Probing the Effect of Photovoltaic Material on Voc in Ternary Polymer Solar Cells with Non-Fullerene Acceptors by Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Dataset Collection
2.2. Model Building
2.3. Performance Evaluation
2.4. Visual Interpretation
3. Result and Discussions
3.1. The Influence FMOs of Donor and Acceptor on Voc
3.2. The Effect of MDs and MFs on Voc
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Wu, J.; Fu, Y.; Wang, B.; Yang, Q.; Sharma, G.D.; Keshtov, M.L.; Xie, Z. One-step solution-processed low surface roughness silver nanowire composite transparent electrode for efficient flexible indium tin oxide-free polymer solar cells. Thin Solid Film. 2021, 718, 138486. [Google Scholar] [CrossRef]
- Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research progress on polymer solar cells based on PEDOT:PSS electrodes. Polymers 2020, 12, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorrentino, R.; Kozma, E.; Luzzati, S.; Po, R. Interlayers for non-fullerene based polymer solar cells: Distinctive features and challenges. Energy Environ. Sci. 2021, 14, 180–223. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Lu, Y.-J.; Tsao, C.-S.; Saeki, A.; Li, J.-X.; Chen, C.-H.; Wang, H.-C.; Chen, H.-C.; Meng, D.; Wu, K.-H. Enhancing photovoltaic performance by tuning the domain sizes of a small-molecule acceptor by side-chain-engineered polymer donors. J. Mater. Chem. A 2019, 7, 3072–3082. [Google Scholar] [CrossRef]
- Ahmad, N.; Zhou, H.; Fan, P.; Liang, G. Recent progress in cathode interlayer materials for non-fullerene organic solar cells. EcoMat 2022, 4, e12156. [Google Scholar] [CrossRef]
- Zhang, Z.; Shan, T.; Zhang, Y.; Zhu, L.; Kong, L.; Liu, F.; Zhong, H. Isomerizing thieno [3, 4-b] thiophene-based near-infrared non-fullerene acceptors towards efficient organic solar cells. J. Mater. Chem. C 2020, 8, 4357–4364. [Google Scholar] [CrossRef]
- Wang, H.; Cao, J.; Yu, J.; Zhang, Z.; Geng, R.; Yang, L.; Tang, W. Molecular engineering of central fused-ring cores of non-fullerene acceptors for high-efficiency organic solar cells. J. Mater. Chem. A 2019, 7, 4313–4333. [Google Scholar] [CrossRef]
- Gokulnath, T.; Gayathri, R.D.; Park, H.-Y.; Kim, J.; Kim, H.; Kim, J.; Reddy, S.S.; Yoon, J.; Jin, S.-H. Highly efficient layer-by-layer deposition solar cells achieved with halogen-free solvents and molecular engineering of non-fullerene acceptors. Chem. Eng. J. 2022, 448, 137621. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chen, C.-H.; Li, R.-H.; Tsao, C.-S.; Saeki, A.; Wang, H.-C.; Chang, B.; Huang, L.-Y.; Yang, Y.; Wei, K.-H. Atom-varied side chains in conjugated polymers affect efficiencies of photovoltaic devices incorporating small molecules. ACS Appl. Polym. Mater 2019, 2, 636–646. [Google Scholar] [CrossRef]
- An, Q.; Zhang, F.; Zhang, J.; Tang, W.; Deng, Z.; Hu, B. Versatile ternary organic solar cells: A critical review. Energy Environ. Sci. 2016, 9, 281–322. [Google Scholar] [CrossRef]
- Wu, Y.; Ding, N.; Zhang, Y.; Liu, B.; Zhuang, X.; Liu, S.; Nie, Z.; Bai, X.; Dong, B.; Xu, L. Toward broad spectral response inverted perovskite solar cells: Insulating quantum-cutting perovskite nanophosphors and multifunctional ternary organic bulk-heterojunction. Adv. Energy Mater. 2022, 12, 2200005. [Google Scholar] [CrossRef]
- Avalos-Quiroz, Y.A.; Bardagot, O.; Kervella, Y.; Aumaître, C.; Cabau, L.; Rivaton, A.; Margeat, O.; Videlot-Ackermann, C.; Vongsaysy, U.; Ackermann, J. Non-fullerene acceptors with an extended π-conjugated core: Third components in ternary blends for high-efficiency, post-treatment-free organic solar cells. ChemSusChem 2021, 14, 3502–3510. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, Y. Integrated perovskite/bulk-heterojunction organic solar cells. Adv. Mater. 2020, 32, 1805843. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xu, Y.; Yao, H.; Bi, P.; Hong, L.; Zhang, J.; Zu, Y.; Zhang, T.; Qin, J.; Ren, J. Single-junction organic photovoltaic cell with 19% efficiency. Adv. Mater. 2021, 33, 2102420. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, Y.; Liu, Y.; Shi, Y.; Qiu, D.; Deng, D.; Zhang, J.; Wang, B.; Adil, M.A.; Amin, K. Simultaneously decreasing the bandgap and voc loss in efficient ternary organic solar cells. Adv. Energy Mater. 2022, 12, 2200129. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, Z.; Su, Z.; Zhang, X.; Zhang, J. 16.5% efficiency ternary organic photovoltaics with two polymer donors by optimizing molecular arrangement and phase separation. Nano Energy 2020, 69, 104447. [Google Scholar] [CrossRef]
- Mahmood, A.; Irfan, A.; Wang, J.-L. Machine learning and molecular dynamics simulation-assisted evolutionary design and discovery pipeline to screen efficient small molecule acceptors for PTB7-Th-based organic solar cells with over 15% efficiency. J. Mater. Chem. A 2022, 10, 4170–4180. [Google Scholar] [CrossRef]
- Sethi, S.K.; Singh, M.; Manik, G. A multi-scale modeling and simulation study to investigate the effect of roughness of a surface on its self-cleaning performance. Mol. Syst. Des. Eng. 2020, 5, 1277–1289. [Google Scholar] [CrossRef]
- Scharber, M.C.; Mühlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.J. Design rules for donors in bulk-heterojunction solar cells—Towards 10% energy-conversion efficiency. Adv. Mater. 2006, 18, 789–794. [Google Scholar] [CrossRef]
- Lee, M.-H. A machine learning-based design rule for improved open-circuit voltage in ternary organic solar cells. Adv. Intell. Syst. 2020, 2, 1900108. [Google Scholar] [CrossRef]
- Liu, X.; Shao, Y.; Lu, T.; Chang, D.; Li, M.; Lu, W. Accelerating the discovery of high-performance donor/acceptor pairs in photovoltaic materials via machine learning and density functional theory. Mater. Des. 2022, 216, 110561. [Google Scholar] [CrossRef]
- Malhotra, P.; Biswas, S.; Chen, F.-C.; Sharma, G.D. Prediction of non-radiative voltage losses in organic solar cells using machine learning. SoEn 2021, 228, 175–186. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Saeki, A. Machine learning-assisted polymer design for improving the performance of non-fullerene organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 28936–28944. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Yap, B.K.; Zhong, Z.; Ying, L. Review on Y6-based semiconductor materials and their future development via machine learning. Crystals 2022, 12, 168. [Google Scholar] [CrossRef]
- Kranthiraja, K.; Saeki, A. Experiment-oriented machine learning of polymer: Non-fullerene organic solar cells. Adv. Funct. Mater. 2021, 31, 2011168. [Google Scholar] [CrossRef]
- Guo, C.; Li, Z.; Wang, K.; Zhou, X.; Huang, D.; Liang, J.; Zhao, L. Accelerated exploration of efficient ternary solar cells with PTB7: PC 71 BM: SMPV1 using machine-learning methods. Phys. Chem. Chem. Phys 2022, 24, 22538–22545. [Google Scholar] [CrossRef]
- Wang, K.; Guo, C.R.; Li, Z.N.; Zhang, R.; Feng, Z.M.; Fang, G.K.; Huang, D.; Liang, J.J.; Zhao, L.; Li, Z.C. Machine learning assisted identification of the matched energy level of materials for high open circuit voltage in binary organic solar cells. Mol. Syst. Des. Eng. 2023, 8, 799–809. [Google Scholar] [CrossRef]
- Nie, Q.; Tang, A.; Guo, Q.; Zhou, E. Benzothiadiazole-based non-fullerene acceptors. Nano Energy 2021, 87, 106174. [Google Scholar] [CrossRef]
- Li, D.; Chen, X.; Cai, J.; Li, W.; Chen, M.; Mao, Y.; Du, B.; Smith, J.A.; Kilbride, R.C.; O’Kane, M.E. Non-fullerene acceptor fibrils enable efficient ternary organic solar cells with 16.6% efficiency. Sci. China Chem. 2020, 63, 1461–1468. [Google Scholar] [CrossRef]
- Suthar, R.; Dahiya, H.; Karak, S.; Sharma, G.D. Ternary organic solar cells: Recent insight on structure-processing-property-performance relationships. Energy Technol. 2023, 11, 2201176. [Google Scholar] [CrossRef]
- Yin, Y.; Zhan, L.; Liu, M.; Yang, C.; Guo, F.; Liu, Y.; Gao, S.; Zhao, L.; Chen, H.; Zhang, Y. Boosting photovoltaic performance of ternary organic solar cells by integrating a multi-functional guest acceptor. Nano Energy 2021, 90, 106538. [Google Scholar] [CrossRef]
- Li, F.; Chen, Y.; Fan, X.-H.; Gao, C.-Y.; Zhu, X.; Yang, L.-M. High performance achieved via core engineering and side-chain engineering in organic solar cells based on the penta-fused-ring acceptor. J. Mater. Chem. C 2022, 10, 7724–7730. [Google Scholar]
- Zhang, Y.; Li, G. Functional third components in nonfullerene acceptor-based ternary organic solar cells. Acc. Chem. Res. 2020, 1, 158–171. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Yu, J.; Liu, X.; Tang, W. High mobility acceptor as third component enabling high-performance large area and thick active layer ternary solar cells. Chem. Eng. J. 2021, 418, 129539. [Google Scholar] [CrossRef]
- Ma, Q.; Jia, Z.; Meng, L.; Zhang, J.; Zhang, H.; Huang, W.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z.; et al. Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78, 105272. [Google Scholar] [CrossRef]
- Hao, T.; Leng, S.; Yang, Y.; Zhong, W.; Zhang, M.; Zhu, L.; Song, J.; Xu, J.; Zhou, G.; Zou, Y.; et al. Capture the high-efficiency non-fullerene ternary organic solar cells formula by machine-learning-assisted energy-level alignment optimization. Patterns 2021, 2, 100333. [Google Scholar] [CrossRef]
- An, Q.; Wang, J.; Ma, X.; Gao, J.; Hu, Z.; Liu, B.; Sun, H.; Guo, X.; Zhang, X.; Zhang, F. Two compatible polymer donors contribute synergistically for ternary organic solar cells with 17.53% efficiency. Energy Environ. Sci. 2020, 13, 5039–5047. [Google Scholar] [CrossRef]
- Lu, H.; Liu, W.; Jin, H.; Huang, H.; Tang, Z.; Bo, Z. High-efficiency organic solar cells with reduced nonradiative voltage loss enabled by a highly emissive narrow bandgap fused ring acceptor. Adv. Funct. Mater. 2022, 32, 2107756. [Google Scholar] [CrossRef]
- Bi, Z.; Naveed, H.B.; Wu, H.; Zhang, C.; Zhou, X.; Wang, J.; Wang, M.; Wu, X.; Zhu, Q.; Zhou, K. Tuning acceptor composition in ternary organic photovoltaics–impact of domain purity on non-radiative voltage losses. Adv. Energy Mater. 2022, 12, 2103735. [Google Scholar]
- Yu, R.; Yao, H.; Hou, J. Recent progress in ternary organic solar cells based on nonfullerene acceptors. Adv. Energy Mater. 2018, 8, 1702814. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Y.; Fan, H.; Wu, Y.; Cui, C.; Li, Y. A Large-bandgap guest material enabling improved efficiency and reduced energy loss for ternary polymer solar cells. Sol. RRL 2021, 5, 2100013. [Google Scholar]
- Yu, K.; Song, W.; Li, Y.; Chen, Z.; Ge, J.; Yang, D.; Zhang, J.; Xie, L.; Liu, C.; Ge, Z. Achieving 18.14% efficiency of ternary organic solar cells with alloyed nonfullerene acceptor. Small Struct. 2021, 2, 2100099. [Google Scholar] [CrossRef]
- Raheem, A.A.; Murugan, P.; Shanmugam, R.; Praveen, C. Azulene bridged π-distorted chromophores: The influence of structural symmetry on optoelectrochemical and photovoltaic parameters. ChemPlusChem 2021, 86, 1451–1460. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, L.; Lu, X.; Cao, L.; Du, X.; Lin, H.; Zheng, C.; Tao, S. Hydrogen bond induced high-performance quaternary organic solar cells with efficiency up to 17.48% and superior thermal stability. Mater. Chem. Front. 2021, 5, 3850–3858. [Google Scholar] [CrossRef]
- Dutta, J.; Sahu, A.K.; Bhadauria, A.S.; Biswal, H.S. Carbon-centered hydrogen bonds in proteins. J. Chem. Inf. Model. 2022, 62, 1998–2008. [Google Scholar] [CrossRef]
- Gokulnath, T.; Choi, J.; Park, H.-Y.; Sung, K.; Do, Y.; Park, H.; Kim, J.; Reddy, S.S.; Kim, J.; Song, M. A wide-bandgap π-conjugated polymer for high-performance ternary organic solar cells with an efficiency of 17.40%. Nano Energy 2021, 89, 106323. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, C.; Dong, J.; Zhou, W.; Rosei, F.; Feng, Y.; Wang, L.N. Structure/property control in photocatalytic organic semiconductor nanocrystals. Adv. Funct. Mater. 2021, 31, 2104099. [Google Scholar] [CrossRef]
- Zhang, K.-N.; Bi, P.-Q.; Wen, Z.-C.; Niu, M.-S.; Chen, Z.-H.; Wang, T.; Feng, L.; Yang, J.-L.; Hao, X.-T. Unveiling the important role of non-fullerene acceptors crystallinity on optimizing nanomorphology and charge transfer in ternary organic solar cells. Org. Electron. 2018, 62, 643–652. [Google Scholar] [CrossRef]
- Li, X.; Du, X.; Lin, H.; Kong, X.; Li, L.; Zhou, L.; Zheng, C.; Tao, S. Ternary system with intermolecular hydrogen bond: Efficient strategy to high-performance nonfullerene organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 15598–15606. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Z.; Yang, S.; Fan, J.; Huang, S.; Yang, S.; Li, H.; Liu, H. Boosting the performance of all-polymer solar cells via incorporating a versatile small-molecule non-fullerene acceptor. Synth. Met. 2023, 293, 117292. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Ni, Y.; Fu, P.; Wang, X.; Yang, Q.; Guo, X.; Li, C. Reducing non-radiative recombination energy loss via a fluorescence intensifier for efficient and stable ternary organic solar cells. Mater. Horizons 2021, 8, 2335–2342. [Google Scholar] [CrossRef]
- Lan, A.; Lv, Y.; Zhu, J.; Lu, H.; Do, H.; Chen, Z.-K.; Zhou, J.; Wang, H.; Chen, F.; Zhou, E. High-performance ternary organic solar cells through incorporation of a series of A2-A1-D-A1-A2 type nonfullerene acceptors with different terminal groups. ACS Energy Lett. 2022, 7, 2845–2855. [Google Scholar]
- Huang, T.; Zhang, Z.; Wang, D.; Zhang, Y.; Deng, Z.; Huang, Y.; Liao, Q.; Zhang, J. 18.7% Efficiency Ternary Organic Solar Cells Using Two Non-Fullerene Acceptors with Excellent Compatibility. ACS Appl. Energy Mater. 2023, 6, 3126–3134. [Google Scholar] [CrossRef]
- Chen, T.; Li, S.; Li, Y.; Chen, Z.; Wu, H.; Lin, Y.; Gao, Y.; Wang, M.; Ding, G.; Min, J.; et al. Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Adv. Mater. 2023, 35, e2300400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, D.; Li, Z.; Wang, K.; Zhou, H.; Zhao, X.; Peng, X.; Zhang, R.; Wu, J.; Liang, J.; Zhao, L. Probing the Effect of Photovoltaic Material on Voc in Ternary Polymer Solar Cells with Non-Fullerene Acceptors by Machine Learning. Polymers 2023, 15, 2954. https://doi.org/10.3390/polym15132954
Huang D, Li Z, Wang K, Zhou H, Zhao X, Peng X, Zhang R, Wu J, Liang J, Zhao L. Probing the Effect of Photovoltaic Material on Voc in Ternary Polymer Solar Cells with Non-Fullerene Acceptors by Machine Learning. Polymers. 2023; 15(13):2954. https://doi.org/10.3390/polym15132954
Chicago/Turabian StyleHuang, Di, Zhennan Li, Kuo Wang, Haixin Zhou, Xiaojie Zhao, Xinyu Peng, Rui Zhang, Jipeng Wu, Jiaojiao Liang, and Ling Zhao. 2023. "Probing the Effect of Photovoltaic Material on Voc in Ternary Polymer Solar Cells with Non-Fullerene Acceptors by Machine Learning" Polymers 15, no. 13: 2954. https://doi.org/10.3390/polym15132954