Development of Epoxy and Urethane Thermosetting Resin Using Chlorella sp. as Curing Agent for Materials with Low Environmental Impact
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrications of Resins
2.3. IR Measurements
2.4. Tensile Tests
2.5. SEM Observations
2.6. TG and DTA Measurements
3. Results and Discussion
3.1. Preparations of Thermosetting Cell Resins
3.2. Evaluations of Mechanical Properties of Thermosetting Cell Resins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Shruti, V.C.; Kutralam-Muniasamy, G. Bioplastics: Missing link in the era of Microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef] [PubMed]
- Tsang, Y.F.; Kumar, V.; Samadar, P.; Yang, Y.; Lee, J.; Ok, Y.S.; Song, H.; Kim, K.-H.; Kwon, E.E.; Jeon, Y.J. Production of bioplastic through food waste valorization. Environ. Int. 2019, 127, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Cornish, K.; Vodovotz, Y. Narrowing the Gap for Bioplastic Use in Food Packaging: An Update. Environ. Sci. Technol. 2020, 54, 4712–4732. [Google Scholar] [CrossRef]
- Nandakumar, A.; Chuah, J.-A.; Sudesh, K. Bioplastics: A boon or bane? Renew. Sustain. Energy Rev. 2021, 147, 111237. [Google Scholar] [CrossRef]
- Harmsen, P.F.H.; Hackmann, M.M.; Bos, H.L. Green building blocks for bio-based plastics. Biofuels Bioprod. Biorefin. 2014, 8, 306–324. [Google Scholar] [CrossRef]
- Noreen, A.; Zia, K.M.; Zuber, M.; Ali, M.; Mujahid, M. A critical review of algal biomass: A versatile platform of bio-based polyesters from renewable resources. Int. J. Biol. Macromol. 2016, 86, 937–949. [Google Scholar] [CrossRef]
- Kawaguchi, H.; Ogino, C.; Kondo, A. Microbial conversion of biomass into bio-based polymers. Bioresour. Technol. 2017, 245, 1664–1673. [Google Scholar] [CrossRef]
- Wei, G.; Zhang, J.; Usuelli, M.; Zhang, X.; Liu, B.; Mezzenga, R. Biomass vs inorganic and plastic-based aerogels: Structural design, functional tailoring, resource-efficient applications and sustainability analysis. Prog. Mater. Sci. 2022, 125, 100915. [Google Scholar] [CrossRef]
- Brodhagen, M.; Peyron, M.; Miles, C.; Inglis, D.A. Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl. Microbiol. Biotechnol. 2015, 99, 1039–1056. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Environmental performance of bio-based and biodegradable plastics: The road ahead. Chem. Soc. Rev. 2017, 46, 6855–6871. [Google Scholar] [CrossRef]
- Emadian, S.M.; Onay, T.T.; Demirel, B. Biodegradation of bioplastics in natural environments. Waste Manag. 2017, 59, 526–536. [Google Scholar] [CrossRef]
- Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A.M. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Sci. Total Environ. 2021, 750, 141228. [Google Scholar] [CrossRef]
- Qin, M.; Chen, C.; Song, B.; Shen, M.; Cao, W.; Yang, H.; Zeng, G.; Gong, J. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 2015, 54, 3210–3215. [Google Scholar] [CrossRef]
- Raj, T.; Chandrasekhar, K.; Kumar, A.N.; Kim, S.-H. Lignocellulosic biomass as renewable feedstock for biodegradable and recyclable plastics production: A sustainable approach. Renew. Sustain. Energy Rev. 2022, 158, 112130. [Google Scholar] [CrossRef]
- Kimura, T.; Ihara, N.; Ishida, Y.; Saito, Y.; Shimizu, N. Hydrolysis Characteristics of Biodegradable Plastic (Poly Lactic Acid). Nippon Shokuhin Kagaku Kogaku Kaishi 2002, 49, 598–604. [Google Scholar] [CrossRef] [Green Version]
- Jamshidian, M.; Tehrany, E.A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. [Google Scholar] [CrossRef]
- Luzi, F.; Fortunati, E.; Jiménez, A.; Puglia, D.; Pezzolla, D.; Gigliotti, G.; Kenny, J.M.; Chiralt, A.; Torre, L. Production and characterization of PLA PBS biodegradable blendsreinforced with cellulose nanocrystals extracted from hemp fibres. Ind. Crops Prod. 2016, 93, 276–289. [Google Scholar] [CrossRef]
- Taib, N.-A.A.B.; Rahman, M.R.; Huda, D.; Kuok, K.K.; Hamdan, S.; Bakri, M.K.B.; Julaihi, M.R.M.B.; Khan, A. A review on poly lactic acid (PLA) as a biodegradable polymer. Polym. Bull. 2023, 80, 1179–1213. [Google Scholar] [CrossRef]
- Nakanishi, A.; Iritani, K.; Sakihama, Y.; Ozawa, N.; Mochizuki, A.; Watanabe, M. Construction of Cell-Plastics as Neo-Plastics Consisted of Cell-Layer Provided Green Alga Chlamydomonas Reinhardtii Covered by Two-Dimensional Polymer. AMB Expr. 2020, 10, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, A.; Iritani, K.; Sakihama, Y.; Watanabe, M. Investigation of the Mechanical Strength of Cell-plastics Fabricated Using Unicellular Green Algal Cells and Varying Weight Ratios of Biodegradable Polybutylene Succinate. Int. J. Microbio. Biotechnol. 2020, 5, 159–164. [Google Scholar] [CrossRef]
- Nakanishi, A.; Iritani, K.; Sakihama, Y. Developing Neo-bioplastics for the Realization of Carbon Sustainable Society. J. Nanotechnol. Nanomater. 2020, 1, 72–85. [Google Scholar]
- Nakanishi, A.; Iritani, K.; Sakihama, Y.; Watanabe, M.; Mochizuki, A.; Tsuruta, A.; Sakamoto, S.; Ota, A. Fabrication and Biodegradability of Starch Cell-Plastics as Recyclable Resources. Appl. Sci. 2021, 11, 847. [Google Scholar] [CrossRef]
- Iritani, K.; Nakanishi, A.; Ota, A.; Yamashita, T. Fabrication of Novel Functional Cell-Plastic Using Polyvinyl Alcohol: Effects of Cross-Linking Structure and Mixing Ratio of Components on the Mechanical and Thermal Properties. Glob. Chall. 2021, 5, 2100026. [Google Scholar] [CrossRef]
- Nakanishi, A.; Iritani, K. Recent Progress of Cell-Plastics as Neo Bioplastics: A Mini Review. Ann. Biol. Res. 2021, 12, 58–61. [Google Scholar]
- Nakanishi, A.; Iritani, K.; Tsuruta, A.; Yamamoto, N.; Watanabe, M.; Ozawa, N.; Watanabe, M.; Zhang, K.; Tokudome, A. Fabrication of cell plastics composed only of unicellular green alga Chlamydomonas reinhardtii as a raw material. Appl. Microbiol. Biotechnol. 2022, 106, 4459–4468. [Google Scholar] [CrossRef]
- Watanabe, M. Classification, morphology, life history, ecology. In Handbook of Algae—Their Diversity and Utilization-; NTS: Tokyo, Japan, 2012; pp. 132–135. [Google Scholar]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary Production of the Biosphere: Integrating Terrestrial and Oceanic Components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Van Etten, J.L.; Lane, L.C.; Meints, R.H. Viruses and Viruslike Particles of Eukaryotic Algae. Microbiol. Rev. 1991, 55, 586–620. [Google Scholar] [CrossRef]
- Van Etten, J.L.; Graves, M.V.; Müller, D.G.; Boland, W.; Delaroque, N. Phycodnaviridae—Large DNA algal viruses. Arch. Virol. 2002, 147, 1479–1516. [Google Scholar] [CrossRef]
- Kang, M.; Dunigan, D.D.; Van Etten, J.L. Chlorovirus: A genus of Phycodnaviridae that infects certain chlorella-like green algae. Mol. Plant Pathol. 2005, 6, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, M. Culture and preservation of algae. In Handbook of Algae—Their Diversity and Utilization-; NTS: Tokyo, Japan, 2012; pp. 345–353. [Google Scholar]
- Doucha, J.; Straka, F.; Lívanský, K. Utilization of Flue Gas for Cultivation of Microalgae (Chlorella sp.) in an Outdoor Open Thin-Layer Photobioreactor. J. Appl. Phycol. 2005, 17, 403–412. [Google Scholar] [CrossRef]
- Hodgkin, J.H.; Simon, G.P.; Varley, R.J. Thermoplastic Toughening of Epoxy Resins: A Critical Review. Polym. Adv. Technol. 1998, 9, 3–10. [Google Scholar] [CrossRef]
- Koike, T. Progress in Development of Epoxy Resin Systems Based on Wood Biomass in Japan. Polym. Eng. Sci. 2012, 52, 701–717. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Król, P. Synthesis methods, chemical structures and phase structures of linear polyurethanes. Properties and applications of linear polyurethanes in polyurethane elastomers, copolymers and ionomers. Prog. Mater. Sci. 2007, 52, 915–1015. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane types, synthesis and applications—A review. RSC Adv. 2016, 6, 114453. [Google Scholar] [CrossRef] [Green Version]
- Plastic Technology Association; Osaka Research Institute of Industrial Science and Technology. Plastic Dokuhon, 20th ed.; Plastic Age: Tokyo, Japan, 2009. [Google Scholar]
- Francis, B.; Thomas, S.; Jose, J.; Ramaswamy, R.; Rao, V.L. Hydroxyl terminated poly(ether ether ketone) with pendent methyl group toughened epoxy resin: Miscibility, morphology and mechanical properties. Polymer 2005, 46, 12372–12385. [Google Scholar] [CrossRef]
- Yang, G.; Fu, S.-Y.; Yang, J.-P. Preparation and mechanical properties of modified epoxy resins with flexible diamines. Polymer 2007, 48, 302–310. [Google Scholar] [CrossRef]
- Chen, Z.-K.; Yang, J.-P.; Ni, Q.-Q.; Fu, S.-Y.; Hung, Y.-G. Reinforcement of epoxy resins with multi-walled carbon nanotubes for enhancing cryogenic mechanical properties. Polymer 2009, 50, 4753–4759. [Google Scholar] [CrossRef]
- Nabeth, B.; Pascault, J.P.; Dusek, K. Concept of Hard Clusters in the Interpretation of Thermal and Mechanical Properties of Polyurethane and Polyurethane Acrylate Networks. J. Polym. Sci. Part B Polym. Phys. 1996, 34, 1031–1054. [Google Scholar] [CrossRef]
- Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Effect of the degree of soft and hard segment ordering on the morphology and mechanical behavior of semicrystalline segmented polyurethanes. Polymer 2006, 47, 3073–3082. [Google Scholar] [CrossRef]
- Boubakri, A.; Haddar, N.; Elleuch, K.; Bienvenu, Y. Impact of aging conditions on mechanical properties of thermoplastic polyurethane. Mater. Des. 2010, 31, 4194–4201. [Google Scholar] [CrossRef]
Weight of Content (g) | Containing Ratio (wt%) | Curability | ||||
---|---|---|---|---|---|---|
BDE | DBU | Chlorella sp. | BDE | DBU | Chlorella sp. | |
3.02 | 0.35 | 3.04 | 47 | 6 | 47 | Brittle |
1.02 | 0.33 | 3.03 | 23 | 8 | 69 | Hardened |
0.61 | 0.34 | 3.06 | 15 | 9 | 76 | Hardened |
0.43 | 0.33 | 3.00 | 11 | 9 | 80 | Hardened |
2.03 | - | 8.03 | 20 | - | 80 | Hardened |
0.34 | 0.34 | 3.04 | 9 | 9 | 82 | Brittle |
Weight of Content (g) | Containing Ratio (wt%) | Curability | ||
---|---|---|---|---|
BIC | Chlorella sp. | BIC | Chlorella sp. | |
1.61 | 1.61 | 50 | 50 | No Curability |
2.03 | 8.03 | 20 | 80 | Hardened |
0.51 | 2.51 | 17 | 83 | Hardened |
1.53 | 10.7 | 13 | 87 | Hardened |
1.32 | 10.6 | 11 | 89 | Hardened |
0.15 | 3.00 | 5 | 95 | Brittle |
Resin | Temperature (°C) | Pressure (MPa) | Young’s Modulus (MPa) | Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|
Epoxy | 120 | 5 | - a | - a | - a |
10 | 390 ± 40 | 6.3 ± 0.8 | 2.1 ± 0.3 | ||
20 | 610 ± 90 | 8.9 ± 1.4 | 2.5 ± 0.9 | ||
150 | 5 | - a | - a | - a | |
10 | 620 ± 70 | 11 ± 3 | 2.6 ± 0.7 | ||
20 | 710 ± 180 | 16 ± 4 | 3.0 ± 0.4 | ||
180 | 5 | - a | - a | - a | |
10 | - a | - a | - a | ||
20 | - a | - a | - a | ||
Urethane | 120 | 5 | 600 ± 55 | 11 ± 2 | 2.5 ± 0.4 |
10 | 680 ± 44 | 13 ± 2 | 2.5 ± 0.6 | ||
20 | 760 ± 80 | 16 ± 2 | 2.9 ± 0.4 | ||
150 | 5 | 480 ± 80 | 10 ± 3 | 2.4 ± 0.2 | |
10 | 610 ± 120 | 8.4 ± 2.9 | 1.6 ± 0.5 | ||
20 | 800 ± 80 | 18 ± 6 | 4.0 ± 1.0 | ||
180 | 5 | 510 ± 60 | 9.6 ± 3.2 | 2.3 ± 0.6 | |
10 | - a | - a | - a | ||
20 | - a | - a | - a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iritani, K.; Nakanishi, A.; Nihei, R.; Sugitani, S.; Yamashita, T. Development of Epoxy and Urethane Thermosetting Resin Using Chlorella sp. as Curing Agent for Materials with Low Environmental Impact. Polymers 2023, 15, 2968. https://doi.org/10.3390/polym15132968
Iritani K, Nakanishi A, Nihei R, Sugitani S, Yamashita T. Development of Epoxy and Urethane Thermosetting Resin Using Chlorella sp. as Curing Agent for Materials with Low Environmental Impact. Polymers. 2023; 15(13):2968. https://doi.org/10.3390/polym15132968
Chicago/Turabian StyleIritani, Kohei, Akihito Nakanishi, Rinka Nihei, Shiomi Sugitani, and Takashi Yamashita. 2023. "Development of Epoxy and Urethane Thermosetting Resin Using Chlorella sp. as Curing Agent for Materials with Low Environmental Impact" Polymers 15, no. 13: 2968. https://doi.org/10.3390/polym15132968