [Google Scholar] [CrossRef]
- Das, D.; Maiti, S.; Maiti, T.K.; Islam, S.S. A new arabinoxylan from green leaves of Litsea glutinosa (Lauraeae): Structural and biological studies. Carbohydr. Polym. 2013, 92, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Pradeepa, K.; Krishna, V.; Santosh, K.; Girish, K.K. Antinociceptive property of leaves extract of Litsea glutinosa. Asian J. Pharm. Clin. Res. 2013, 6, 182–184. [Google Scholar]
- Haque, T.; Uddin, M.Z.; Saha, M.L.; Mazid, M.A.; Hassan, M.A. Propagation, antibacterial activity and phytochemical profiles of Litsea glutinosa (Lour.) CB Robinson. Dhaka Univ. J. Biol. Sci. 2014, 23, 165–171. [Google Scholar] [CrossRef]
- Devi, P.; Meera, R. Study of antioxdant, antiinflammatory and woundhealing activity of extracts of Litsea glutinosa. J. Pharm. Sci. Res. 2010, 2, 155. [Google Scholar]
- Wang, Y.S.; Wen, Z.Q.; Li, B.T.; Zhang, H.B.; Yang, J.H. Ethnobotany, phytochemistry, and pharmacology of the genus Litsea: An update. J. Ethnopharmacol. 2016, 181, 66–107. [Google Scholar] [CrossRef]
- Nasution, R.E. Perkarangan: Suatu tinjauan peranannya. Bul. Kebun Raya 1979, 4, 33–39. [Google Scholar]
- Asao, Y.; Morikawa, T.; Xie, Y.; Okamoto, M.; Hamao, M.; Matsuda, H.; Muraoka, O.; Yuan, D.; Yoshikawa, M. Structures of acetylated oleanane-type triterpene saponins, rarasaponins IV, V, and VI, and anti-hyperlipidemic constituents from the pericarps of Sapindus rarak. Chem. Pharm. Bull. 2009, 57, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Xie, Y.; Asao, Y.; Okamoto, M.; Yamashita, C.; Muraoka, O.; Matsuda, H.; Pongpiriyadacha, Y.; Yuan, D.; Yoshikawa, M. Oleanane-type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of Sapindus rarak. Phytochemistry 2009, 70, 1166–1172. [Google Scholar] [CrossRef] [PubMed]
- Setijono, S.; Arumingtyas, E.L.; Mastuti, R.; Indriyani, S. Study on Flowering Development Biology of Sapindus rarak DC. Int. J. Agric. For. Plant. 2016, 3, 72–75. [Google Scholar]
- Wangchuk, P.; Yeshi, K.; Jamphel, K. Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. Integr. Med. Res. 2017, 6, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, L.; Liu, J.; Zhao, G.; Gao, S.; Xi, B.; Duan, J.; Weng, X.; Jia, L. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind. Crops Prod. 2018, 118, 1–10. [Google Scholar] [CrossRef]
- Gafur, M.A.; Obata, T.; Kiuchi, F.; Tsuda, Y. Acacia concinna saponins. I. Structures of prosapogenols, concinnosides AF, isolated from the alkaline hydrolysate of the highly polar saponin fraction. Chem. Pharm. Bull. 1997, 45, 620–625. [Google Scholar] [CrossRef]
- Tezuka, Y.; Honda, K.; Banskota, A.H.; Thet, M.M.; Kadota, S. Kinmoonosides A-C, three new cytotoxic saponins from the fruits of Acacia concinna, a Medicinal Plant Collected in Myanmar. J. Nat. Prod. 2000, 63, 1658–1664. [Google Scholar] [CrossRef]
- Todkar, S.; Chavan, V.; Kulkarni, A. Screening of secondary metabolites and antibacterial activity of Acacia concinna. Res. J. Microbiol. 2010, 5, 974–979. [Google Scholar] [CrossRef]
- Chavan, H.V.; Bandgar, B.P. Aqueous extract of Acacia concinna pods: An efficient surfactant type catalyst for synthesis of 3-carboxycoumarins and cinnamic acids via Knoevenagel condensation. ACS Sustain. Chem. Eng. 2013, 1, 929–936. [Google Scholar] [CrossRef]
- Boonmee, S.; Kato-Noguchi, H. Allelopathic activity of Acacia concinna pod extracts. Emirates J. Food Agric. 2017, 205–255. [Google Scholar] [CrossRef]
- Poomanee, W.; Chaiyana, W.; Intasai, N.; Leelapornpisid, P. Biological activities and characterization of the pod extracts from sompoi (Acacia concinna linn) grown in northern Thailand. Int. J. Pharm. Pharm. Sci. 2015, 7, 237–241. [Google Scholar]
- Raju, A.S.; Rao, S.P. Reproductive Ecology of Acacia concinna (Shikakai) and Semecarpus Anacardium (Marking nut), with a note on pollinator conservation in the Eastern Ghats of Visakhapatnam district, Andhra pradesh. In Proceedings of the National Seminar on Conservation of Eastern Ghats, Tirupati, India, 22–24 March 2002. [Google Scholar]
- Kiuchi, F.; Gafur, M.A.; Obata, T.; Tachibana, A.; Tsuda, Y. Acacia concinna saponins. II. Structures of monoterpenoid glycosides in the alkaline hydrolysate of the saponin fraction. Chem. Pharm. Bull. 1997, 45, 807–812. [Google Scholar] [CrossRef]
- Poomanee, W.; Chaiyana, W.; Randall Wickett, R.; Leelapornpisid, P. Stability and solubility improvement of Sompoi (Acacia concinna Linn.) pod extract by topical microemulsion. Asian J. Pharm. Sci. 2017, 12, 386–393. [Google Scholar] [CrossRef]
- Brown, K.S. Diversity, disturbance, and sustainable use of Neotropical forests: Insects as indicators for conservation monitoring. J. Insect Conserv. 1997, 1, 25–42. [Google Scholar] [CrossRef]
- Panyaphu, K. Conservation and Sustainable Use of Ethnomedicinal Plants by MIEN PEople in Nan Province. Ph.D Thesis, Chiang Mai University, Chiang Mai, Thailand, January 2012. [Google Scholar]
- Scherrer, A.M.; Motti, R.; Weckerle, C.S. Traditional plant use in the areas of Monte Vesole and Ascea, Cilento National Park (Campania, Southern Italy). J. Ethnopharmacol. 2005, 97, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Tangjitman, K. Vulnerability prediction of medicinal plants used by Karen people in Chiang Mai province to climatic change using Species Distribution Model (SDM). Ph.D Thesis, Chiang Mai University, Chiang Mai, Thailand, July 2014. [Google Scholar]
- Van On, T.; Quyen, D.; Jones, B.; Wunder, J.; Russell-Smith, J. A survey of medicinal plants in BaVi National Park, Vietnam: Methodology and implications for conservation and sustainable use. Biol. Conserv. 2001, 97, 295–304. [Google Scholar] [CrossRef]
- Junsongduang, A. Roles and importance of sacred forest in biodiversity conservation in Mae Chaem district, Chiang Mai province. Ph.D Thesis, Chiang Mai University, Chiang Mai, Thailand, February 2014. [Google Scholar]
- Kebede, M.; Yirdaw, E.; Luukkanen, O.; Lemenih, M. Plant community analysis and effect of environmental factors on the diversity of woody species in the moist Afromontane forest of Wondo Genet, South Central Ethiopia. Biodivers. Res. Conserv. 2013, 29, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Kalmykova, Y.; Rosado, L.; Patrício, J. Resource consumption drivers and pathways to reduction: Economy, policy and lifestyle impact on material flows at the national and urban scale. J. Clean. Prod. 2016, 132, 70–80. [Google Scholar] [CrossRef]
- Cattarino, L.; Hermoso, V.; Bradford, L.W.; Carwardine, J.; Wilson, K.A.; Kennard, M.J.; Linke, S. Accounting for continuous species’ responses to management effort enhances cost-effectiveness of conservation decisions. Biol. Conserv. 2016, 197, 116–123. [Google Scholar] [CrossRef]
- Sher, H.; Aldosari, A.; Ali, A.; de Boer, H.J. Economic benefits of high value medicinal plants to Pakistani communities: An analysis of current practice and potential. J. Ethnobiol. Ethnomed. 2014, 10, 71. [Google Scholar] [CrossRef] [PubMed]
Family | Identified Species | Part Used | Utilisations | References |
---|---|---|---|---|
Arecaceae | Acorus gramineus Aiton | Leaf | Mashed and used as shampoo | [62] |
Burseraceae | Garuga pinnata Roxb. | Leaf | Mashed and used as shampoo | [62] |
Clusiaceae | Garcinia sp. | Fruit | Mashed and used as shampoo | [62] |
Cucurbitaceae | Luffa cylindrica Roem. | Fruit | Fibre of dried fruit is used as similar to cleansing sponge | [63] |
Trichosanthes cucumerina Linn. | Fruit | Fibre of dried fruit is used as similar to cleansing sponge | Inta, per. comm. | |
Dilleniaceae | Dillenia parviflora Griff. | Fruit | Mashed as used as shampoo hair dying agent (black) | [62] |
Euphorbiaceae | Antidesma acidum Retz. | Leaf | Mashed as used as shampoo hair dying agent (black) | Inta, per. comm. |
Homonoia riparia Lour. | Leaf | Detergent for hand wash | [64] | |
Flueggea virosa (Willd.) Voigt | Stem | Mashed, soaked in water and used as detergent or shampoo | [62] | |
Fabaceae | Acacia concinna (Willd.) D.C. | Fruit | Shampoo Used for spiritual cleansing during Thai new year | [65] |
Clitoria ternatea L. | Leaf | Mixed with shampoo | [62] | |
Hypoxidaceae | Curculigo latifolia Dryand. ex. W.T. Aiton | Rhizome | Mashed and used as shampoo | [62] |
Lauraceae | Litsea glutinosa (Lour.) C.B. Rob. | Leaf | Mashed and used as shampoo | [65,66] |
Oxalidaceae | Oxalis corniculata L. | Stem Leaf | Used to polish silver and gold wares | [64,65] |
Pedeliaceae | Sesamun orientale L. | Leaf | Mashed and used as shampoo | [62] |
Poaceae | Oryza sativa L. | Peel | Fibre of dried fruit is used as similar to cleansing sponge | [67] |
Rutaceae | Citrus hystrix D.C. | Fruit | Used as shampoo | [66] |
Salicaceae | Salix tetrasperma Roxb. | Pericarp | Used as detergent | [62] |
Sapindaceae | Aesculus assamica Griff. | Leaf | Used as shampoo | Inta, per. comm. |
Lepisanthes rubiginosa (Roxb.) Leenh. | Fruit | Used as shampoo | Inta, per. comm. | |
Sapindus rarak D.C. | Fruit | Mashed, soaked in water and used as detergent or shampoo | [62,66] | |
Solanaceae | Solanum erianthum D.Don | Leaf | Fresh leaf is used to polish kitchen wares | [63,66] |
Teliaceae | Microcos tomentosa Sm. | Leaf | Shampoo | Inta, per. comm. |
Vitaceae | Cissus modeccoides Var. Karri. | Leaf, Stem | Used to polish kitchen wares (boiled in water) | Inta, per. comm. |
Cissus repen Lamk. | Stem | Used to polish silver wares (boiled in water) | [64] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wisetkomolmat, J.; Suppakittpaisarn, P.; Sommano, S.R. Detergent Plants of Northern Thailand: Potential Sources of Natural Saponins. Resources 2019, 8, 10. https://doi.org/10.3390/resources8010010
Wisetkomolmat J, Suppakittpaisarn P, Sommano SR. Detergent Plants of Northern Thailand: Potential Sources of Natural Saponins. Resources. 2019; 8(1):10. https://doi.org/10.3390/resources8010010
Chicago/Turabian StyleWisetkomolmat, Jiratchaya, Pongsakorn Suppakittpaisarn, and Sarana Rose Sommano. 2019. "Detergent Plants of Northern Thailand: Potential Sources of Natural Saponins" Resources 8, no. 1: 10. https://doi.org/10.3390/resources8010010