Inventory of MSWI Fly Ash in Switzerland: Heavy Metal Recovery Potential and Their Properties for Acid Leaching
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Sample Processing
2.2. Chemical Analysis
2.3. Mineralogical Analysis
2.4. Acid Neutralizing Capacity
2.5. Metallic Aluminum
2.6. Cluster Analyis
3. Results
3.1. Chemical Composition
3.2. Mineralogical Composition
3.3. Acid Neutralizing Capacity
3.4. Metallic Aluminum Al0
3.5. Cluster Analysis
4. Discussion
4.1. Mass Flow of Metals in Swiss FA
4.2. Characterization of FA Regarding the FLUWA Treatment
4.3. Situation in Switzerland from 2021 on
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Name | Unit | Method | Average | Median | Max | Min |
---|---|---|---|---|---|---|
Na2O | mg/kg | ED-XRF | 92,728 | 100,400 | 144,700 | 12,000 |
MgO | mg/kg | ED-XRF | 12,733 | 12,400 | 27,000 | 3200 |
SiO2 | mg/kg | ED-XRF | 84,548 | 81,500 | 148,100 | 51,200 |
P2O5 | mg/kg | ED-XRF | 9798 | 9192 | 15,700 | 6480 |
SO3 | mg/kg | ED-XRF | 136,179 | 131,400 | 201,500 | 74,500 |
Cl | mg/kg | ED-XRF | 137,483 | 144,200 | 258,400 | 8800 |
K2O | mg/kg | ED-XRF | 65,401 | 65,800 | 110,400 | 12,000 |
CaO | mg/kg | ED-XRF | 268,231 | 256,800 | 375,900 | 160,100 |
Zn | mg/kg | ED-XRF | 36,039 | 34,830 | 66,450 | 13,850 |
Pb | mg/kg | ED-XRF | 7978 | 6116 | 19,130 | 2380 |
Cu | mg/kg | ED-XRF | 2030 | 1792 | 6647 | 737 |
Cd | mg/kg | ED-XRF | 243 | 258 | 464 | 36 |
Mn | mg/kg | ED-XRF | 822 | 820 | 1569 | 534 |
Fe | mg/kg | ED-XRF | 17,641 | 17,640 | 31,217 | 9421 |
Al | mg/kg | ED-XRF | 18,673 | 17,995 | 32,390 | 9632 |
Ti | mg/kg | ED-XRF | 10,582 | 10,660 | 16,200 | 7018 |
Au | µg/kg | INAA | 1829 | 745 | 20,600 | 247 |
Ag | mg/kg | MULT INAA/TD-ICP-MS | 39 | 37 | 94 | 13 |
Ni | mg/kg | MULT INAA/TD-ICP-MS | 123 | 105 | 335 | 72 |
As | mg/kg | INAA | 78 | 73 | 163 | 9 |
Ba | mg/kg | MULT INAA/TD-ICP-MS | 166 | 174 | 248 | 82 |
Be | mg/kg | TD-MS | 0.6 | 0.5 | 1.5 | 0.3 |
Bi | mg/kg | TD-MS | 102 | 99 | 264 | 39 |
Br | mg/kg | INAA | 2071 | 2130 | 4290 | 153 |
Co | mg/kg | MULT INAA/TD-ICP-MS | 51 | 45 | 96 | 22 |
Cr | mg/kg | INAA | 512 | 463 | 1460 | 265 |
Cs | mg/kg | MULT INAA/TD-ICP-MS | 7 | 8 | 10 | 2 |
Eu | mg/kg | TD-MS | 0.3 | 0.3 | 0.4 | 0.2 |
Hf | mg/kg | INAA | 2.1 | 2.0 | 4.0 | <1 |
Ge | mg/kg | TD-MS | 0.5 | 0.4 | 2.0 | 0.1 |
In | mg/kg | TD-MS | 2.9 | 1.9 | 11.4 | 0.4 |
Name | Unit | Method | Average | Median | Max | Min |
---|---|---|---|---|---|---|
Li | mg/kg | TD-MS | 50 | 47 | 151 | 28 |
Nb | mg/kg | TD-MS | 0.5 | 0.1 | 3.6 | 0.1 |
Mo | mg/kg | TD-MS | 12 | 8 | 71 | 3 |
Rb | mg/kg | TD-MS | 95 | 96 | 159 | 21 |
Re | mg/kg | TD-MS | 0 | 0 | 0 | 0 |
Sb | mg/kg | INAA | 2381 | 2240 | 4540 | 745 |
Sc | mg/kg | INAA | 2.4 | 2.2 | 4.9 | 1.2 |
Se | mg/kg | MULT INAA/TD-ICP-MS | 5.6 | 4.6 | 12.5 | 2.0 |
Sr | mg/kg | TD-MS | 366 | 363 | 523 | 289 |
Ta | mg/kg | MULT INAA/TD-ICP-MS | <0.1 | <0.1 | <0.1 | <0.1 |
Te | mg/kg | TD-MS | <0.1 | <0.1 | <0.1 | <0.1 |
Th | mg/kg | MULT INAA/TD-ICP-MS | 2.4 | 2.3 | 5.2 | 1.3 |
Tl | mg/kg | TD-MS | 1.3 | 1.2 | 2.1 | 0.6 |
U | mg/kg | MULT INAA/TD-ICP-MS | 1.2 | 1.1 | 3.0 | 0.7 |
V | mg/kg | TD-MS | 13 | 14 | 21 | 2 |
W | mg/kg | INAA | 30 | 18 | 114 | <1 |
Y | mg/kg | TD-MS | 9 | 8 | 16 | 5 |
Zr | mg/kg | TD-MS | 90 | 85 | 220 | 39 |
La | mg/kg | TD-MS | 12 | 12 | 24 | 8 |
Ce | mg/kg | TD-MS | 22 | 20 | 51 | 13 |
Pr | mg/kg | TD-MS | 1.9 | 1.9 | 2.8 | 1.2 |
Nd | mg/kg | TD-MS | 7.1 | 7.2 | 12.3 | 4.3 |
Sm | mg/kg | TD-MS | 1.2 | 1.1 | 2.4 | 0.7 |
Gd | mg/kg | TD-MS | 2.0 | 1.6 | 7.4 | 0.9 |
Dy | mg/kg | TD-MS | 0.8 | 0.8 | 1.2 | 0.5 |
Tb | mg/kg | TD-MS | 0.2 | 0.2 | 0.9 | 0.1 |
Ho | mg/kg | TD-MS | 0.2 | 0.1 | 1.2 | 0.1 |
Hg | µg/kg | TD-MS | 528 | 320 | 2000 | 50 |
Er | mg/kg | TD-MS | 0.5 | 0.5 | 1.5 | 0.3 |
Tm | mg/kg | TD-MS | 0.1 | 0.1 | 0.1 | 0.1 |
Yb | mg/kg | TD-MS | 0.8 | 0.5 | 8.3 | 0.3 |
Lu | mg/kg | TD-MS | 0.1 | 0.1 | 0.4 | <1 |
References
- Le Forestier, L.; Libourel, G. Characterization of flue gas residues from municipal solid waste combustors. Environ. Sci. Technol. 1998, 32, 2250–2256. [Google Scholar] [CrossRef]
- Li, M.; Xiang, J.; Hu, S.; Sun, L.-S.; Su, S.; Li, P.-S.; Sun, X.-X. Characterization of solid residues from municipal solid waste incinerator. Fuel 2004, 83, 1397–1405. [Google Scholar] [CrossRef]
- Bayuseno, A.P. Mineral Phases in Raw and Processed Municipal Waste Incineration Residues-Towards a Chemical Stabilisation and Fixation of Heavy Metals. Ph.D. Thesis, Ruhr-Universität Bochum, Bochum, Germany, 2006. [Google Scholar]
- Weibel, G. Optimized Metal Recovery from Fly Ash from Municipal Solid Waste Incineration. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2017. [Google Scholar]
- Verhulst, D.; Buekens, A.; Spencer, P.J.; Eriksson, G. Thermodynamic Behavior of Metal Chlorides and Sulfates under the Conditions of Incineration Furnaces. Environ. Sci. Technol. 1996, 30, 50–56. [Google Scholar] [CrossRef]
- Swiss Confederation. Ordinance on the Avoidance and the Disposal of Waste (Waste Ordinance, ADWO); Swiss Conferderation: Bern, Switzerland, 2015; Volume 2015, pp. 1–46. [Google Scholar]
- Schlumberger, S. Neue Technologien und Möglichkeiten der Behandlung von Rauchgasreinigungsrückständen im Sinne Eines Nachhaltigen Ressourcenmanagements. New Technologies and Opportunities for the Treatment of Residues from Flue Gas Treatments in a Sustainable Resource Man; KVA: Sursee, Switzerland, 2010. [Google Scholar]
- Bühler, A.; Schlumberger, S. Schwermetalle aus der Flugasche Zurückgewinnen «Saure Flugaschewäsche—FLUWA-Verfahren» Ein Zukunftsweisendes Verfahren in der Abfallverbrennung; BSH Umweltservice AG: Sursee, Switzerland, 2010. [Google Scholar]
- Budde, I. Charakterisierung der Elementaren Zusammensetzung von Filteraschen und Daraus Entstehender Reaktionsprodukte auf Einer Thermischen Abfallbehandlungsanlage. Aufklärung der Möglichen Blei-, Cadmium- und Kupferextraktion aus Filteraschen und Untersuchung mög. Master’s Thesis, Leopold-Franzens-Universität Innsbruck, Innsbruck, Austria, 2015. [Google Scholar]
- Weibel, G.; Eggenberger, U.; Schlumberger, S.; Mäder, U.K. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration. Waste Manag. 2017, 62, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Heuss-Aßbichler, S.; Magel, G.; Fehr, K.T. Abiotic hydrogen production in fresh and altered MSWI-residues: Texture and microstructure investigation. Waste Manag. 2010, 30, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, A.; Badshan, M.; Praagh, M.V.; Persoon, K.M. Evaluation of H2 gas Production from MSWI Bottom Ash. In Proceedings of the Proceedings Venice 2010, 3rd International Symposium Energy from Biomass Waste, Venice, Italy, 8–11 November 2010. [Google Scholar]
- AWEL. Stand der Technik für die Aufbereitung von Rauchgasreinigungsrückständen (RGRR) aus Kehrichtverbrennungsanlagen; AWEL: Zürich, Switzerland, 2013; p. 10. [Google Scholar]
- Weibel, G.; Eggenberger, U.; Kulik, D.A.; Hummel, W.; Schlumberger, S.; Klink, W.; Fisch, M.; Mäder, U.K. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution. Waste Manag. 2018, 76, 457–471. [Google Scholar] [CrossRef] [PubMed]
- VBSA. In Schweizer KVA Verbrannte Abfallmenge 2016. 2017. Available online: http://vbsa.ch/fakten/abfallverwertung/ (accessed on 26 July 2018).
- Morf, L.S.; Gloor, R.; Haag, O.; Haupt, M.; Skutan, S.; Di Lorenzo, F.; Böni, D. Precious metals and rare earth elements in municipal solid waste—Sources and fate in a Swiss incineration plant. Waste Manag. 2013, 33, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Eidgenössische Zollverwaltung. Datenbank Swiss Impex. 2.%09Datenbank Swiss Impex, Eidgenössische Zollverwaltung EZV. Available online: https://www.gate.ezv.admin.ch/swissimpex/ (accessed on 20 August 2018).
- Wäger, P. Scarce metals—Applications, supply risks and need for action. Not. Polit. 2011, 104, 57–66. [Google Scholar]
- Eidgenössische Zollverwaltung. Explanatory Notes of the Customs Tariff—Tares. Available online: https://www.ezv.admin.ch/ezv/de/home/dokumentation/richtlinien/d6-erlaeuterungen-zum-zolltarif.html (accessed on 20 August 2018).
- Swiss Confederation. Rückgewinnung von Metallen aus den Filteraschen von Kehrichtverbrennungsanlagen; Bundesamt für Umwelt BAFU: Bern, Switzerland, 2020; pp. 1–21. [Google Scholar]
Recovery (%) FLUWA | Recovery (%) Optimized FLUWA (+H2O2) | |
---|---|---|
Zn | 60–80 | 60–80 |
Pb | 0–30 | 50–90 |
Cu | 0–30 | 40–80 |
Cd | 60–85 | 85–95 |
Phase | Abbr. | Formula | Average Content (wt.%) | Occurrences in FA Samples (max. 29) |
---|---|---|---|---|
Amorphous content (incl. minor) | 41 | 29 | ||
Chlorides | ||||
Halite | Ha | NaCl | 11 | 29 |
Sylvite | Sy | KCl | 4 | 28 |
K2ZnCl4 | KZn | K2ZnCl4 | 5 | 23 |
Sulfate | ||||
Anhydrite | An | CaSO4 | 8 | 29 |
Silicates | ||||
Gehlenite | Ge | Ca2Al2SiO7 | 7 | 29 |
Belite | Be | Ca2SiO4 | 4 | 27 |
Quartz | Qz | SiO2 | 2 | 29 |
Carbonate | ||||
Calcite | Cc | CaCO3 | 5 | 28 |
Magnesite | Mc | MgCO3 | 3 | 28 |
Oxides | ||||
Mayenite | My | Ca12Al14O33 | 3 | 26 |
Perovskite | Pk | CaTiO3 | 3 | 27 |
Lime | CaO | 2 | 27 | |
Rutile | Rt | TiO2 | 1 | 28 |
Periclase | Pc | MgO | 1 | 28 |
Annual Flow in Swiss Fly Ash (kg/a) ± Uncertainty (SD) | |||||||
---|---|---|---|---|---|---|---|
Zn | 3,052,798 | ± | 78,651 | V | 1036 | ± | 15 |
Al | 1,392,164 | ± | 24,735 | La | 994 | ± | 11 |
Fe | 1,340,295 | ± | 24,822 | Y | 681 | ± | 14 |
Ti | 791,008 | ± | 13,579 | Nd | 560 | ± | 13 |
Pb | 667,668 | ± | 17,000 | Se | 473 | ± | 3 |
Sb | 194,269 | ± | 4536 | In | 276 | ± | 4 |
Cu | 172,269 | ± | 4816 | Th | 182 | ± | 4 |
Sn | 140,728 | ± | 1090 | Sc | 178 | ± | 3 |
Mn | 58,243 | ± | 811 | Gd | 153 | ± | 2 |
Cr | 39,064 | ± | 538 | Pr | 146 | ± | 2 |
Sr | 28,864 | ± | 278 | Tl | 105 | ± | 2 |
Cd | 20,735 | ± | 263 | Sm | 95 | ± | 5 |
Ba | 13,220 | ± | 209 | Yb | 71 | ± | 1 |
Ni | 10,021 | ± | 182 | Dy | 64 | ± | 1 |
Bi | 8268 | ± | 125 | Be | 44 | ± | 2 |
Rb | 7826 | ± | 173 | Er | 42 | ± | 0.5 |
Zr | 6696 | ± | 94 | Ge | 42 | ± | 1 |
As | 6293 | ± | 94 | Eu | 26 | ± | 1.2 |
Li | 4012 | ± | 83 | Tb | 19 | ± | 0.3 |
Co | 3975 | ± | 43 | Nb | 16 | ± | 0.5 |
Ag | 3191 | ± | 52 | Ho | 13 | ± | 0.5 |
Ce | 1761 | ± | 50 | Au | 12 | ± | 0.2 |
W | 1378 | ± | 22 | Te | 11 | ± | 0.2 |
Mo | 1090 | ± | 21 | Lu | 8 | ± | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zucha, W.; Weibel, G.; Wolffers, M.; Eggenberger, U. Inventory of MSWI Fly Ash in Switzerland: Heavy Metal Recovery Potential and Their Properties for Acid Leaching. Processes 2020, 8, 1668. https://doi.org/10.3390/pr8121668
Zucha W, Weibel G, Wolffers M, Eggenberger U. Inventory of MSWI Fly Ash in Switzerland: Heavy Metal Recovery Potential and Their Properties for Acid Leaching. Processes. 2020; 8(12):1668. https://doi.org/10.3390/pr8121668
Chicago/Turabian StyleZucha, Wolfgang, Gisela Weibel, Mirjam Wolffers, and Urs Eggenberger. 2020. "Inventory of MSWI Fly Ash in Switzerland: Heavy Metal Recovery Potential and Their Properties for Acid Leaching" Processes 8, no. 12: 1668. https://doi.org/10.3390/pr8121668