Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Chitosan Membranes
Membranes Preparation
2.3. Morphological and Fluorescent Characterisation of Chitosan Membranes
2.4. ATR FRIR Spectra Analysis
2.5. UV-Vis Spectra Analysis
2.6. Contact Angle (CA) Measurement
2.7. Water Vapour Permeability
2.8. Rheological Tests
2.9. Formation of Modified Chitosan Beads
3. Results and Discussion
3.1. ATR-IR Analysis
3.2. UV-Vis Analysis—Release of Rhodamine B from Chitosan Membrane Impregnated with the Dye Itself and Encapsulated in Nanoparticles
3.3. Rough Surfaces of Chitosan Membrane
3.4. Water Vapour Permeability Analyses
3.5. Formation of Modified Chitosan Beads
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Spencer, H.G. Formation and characterization of chitosan formed-in-place ultrafiltration membranes. J. Appl. Polym. Sci. 1998, 67, 513–519. [Google Scholar] [CrossRef]
- Czichy, M.; Wagner, P.; Grządziel, L.; Krzywiecki, M.; Szwajca, A.; Łapkowski, M.; Zak, J.; Officer, D.L. Electrochemical and photoelectronic studies on C60-pyrrolidine- functionalised poly(terthiophene). Electrochim. Acta 2014, 141, 51–60. [Google Scholar] [CrossRef]
- Gajewska, A.; Pawłowska, A.; Szwajca, A.; Da Ros, T.; Pluskota-Karwatka, D. Synthesis and structural characterization of single-walled carbon nanotubes functionalized with fluorinated phosphonate analogues of phenylglycine, as promising materials for synthetic and biomedical applications. J. Mol. Struct. 2020, 1210, 128027. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, L.; Tan, H.; Fan, M.; Li, J.; Jia, Y.; Ling, Z.; Chen, Y.; Hu, X. Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Mater. Sci. Eng. C 2017, 81, 522–531. [Google Scholar] [CrossRef]
- Lewandowska, K. Characterization of chitosan composites with synthetic polymers and inorganic additives. Int. J. Biol. Macromol. 2015, 81, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Sukhodub, L.B.; Sukhodub, L.F.; Kumeda, M.O.; Prylutska, S.V.; Deineka, V.; Prylutskyy, Y.I.; Ritter, U. C60 fullerene loaded hydroxyapatite-chitosan beads as a promising system for prolonged drug release. Carbohydr. Polym. 2019, 223, 115067. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Kim, J.; Van Der Bruggen, B. The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environ. Pollut. 2010, 158, 2335–2349. [Google Scholar] [CrossRef]
- Akula, S.; Brosch, I.K.; Leipzig, N.D. Fluorinated Methacrylamide Chitosan Hydrogels Enhance Cellular Wound Healing Processes. Ann. Biomed. Eng. 2017, 45, 2693–2702. [Google Scholar] [CrossRef]
- Tian, B.; Liu, Y. Chitosan-based biomaterials: From discovery to food application. Polym. Adv. Technol. 2020, 31, 2408–2421. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Khan, T.A.; Peh, K.K.; Ch’ng, H.S. Reporting degree of deacetylation values of chitosan: The influence of analytical methods. J. Pharm. Pharm. Sci. 2002, 5, 205–212. [Google Scholar] [PubMed]
- Inamdar, N.; Mourya, V.K. Chitosan and Anionic Polymers—Complex Formation and Applications. In Polysaccharides: Development, Properties and Applications; Tiwari, A., Ed.; Nova Science Publishers, Inc.: New York, NY, USA; Hauppauge: New York, NY, USA, 2010; ISBN 9781608765447. [Google Scholar]
- Fu, J.; Yang, F.; Guo, Z. The chitosan hydrogels: From structure to function. New J. Chem. 2018, 42, 17162–17180. [Google Scholar] [CrossRef]
- Nilsen-Nygaard, J.; Strand, S.P.; Vårum, K.M.; Draget, K.I.; Nordgård, C.T. Chitosan: Gels and interfacial properties. Polymers 2015, 7, 552–579. [Google Scholar] [CrossRef] [Green Version]
- Mi, F.L.; Shyu, S.S.; Wu, Y.B.; Lee, S.T.; Shyong, J.Y.; Huang, R.N. Fabrication and characterization of a sponge-like asymmetric chitosan membrane as a wound dressing. Biomaterials 2001, 22, 165–173. [Google Scholar] [CrossRef]
- Wan Ngah, W.S.; Teong, L.C.; Hanafiah, M.A.K.M. Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydr. Polym. 2011, 83, 1446–1456. [Google Scholar] [CrossRef]
- Wang, H.; Yu, X.; Su, C.; Shi, Y.; Zhao, L. Chitosan nanoparticles triggered the induction of ROS-mediated cytoprotective autophagy in cancer cells. Artif. Cells Nanomed. Biotechnol. 2018, 46, 293–301. [Google Scholar] [CrossRef]
- Goy, R.C.; De Britto, D.; Assis, O.B.G. A review of the antimicrobial activity of chitosan. Polimeros 2009, 19, 241–247. [Google Scholar] [CrossRef]
- Agrawal, P.; Strijkers, G.J.; Nicolay, K. Chitosan-based systems for molecular imaging. Adv. Drug Deliv. Rev. 2010, 62, 42–58. [Google Scholar] [CrossRef]
- Kim, H.C.; Park, W.H. Fluorescent property of glycol chitosan-fluorescein isothiocyanate conjugate for bio-imaging material. Int. J. Biol. Macromol. 2019, 135, 1217–1221. [Google Scholar] [CrossRef]
- Li, B.; Wang, J.; Gui, Q.; Yang, H. Continuous production of uniform chitosan beads as hemostatic dressings by a facile flow injection method. J. Mater. Chem. B 2020, 8, 7941–7946. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Duan, R.; Liu, R.; Guan, M.; Chen, W.; Ma, J.; Chen, M.; Du, B.; Zhang, Q. Chitosan-Stabilized Self-Assembled Fluorescent Gold Nanoclusters for Cell Imaging and Biodistribution in Vivo. ACS Biomater. Sci. Eng. 2018, 4, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Barui, A. Particle-loaded gels. In Polymeric Gels; Pal, K., Banerjee, I., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; pp. 143–178. ISBN 9780081021798. [Google Scholar]
- Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Ramezani, H.; Sun, M.; Xie, M.; Nie, J.; Lv, S.; Cai, J.; Fu, J.; He, Y. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater. Sci. 2020, 8, 5020–5028. [Google Scholar] [CrossRef] [PubMed]
- Jarzębski, M.; Siejak, P.; Przeor, M.; Gapiński, J.; Woźniak, A.; Baranowska, H.M.; Pawlicz, J.; Baryła-Pankiewicz, E.; Szwajca, A. Fluorescent Submicron-Sized Poly(heptafluoro-n-butyl methacrylate) Particles with Long-Term Stability. Molecules 2020, 25, 2013. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, R.; Zoughaib, A.; Ghaddar, N.; Ghali, K. Modified upright cup method for testing water vapor permeability in porous membranes. Energy 2020, 195, 117057. [Google Scholar] [CrossRef]
- Jabeen, S.; Lone, M.S.; Afzal, S.; Kour, P.; Shaheen, A.; Ahanger, F.A.; Rather, G.M.; Dar, A.A. Effect of single and binary mixed surfactant impregnation on the adsorption capabilities of chitosan hydrogel beads toward rhodamine B. New J. Chem. 2020, 44, 12216–12226. [Google Scholar] [CrossRef]
- Haddad, A.M.; Sweah, Z.J.; Al-Lami, H.S. Preparation and Release Study of Biodegradable L-lactide IPN’s Insulin Delivery. Polym. Sci. 2017, 3, 4. [Google Scholar] [CrossRef]
- Hao, G.; Hu, Y.; Shi, L.; Chen, J.; Cui, A.; Weng, W.; Osako, K. Physicochemical characteristics of chitosan from swimming crab (Portunus trituberculatus) shells prepared by subcritical water pretreatment. Sci. Rep. 2021, 11, 1646. [Google Scholar] [CrossRef]
- Feng, F.; Liu, Y.; Zhao, B.; Hu, K. Characterization of half N-acetylated chitosan powders and films. Procedia Eng. 2012, 27, 718–732. [Google Scholar] [CrossRef] [Green Version]
- Szwajca, A.; Rapp, M.; Bilska, M.; Krzywiecki, M.; Koroniak, H. Fluorinated saccharides on the Si(0 0 1) surface. Appl. Surf. Sci. 2013, 274, 221–230. [Google Scholar] [CrossRef]
- Benkaddour, A.; Journoux-Lapp, C.; Jradi, K.; Robert, S.; Daneault, C. Study of the hydrophobization of TEMPO-oxidized cellulose gel through two routes: Amidation and esterification process. J. Mater. Sci. 2014, 49, 2832–2843. [Google Scholar] [CrossRef]
- Sarah, K.; Ulrich, H. Short timescale wetting and penetration on porous sheets measured with ultrasound, direct absorption and contact angle. RSC Adv. 2018, 8, 12861–12869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ju, X.J.; Chu, L.Y. Lab-on-a-chip fabrication of polymeric microparticles for drug encapsulation and controlled release. In Microfluidics for Pharmaceutical Applications: From Nano/Micro Systems Fabrication to Controlled Drug Delivery; Santos, H., Liu, D., Zhang, H., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; pp. 217–280. ISBN 9780128126592. [Google Scholar]
- Koenderink, G.H.; Sacanna, S.; Pathmamanoharan, C.; Raşa, M.; Philipse, A.P. Preparation and Properties of Optically Transparent Aqueous Dispersions of Monodisperse Fluorinated Colloids. Langmuir 2001, 17, 6086–6093. [Google Scholar] [CrossRef]
- Pratiwi, F.W.; Kuo, C.W.; Chen, B.C.; Chen, P. Recent advances in the use of fluorescent nanoparticles for bioimaging. Nanomedicine 2019, 14, 1759–1769. [Google Scholar] [CrossRef] [PubMed]
- Asti, A.; Gioglio, L. Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation. Int. J. Artif. Organs 2014, 37, 187–205. [Google Scholar] [CrossRef]
- Heid, S.; Boccaccini, A.R. Advancing bioinks for 3D bioprinting using reactive fillers: A review. Acta Biomater. 2020, 113, 1–22. [Google Scholar] [CrossRef]
- Khan, N.; Brettmann, B. Intermolecular interactions in polyelectrolyte and surfactant complexes in solution. Polymers 2019, 11, 51. [Google Scholar] [CrossRef] [Green Version]
CS | CS/Glyc | CS/Rh B | CS/NPs Rh B | |
---|---|---|---|---|
mas (mg, ±1 mg) | 70 | 80 | 80 | 80 |
thickness (μm, ±10 μm) | 20 ± 0.6 | 30 ± 0.5 | 40 ± 0.5 | 50 ± 0.6 |
(cm−1) | CS/Glyc | CS/RhB | CS | CS/Nps RhB |
---|---|---|---|---|
ν(N–H)/ν(O–H), hydrogen bonds | 3280–3351 | 3280–3358 | 3271–3361 | 3181–3333 |
ν(CH2)/ν(CH3) | 2928 | 2932 | 2936 | 2935 |
ν(C–H) | 2874 | 2875 | 2878 | 2877 |
ν(C=O) (amide I) | 1648 | 1645 | 1640 | 1643 |
δ (N-H) (amide II) | 1567 | 1544 | 1543 | 1543 |
δ (CH2) | 1408 | 1400 | 1403 | 1400 |
δsym (CH3) | 1377 | 1378 | 1375 | 1377 |
ν(C–N) (amide III) | 1339 | 1339 | 1339 | 1337 |
νasym (C–O–C) | 1153 | 1153 | 1153 | 1153 |
ν(C–O)/(C3–OH) | 1060 | 1066 | ||
ν(C–O)/(C6–OH) | 1020 | 1018 | ||
ν(glucose ring) | 900 | 908 |
Size | Brightness | Photo stability | Detection | Form | Ref. | |
---|---|---|---|---|---|---|
NPs | (nm) | high | good | color | aqueous suspension | [27] |
MPs | (μm) | good | fair | color | NPs-loaded hydrogel |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szwajca, A.; Juszczyńska, S.; Jarzębski, M.; Baryła-Pankiewicz, E. Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads. Polymers 2022, 14, 2750. https://doi.org/10.3390/polym14132750
Szwajca A, Juszczyńska S, Jarzębski M, Baryła-Pankiewicz E. Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads. Polymers. 2022; 14(13):2750. https://doi.org/10.3390/polym14132750
Chicago/Turabian StyleSzwajca, Anna, Sandra Juszczyńska, Maciej Jarzębski, and Elżbieta Baryła-Pankiewicz. 2022. "Incorporation of Fluorescent Fluorinated Methacrylate Nano-Sized Particles into Chitosan Matrix Formed as a Membranes or Beads" Polymers 14, no. 13: 2750. https://doi.org/10.3390/polym14132750