A Review of Wood Polymer Composites Rheology and Its Implications for Processing
Abstract
:1. Introduction
2. Theoretical Background
2.1. Pressure-Driven Viscometry
2.2. Rotational Rheometry
2.3. Differences between the Two Techniques
3. Wood Polymer Composites Characterization with Pressure-Driven Viscometers
3.1. Wood Flour Effects
3.2. Polymer Matrix and Temperature Effects
3.3. Influence of the Additives
3.4. Modeling, Processing and Surface Defects
4. WPC Characterization with Rotational Rheometers
4.1. Wood Flour Effects
4.2. Polymer Matrix and Temperature Effects
4.3. Influence of Additives
4.4. Modeling, Processing and Structural Properties
5. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adekomaya, O.; Jamiru, T.; Sadiku, R.; Huan, Z. A review on the sustainability of natural fiber in matrix reinforcement—A practical perspective. J. Reinf. Plast. Compos. 2016, 35, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Tyagi, L.; Sinha, S. Wood flour-reinforced plastic composites: A review. Rev. Chem. Eng. 2011, 27, 253–264. [Google Scholar] [CrossRef]
- Gardner, D.J.; Yousoo, H.; Wang, L. Wood–Plastic Composite Technology. Curr. For. Rep. 2015, 1, 139–150. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef] [Green Version]
- Wahab, M.S.; Wagiman, A.; Ibrahim, M. Development of wood-based composites material for 3D printing process. Appl. Mech. Mat. 2013, 315, 987–991. [Google Scholar]
- Fortini, A.; Mazzanti, V. Combined effect of water uptake and temperature on wood polymer composites. J. Appl. Polym. Sci. 2018, 135, 46674. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. Bending properties of wood flour filled polyethylene in wet environment. Procedia Eng. 2017, 200, 68–72. [Google Scholar] [CrossRef]
- Santoni, A.; Bonfiglio, P.; Fausti, P.; Marescotti, C.; Mazzanti, V.; Pompoli, F. Characterization and vibro-acoustic modeling of wood composite panels. Materials 2020, 13, 1897. [Google Scholar] [CrossRef] [Green Version]
- Santoni, A.; Bonfiglio, P.; Fausti, P.; Marescotti, C.; Mazzanti, V.; Mollica, F.; Pompoli, F. Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres. Appl. Acoust. 2019, 150, 279–289. [Google Scholar] [CrossRef]
- Santoni, A.; Bonfiglio, P.; Mollica, F.; Fausti, P.; Pompoli, F.; Mazzanti, V. Vibro-acoustic optimisation of Wood Plastic Composite systems. Constr. Build. Mater. 2018, 174, 730–740. [Google Scholar] [CrossRef]
- Ashori, A. Wood–plastic composites as promising green-composites for automotive industries! Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Isa, A.; Toyoda, T.; Suzuki, S.; Kojima, Y.; Ito, H.; Makise, R.; Okamoto, M. The effects of wet-milled wood flour on the mechanical properties of wood flour/polypropylene composites. J. Wood Chem. Technol. 2014, 34, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Mazzanti, V.; Mollica, F.; El Kissi, N. Rheological and mechanical characterization of polypropylene-based wood plastic composites. Polym. Compos. 2016, 37, 3460–3473. [Google Scholar] [CrossRef]
- Yang, Z.; Feng, X.; Bi, Y.; Zhou, Z.; Yue, J.; Xu, M. Bleached extruder chemi-mechanical pulp fiber-PLA composites: Comparison of mechanical, thermal and rheological properties with those of wood flour-PLA biocomposites. J. Appl. Polym. Sci. 2016, 133, 44241. [Google Scholar] [CrossRef]
- Scaffaro, R.; Morreale, M.; Lo Re, G.; La Mantia, F.P. Effect of the processing techniques on the properties of ecocomposites based on vegetable oil-derived Mater-Bi and wood flour. J. Appl. Polym. Sci. 2009, 114, 2855–2863. [Google Scholar] [CrossRef]
- Mazzanti, V.; Salzano de Luna, M.; Pariante, R.; Mollica, F.; Filippone, G. Natural fiber-induced degradation in PLA-hemp biocomposites in the molten state. Compos. Part A 2020, 137, 105990. [Google Scholar] [CrossRef]
- Mazzanti, V.; Pariante, R.; Bonanno, A.; Ruiz de Ballesteros, O.; Mollica, F.; Filippone, G. Reinforcing mechanisms of natural fibers in green composites: Role of fibers morphology in a PLA/hemp model system. Compos. Sci. Technol. 2019, 180, 51–59. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. Rheological behavior of wood flour filled poly-(lactic acid): Temperature and concentration dependence. Polym. Compos. 2019, 40, E169–E176. [Google Scholar] [CrossRef]
- Mazzanti, V.; Bonanno, A.; Mollica, F.; Filippone, G. Influence of alkaline treatment on hemp fibers filled poly-(lactic acid). AIP Conf. Proc. 2018, 1981, 020016. [Google Scholar]
- Jeske, H.; Schirp, A.; Cornelius, F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Therm. Acta 2012, 543, 165–171. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Belgacem, M.N.; Pignon, F. Current Progress in Rheology of Cellulose Nanofibril Suspensions. Biomacromolecules 2016, 17, 2311–2320. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.R.; Zheng, B.; Sharma, S.K.; Zhan, C.; Wang, R.; Bhatia, S.R.; Hsiao, B.S. High Aspect Ratio Carboxycellulose Nanofibers Prepared by Nitro-Oxidation Method and Their Nanopaper Properties. ACS Appl. Nano Mater. 2018, 1, 3969–3980. [Google Scholar] [CrossRef]
- Li, M.C.; Wu, Q.; Song, K.; Lee, S.; Qing, Y.; Wu, Y. Cellulose Nanoparticles: Structure–Morphology–Rheology Relationships. ACS Sustain. Chem. Eng. 2015, 3, 821–832. [Google Scholar] [CrossRef]
- Geng, L.; Peng, X.; Zhan, C.; Naderi, A.; Sharma, P.R.; Mao, Y.; Hsiao, B.S. Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength. Cellulose 2017, 24, 5417–5429. [Google Scholar] [CrossRef]
- Liao, J.; Pham, K.A.; Breedveld, V. Rheological characterization and modeling of cellulose nanocrystal and TEMPO-oxidized cellulose nanofibril suspensions. Cellulose 2020, 27, 3741–3757. [Google Scholar] [CrossRef]
- Geng, L.; Mittal, N.; Zhan, C.; Ansari, F.; Sharma, P.; Peng, X.; Hsiao, B.S.; Söderberg, L.D. Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems. Macromolecules 2018, 51, 1498–1506. [Google Scholar] [CrossRef] [Green Version]
- Geng, L.; Naderi, A.; Mao, Y.; Zhan, C.; Sharma, P.; Peng, X.; Hsiao, B.S. Rheological Properties of Jute-Based Cellulose Nanofibers under Different Ionic Conditions. In Nanocelluloses: Their Preparation, Properties, and Applications, 1st ed.; Agarwal, U.P., Atalla, R.H., Isogai, A., Eds.; ACS Publications: Washington, DC, USA, 2017; pp. 113–132. [Google Scholar]
- Lu, J.Z.; Wu, Q.; Negulescu, I.I. Wood-fiber/high-density-polyethylene composites: Coupling agent performance. J. Appl. Polym. Sci. 2005, 96, 93–102. [Google Scholar] [CrossRef]
- Yang, T.-H.; Leu, S.-Y.; Yang, T.-H.; Lo, S.-F. Optimized material composition to improve the physical and mechanical properties of extruded wood-plastic composites (WPCs). Constr. Build. Mater. 2012, 29, 120–127. [Google Scholar]
- Mazzanti, V.; Malagutti, L.; Santoni, A.; Sbardella, F.; Calzolari, A.; Sarasini, F.; Mollica, F. Correlation between mechanical properties and processing conditions in rubber-toughened wood polymer composites. Polymers 2020, 12, 278. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Blanchard, M.; Yi, S.; Mollica, F. In-line rheological properties of rubber toughened Wood Polymer Composites. IOP Conf. Ser. Mater. Sci. Eng. 2019, 634, 012043. [Google Scholar] [CrossRef]
- Mazzanti, V.; Cavalcoli, V.; Balbo, A.; Mollica, F. Hygrothermal degradation effects on a rubber toughened WPC. Mater. Today 2019. in Press. [Google Scholar] [CrossRef]
- Duretek, I.; Schuschnigg, S.; Gooneie, A.; Langecker, G.R.; Holzer, C. Rheological properties of wood polymer composites and their role in extrusion. J. Phys. Conf. Ser. 2015, 602, 012014. [Google Scholar] [CrossRef] [Green Version]
- Laun, H.M. Polymer melt rheology with a slit die. Rheol. Acta 1983, 22, 171–185. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. In-process measurements of flow characteristics of wood plastic composites. J. Polym. Environ. 2017, 25, 1044–1050. [Google Scholar] [CrossRef]
- Mazzanti, V.; El Kissi, N.; Mollica, F. In-line vs. off-line rheological characterization of wood polymer composites. AIP Conf. Proc. 2016, 1736, 4949577. [Google Scholar]
- Mazzanti, V.; Mollica, F. In-line rheometry of polypropylene based wood polymer composites. Polym. Test. 2015, 47, 30–35. [Google Scholar] [CrossRef]
- Rabinowitsch, B. Über die Viskosität und Elastizität von Solen. Z. Phys. Chem. 1929, 145, 1–26. [Google Scholar] [CrossRef]
- Macosko, C.W. Rheology. In Principles, Measurements and Applications; Wiley: New York, NY, USA, 1994. [Google Scholar]
- Bagley, E.B. End corrections in the capillary flow of polyethylene. J. Appl. Phys. 1957, 28, 624–627. [Google Scholar] [CrossRef]
- Mooney, M. Explicit formulas for slip and fluidity. J. Rheol. 1931, 2, 210–222. [Google Scholar] [CrossRef]
- Barnes, H.A.; Hutton, J.F.; Walters, K. An Introduction to Rheology. Elsevier: Amsterdam, The Netherlands, 1989. [Google Scholar]
- Li, T.Q.; Wolcott, M.P. Rheology of HDPE–wood composites. I. Steady state shear and extensional flow. Compos. Part A 2004, 35, 303–311. [Google Scholar] [CrossRef]
- Malagutti, L.; Mollica, F.; Mazzanti, V. Error amplification in capillary viscometry of power law fluids with slip. Polym. Test. 2020, 91, 106816. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. Exit effects in the wall slip of polymeric concentrated suspensions. AIP Conf. Proc. 2018, 1981, 020092. [Google Scholar]
- Mazzanti, V.; Mollica, F. Pressure dependent wall slip of wood flour filled polymer melts. J. Non-Newtonian Fluid Mech. 2017, 247, 178–187. [Google Scholar] [CrossRef]
- Yilmazer, U.; Gogos, C.G.; Kalyon, D.M. Mat formation and unstable flows of highly filled suspensions in capillaries and continuous processors. Polym. Compos. 1989, 10, 242–248. [Google Scholar] [CrossRef]
- Kajaks, J.; Kalnins, K.; Matvejs, J. Rheological properties of wood-plastic composites based on polypropylene and birch wood plywood production residues. Key Eng. Mater. 2018, 762, 226–230. [Google Scholar]
- Laufer, N.; Hansmann, H.; Koch, M. Rheological characterization of the flow behavior of wood plastic composites in consideration of different volume fractions of wood. J. Phys. Conf. Ser. 2017, 790, 012017. [Google Scholar] [CrossRef] [Green Version]
- Kaseem, M.; Hamad, K.; Deri, F.; Ko, Y.G. Effect of wood fibers on the rheological and mechanical properties of polystyrene/wood composites. J. Wood Chem. Technol. 2017, 37, 251–260. [Google Scholar] [CrossRef]
- He, P.; Bai, S.; Wang, Q. Structure and performance of poly(vinyl alcohol)/wood powder composite prepared by thermal processing and solid state shear milling technology. Compos. Part B 2016, 99, 373–380. [Google Scholar] [CrossRef]
- Carrino, L.; Ciliberto, S.; Giorleo, G.; Prisco, U. Effect of filler content and temperature on steady-state shear flow of wood/high density polyethylene composites. Polym. Compos. 2011, 32, 796–809. [Google Scholar] [CrossRef]
- Santi, C.R.; Hage, E.; Vlachopoulos, J.; Correa, C.A. Rheology and processing of HDPE/wood flour composites. Int. Polym. Process. 2009, 24, 346–353. [Google Scholar] [CrossRef]
- Hristov, V.; Takacs, E.; Vlachopoulos, J. Surface tearing and wall slip phenomena in extrusion of highly filed HDPE/wood flour composites. Polym. Eng. Sci. 2006, 46, 1204–1214. [Google Scholar] [CrossRef]
- Hong, H.; Guo, Q.; Zhang, H.; He, H. Effect of interfacial modifiers and wood flour treatment on the rheological properties of recycled polyethylene/wood flour composites. Prog. Rubber Plast. Recycl. Technol. 2019, 36, 31–46. [Google Scholar] [CrossRef]
- Lewandowski, K.; Piszczek, K.; Zajchowski, S.; Mirowski, J. Rheological properties of wood polymer composites at high shear rates. Polym. Test. 2016, 51, 58–62. [Google Scholar] [CrossRef]
- Li, T.Q.; Wolcott, M.P. Rheology of wood plastics melt. Part 1. Capillary rheometry of HDPE filled with maple. Polym. Eng. Sci. 2005, 45, 549–559. [Google Scholar] [CrossRef]
- Li, T.Q.; Wolcott, M.P. Rheology of wood plastics melt, part 2: Effects of lubricating systems in HDPE/maple composites. Polym. Eng. Sci. 2006, 46, 464–473. [Google Scholar] [CrossRef]
- Hristov, V.; Valchopoulos, J. Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polym. Compos. 2008, 29, 831–839. [Google Scholar] [CrossRef]
- Hristov, V.; Vlachopoulos, J. Influence of coupling agents on melt flow behavior of natural fiber composites. Macrom. Mater. Eng. 2007, 292, 608–619. [Google Scholar] [CrossRef]
- Hristov, V. Melt flow instabilities of wood polymer composites. Comput. Interfaces 2009, 16, 731–750. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Song, Z.; Shang, S.; Guo, Y. Preparation and properties of wood plastic composite reinforced by ultralong cellulose nanofibers. Polym. Compos. 2016, 37, 1206–1215. [Google Scholar] [CrossRef]
- Adhikary, K.B.; Park, C.B.; Islam, M.R.; Rizvi, G.M. Effects of lubricant content on extrusion processing and mechanical properties of wood flour–high density polyethylene composites. J. Thermoplast. Compos. Mater. 2011, 24, 155–171. [Google Scholar] [CrossRef]
- La Mantia, F.P.; Morreale, M. Improving the properties of polypropylene–wood flour composites by utilization of maleated adhesion promoters. Comput. Interfaces 2007, 14, 685–698. [Google Scholar] [CrossRef]
- Hristov, V.; Vlachopoulos, J. A study of viscoelasticity and extrudate distortions of wood polymer composites. Rheol. Acta 2007, 46, 773–783. [Google Scholar] [CrossRef]
- Intawong, N.; Kantala, C.; Lotaisong, W.; Sombatsompop, N. A die rotating system for moderations of extrusion load and pressure drop profiles for molten PP and wood/polypropylene composites in extrusion processes. J. Appl. Polym. Sci. 2011, 120, 1006–1016. [Google Scholar] [CrossRef]
- Hristov, V.; Vlachopoulos, J. Thermoplastic silicone elastomer lubricant in extrusion of polypropylene wood flour composites. Adv. Polym. Technol. 2007, 26, 100–108. [Google Scholar] [CrossRef]
- Sapsrithong, P.; Puksattee, K.; Saewjaidee, K.; Pensuk, N.; Rattanapan, A. The influence of fiber surface treatment and SBR as impact modifier on rheological behavior and mechanical properties of wood plastic composite from acrylate-styrene-acrylonitrile and bagasse. Key Eng. Mater. 2017, 737, 281–286. [Google Scholar]
- Ou, R.; Wang, Q.; Wolcott, M.P.; Sui, S.; Xie, Y. Rheological behavior and mechanical properties of wood flour/high density polyethylene blends: Effects of esterification of wood with citric acid. Polym. Compos. 2016, 37, 553–560. [Google Scholar] [CrossRef]
- Ou, R.; Xie, Y.; Wang, Q.; Sui, S.; Wolcott, M.P. Effects of ionic liquid on the rheological properties of wood flour/high density polyethylene composites. Compos. Part A 2014, 61, 134–140. [Google Scholar] [CrossRef]
- Ou, R.; Xie, Y.; Wolcott, M.P.; Yuan, F.; Wang, Q. Effect of wood cell wall composition on the rheological properties of wood particle/high density polyethylene composites. Compos. Sci. Technol. 2014, 93, 68–75. [Google Scholar] [CrossRef]
- Koohestani, B.; Ganetri, I.; Yilmaz, E. Effects of silane modified minerals on mechanical, microstrucutral, thermal and rheological properties of wood plastic composites. Compos. Part B 2017, 111, 103–111. [Google Scholar] [CrossRef]
- Murayama, K.; Suzuki, S.; Kojima, Y.; Kobori, H.; Ito, H.; Ogoe, S.; Okamoto, M. The effects of different types of maleic anhydride-modified polypropylene on the physical and mechanical properties of polypropylene-based wood/plastic composites. J. Wood Chem. Technol. 2018, 38, 224–232. [Google Scholar] [CrossRef]
- Klyosov, A.A. Wood-Plastic Composites. Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Ostwald, W. Ueber die rechnerische Darstellung des Strukturgebietes der Viskositaet. Koll. Z. 1929, 47, 176–187. [Google Scholar] [CrossRef]
- Yasuda, K.; Armstrong, R.C.; Cohen, R.E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol. Acta 1981, 20, 163–178. [Google Scholar] [CrossRef]
- Durmus, A.; Ozcan, M.; Aydin, I. Quantifying effects of compositional variations on microstructural properties of polypropylene-wood fiber composites by melt rheology and tensile test data. J. Compos. Mater. 2018, 53, 503–514. [Google Scholar] [CrossRef]
- Li, T.Q.; Wolcott, M.P. Rheology of wood plastics melt, part 3: Nonlinear nature of the flow. Polym. Eng. Sci. 2006, 46, 114–121. [Google Scholar] [CrossRef]
- Huang, H.X.; Zhang, J.J. Effects of filler-filler and polymer-filler interactions on rheological and mechanical properties of HDPE-wood composites. J. Appl. Polym. Sci. 2009, 111, 2806–2812. [Google Scholar] [CrossRef]
- Marchovich, N.E.; Reboredo, M.M.; Kenny, J.M.; Aranguren, M.I. Rheology of particle suspensions in viscoelastic media. Wood flour–polypropylene melt. Rheol. Acta 2004, 43, 293–303. [Google Scholar] [CrossRef]
- Gleissle, W.; Hochstein, B. Validity of the Cox–Merz rule for concentrated suspensions. J. Rheol. 2003, 47, 897–910. [Google Scholar] [CrossRef]
- Bi, H.; Ren, Z.; Guo, R.; Xu, M.; Song, Y. Fabrication of flexible wood flour/thermoplastic polyurethane elastomer composites using fused deposition molding. Ind. Crop Prods. 2018, 122, 76–84. [Google Scholar]
- Adebayo, G.O.; Hassan, A.; Yahya, R.; Okieimen, F.; Sarih, N.M. Dynamic rheological properties of spotted mangrove/high density polyethylene composites. J. Thermoplast. Compos. Mater. 2019, 1–13. [Google Scholar] [CrossRef]
- Liu, T.; Wang, Q.; Xie, Y.; Fu, Q. Incorporation effect of enzymatic hydrolysis lignin on the mechanical and rheological properties of the resulting wood flour/high density polyethylene composites. Polym. Compos. 2016, 37, 379–384. [Google Scholar] [CrossRef]
- Grison, K.; Pistor, V.; Scienza, L.C.; Zattera, A.J. The physical perspective on the solid and molten states associated with the mechanical properties of eco-friendly HDPE/Pinus taeda wood-plastic composites. J. Appl. Polym. Sci. 2016, 133, 42887. [Google Scholar] [CrossRef]
- Soury, E.; Behravesh, A.H.; Rizvi, G.M.; Jam, N.J. Rheological investigation of wood–polypropylene composites in rotational plate rheometer. J. Polym. Environ. 2012, 20, 998–1006. [Google Scholar] [CrossRef]
- Wang, P.; Liu, J.; Yu, W.; Zhou, C. Dynamic rheological properties of wood polymer composites: From linear to nonlinear behaviors. Polym. Bull. 2011, 66, 683–701. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F. Rheology of wood flour filled poly(lactic acid). Procedia Eng. 2017, 200, 61–67. [Google Scholar] [CrossRef]
- Mazzanti, V.; Mollica, F.; El Kissi, N. Rheological and thermal properties of PP-based WPC. AIP Conf. Proc. 2014, 1599, 274–277. [Google Scholar]
- Ares, A.; Bouza, R.; Pardo, S.G.; Abad, M.J.; Barral, L. Rheological, mechanical and thermal behaviour of wood polymer composites based on recycled polypropylene. J. Polim. Environ. 2010, 18, 318–325. [Google Scholar] [CrossRef]
- Astarita, G. Letter to the editor: The engineering reality of the yield stress. J. Rheol. 1990, 34, 275–277. [Google Scholar] [CrossRef]
- Yang, B.; Liang, C.W.; Lu, F.X.; Chen, P.; Chen, Q.T.; Chen, J.; Hu, L.; Xia, R.; Miao, J.B.; Qian, J.S.; et al. Effect of bamboo flour (BF) content on the dynamic rheological characteristics of BF-filled high-density polyethylene (HDPE). J. Macromol. Sci. Part B 2019, 58, 341–354. [Google Scholar] [CrossRef]
- Tazi, M.; Erchiqui, F.; Godard, F.; Kaddami, H.; Ajji, A. Characterization of rheological and thermophysical properties of HDPE-wood composite. J. Appl. Polym. Sci. 2014, 131, 40495. [Google Scholar] [CrossRef]
- Ghasemi, I.; Azizi, H.; Naeimian, N. Rheological behaviour of polypropylene/kenaf fibre/wood flour hybrid composites. Iranian Polym. J. 2008, 17, 191–198. [Google Scholar]
- Dai, L.; Wang, X.; Zhang, J.; Wang, F.; Ou, R.; Song, Y. Effects of lubricants on the rheological and mechanical properties of wood flour/polypropylene composites. J. Appl. Polym. Sci. 2019, 136, 47667. [Google Scholar] [CrossRef]
- Xiong, C.; Qi, R.; Wang, Y. Wood-thermoplastic composites from wood flour and high-density polyethylene. J. Appl. Polym. Sci. 2009, 114, 1160–1168. [Google Scholar] [CrossRef]
- Askanian, H.; Verney, V.; Commereuc, S.; Guyonnet, R.; Massardier, V. Wood polypropylene composites prepared by thermally modified fibers at two extrusion speeds: Mechanical and viscoelastic properties. Holzforschung 2015, 69, 313–319. [Google Scholar] [CrossRef]
- Habibi, M.; Najafi, S.K.; Ghasemi, I. Rheological and mechanical properties of composites made from wood flour and recycled LDPE/HDPE blend. Iranian Polym. J. 2017, 26, 949–956. [Google Scholar] [CrossRef]
- Twite-Kabamba, E.; Fassi Fehri, Z.; Rodrigue, D. Properties of recycled LDPE/birch fibre composites. Prog. Rubber Plast. Recycl. Technol. 2011, 27, 1–20. [Google Scholar] [CrossRef]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Prado Bettini, S.H.; Pereira de Miranda Josefovich, M.P.; Riveros Munoz, P.A.; Lotti, C.; Capparelli Mattoso, L.H. Effect of lubricant on mechanical and rheological properties of compatibilized PP/sawdust composites. Carbohydr. Polym. 2013, 94, 800–806. [Google Scholar] [CrossRef] [Green Version]
- Sobczak, L.; Welser, R.; Brueggemann, O.; Haider, A. Polypropylene (PP)-based wood polymer composites: Performance of five commercial maleic anhydride grafted PP coupling agents. J. Thermoplast. Compos. Mater. 2014, 24, 439–463. [Google Scholar] [CrossRef]
- Gao, H.; Xie, Y.; Ou, R.; Wang, Q. Grafting effects of polypropylene/polyethylene blends with maleic anhydride on the properties of the resulting wood-plastic composites. Compos. Part A 2012, 43, 150–157. [Google Scholar] [CrossRef]
- Hong, H.; Liao, H.; Zhang, H.; He, H.; Liu, T.; Jia, D. Significant improvement in performance of recycled polyethylene/wood flour composites by synergistic compatibilization at multi-scale interfaces. Compos. Part A 2014, 64, 90–98. [Google Scholar] [CrossRef]
- Highgate, D.J.; Whorlow, R.W. Rheological properties of suspensions of spheres in non-Newtonian media. Rheol. Acta 1970, 9, 569–576. [Google Scholar] [CrossRef]
- Barnes, H.A. A review of the rheology of filled viscoelastic systems. Rheol. Rev. 2003, 1–36. [Google Scholar]
- Zhang, J.; Park, C.B.; Rizvi, G.M.; Huang, H.; Guo, Q. Investigation on the uniformity of high-density polyethylene/wood fiber composites in a twin-screw extruder. J. Appl. Polym. Sci. 2009, 113, 2081–2089. [Google Scholar] [CrossRef]
Rheometer Geometry | ||
---|---|---|
Capillary | ||
Slit |
Rheometer Geometry | ||
---|---|---|
Parallel plate | ||
Cone and plate |
Matrix | Wood Type | Wood wt.% | Coupling Agent | Lubricant | Other Additives | Ref. |
---|---|---|---|---|---|---|
HDPE 1 | Poplar | 40 | / | / | / | [69] |
Poplar | 37, 42, 47 52, 57 | 3% MAPE 7 | / | 5–20% CN 8 | [62] | |
Poplar | 40 | / | / | / | [70] | |
Poplar | 65 | / | / | / | [71] | |
Beech | 20, 30, 40, 50 | 5% MAPE | / | / | [52] | |
Pine | 20, 30, 40, 50, 60 | 3% MAPE | 2–10% TPN 9-709 | / | [63] | |
Eucalyptus | 50 | 7% MAPE | / | / | [55] | |
Pine | 35, 40 | 4% MAPE | 5% ester-type | / | [53] | |
Maple | 30, 40, 50, 60, 70 | 3% MAPE | / | / | [57] | |
Maple | 55, 57, 58, 60 | 2% MAPE | 2% Zn stearate 1% EBSA 10 2.7% ester type | / | [58] | |
Maple-Pine | 40, 60 | / | / | / | [43] | |
Maple | 30, 45, 60 | / | / | / | [59] | |
Maple | 30, 45, 60 | 1% MAPE | / | / | [60] | |
Maple | 5, 10, 20, 30, 50, 60 | / | / | / | [65] | |
Maple | 25, 50, 60, 70 | / | / | / | [54] | |
Maple | 30, 45, 60 | / | TPS 11 | / | [61] | |
LDPE 2 | Lignocel | 10, 70 | / | / | / | [49] |
PP 3 | Birch | 40 | / | 1.8–3% Struktol | 0.33% Aox 12 and TS 13, 0.2–1% UVS 14 | [48] |
Lignocel | 10, 70 | / | / | / | [49] | |
White fir | 30 | / | / | / | [13] | |
White fir | 50 | / | / | / | [46] | |
White fir | 35 | / | / | 50% TPE 15 | [31] | |
White fir | 50–70 | / | / | / | [35] | |
White fir | 30 | / | / | / | [37] | |
White fir | 10, 70 | / | / | / | [36] | |
Pine-Firewood | 50, 70 | / | / | / | [33] | |
Wood flour | 25 | 1% MAPP 16 | / | / | [73] | |
Wood flour | 30, 60 | 3% MAPP | / | / | [64] | |
Wood flour | 50 | 3% MAPP | 1% TPS | / | [67] | |
Wood flour | 30, 40, 50 | / | / | / | [56] | |
Wood flour | 9, 16, 23 | / | / | / | [66] | |
Maple | 30, 45, 60 | / | TPS | / | [61] | |
ASA 4 | Bagasse | 50 | / | / | 0–15% SBR 17 | [68] |
PS 5 | Poplar | 10,20,30,40,50 | / | / | / | [50] |
PVA 6 | Whitewood | 30 | / | / | / | [51] |
Temperature (°C) | Shear Rate (s−1) | Capillary/Slit Geometry (mm) | Corrections | Ref. |
---|---|---|---|---|
170 | 20–2000 | 1, 2 | B | [69] |
/ | 50–350 | / | / | [62] |
175 | 20–2000 | 1 | B | [70] |
175 | 20–2000 | 1 | B | [71] |
160, 170, 180, 190 | 2.5–758 | 0.5, 1, 2 | B, M, R | [52] |
190 | 20–1000 | 1 | B | [63] |
170, 175, 180, 190 | 40–160 | / | / | [55] |
180 | 20–1000 | 2 | R | [53] |
180 | 20–500 | 1, 1.5, 2, 2.5 | B, M, R | [57] |
180 | 20–500 | 1, 1.5, 2, 2.5 | B, M, R | [58] |
180 | 20–500 | 1, 1.5, 2, 2.5 | B, M, R | [43] |
180 | 20–1000 | 1, 1.5, 2 | B, M, R | [59] |
180 | 20–5000 | 1, 1.5, 2 | B, M, R | [60] |
180 | 20–5000 | 1, 1.5, 2 | / | [65] |
180 | 20–2000 | 1 | B, M, R | [54] |
180 | 20–2000 | 1, 1.5, 2 | B, M | [61] |
190 | 10–1000 | 2 | / | [49] |
215 | 20–5000 | 1 | / | [48] |
190 | 10–1000 | 2 | / | [49] |
170 | 3–1000 | 2 | B, R | [13] |
195 | 9–50 | S 1.95, 2.5, 3.3, 4 | M, R | [46] |
185 | 50–90 | S 1.33, 1.95, 4 | M, R | [31] |
195 | 5–100 | S 1.95, 3.3, 4, 5.4 | M, R | [35] |
195 | 5–100 | S 1.3, 1.95, 4 | M, R | [37] |
195 | 1–90 | S 1.3, 2, 4,6 | M, R | [36] |
190 | 50–5000 | 2 | B, M, R | [33] |
190 | 10–2000 | S 1, 1.5, 2 | M, R | [33] |
180 | 100–500 | 2 | / | [73] |
/ | 5–300 | / | / | [64] |
180 | 20–500 | 1, 1.5, 2 | M | [67] |
190 | 15–912 | 2 | / | [56] |
190 | 2–30 | 5 | / | [66] |
180 | 20–2000 | 1, 1.5, 2 | B, M | [61] |
240 | 50–1000 | / | / | [68] |
190, 195, 200, 205 | 0.3–10 | 4 | / | [50] |
175 | 50–2000 | 1 | / | [51] |
Matrix | Wood Type | Wood wt.% | Coupling Agent | Lubricant | Other | Ref. |
---|---|---|---|---|---|---|
HDPE | Poplar | 40 | / | / | / | [69] |
Poplar | 40 | / | / | / | [70] | |
Poplar | 65 | / | / | / | [71] | |
Poplar | 10, 20, 30, 40, 50, 60 | 4% MAPE | / | 10–50% lignin | [84] | |
Poplar | 20, 30, 40, 50 | 5% MAPE | / | / | [79] | |
Pine | 35, 40 | 4% MAPE | 5% ester | / | [53] | |
Pine | 14–33 | 2% MAPE | / | / | [85] | |
Pine | 10, 20, 30, 40, 50, 60, 70 | 0.5–5% silane | / | / | [96] | |
Pine | 30, 50 | MAPE | Struktol | / | [107] | |
Maple | 30, 45, 60 | 1% MAPE | / | / | [60] | |
Maple | 55, 57, 60 | 2% MAPE | 2% stearate 1% EBS 1 2.7% OP100 2 | / | [58] | |
Maple | 25, 50, 60, 70 | / | / | / | [54] | |
Maple | 5, 10, 20, 30, 50, 60 | / | / | / | [65] | |
Maple | 30, 40 | 3% silane | / | 1–5% mineral | [72] | |
Maple | 70 | / | / | / | [78] | |
Eucalyptus | 50 | 7% MAPE | / | / | [55] | |
Mangrove | 10, 20, 30 | / | / | / | [83] | |
Spruce | 20, 30, 40, 50, 60 | 3% MAPE | / | / | [93] | |
Bamboo | 10, 20, 30, 40, 50, 60 | 0.5% MAPE | 7% Paraffin | 1% Aox | [92] | |
Aspen | / | 3–9% GPE 3, GPW 4 | / | / | [104] | |
LDPE | Poplar | 40 | 3% MAPE | / | 2% EPDM 5 | [98] |
Birch | / | / | / | / | [99] | |
PP | Red pine | 10, 20, 30 | 0.5–1% Silane | / | / | [90] |
Pine | 20, 40, 60 | 4–16% MAPP | / | / | [77] | |
Pine | 30 | / | / | / | [97] | |
Pine | 30 | 6–8% MAPP | 1–2% Struktol | / | [101] | |
Wood flour | 40 | 5% MAPP | 1–4% wax or SA 6 2–4% stearate | / | [95] | |
Wood flour | 10, 20, 30, 40 | 2% MAPP | / | / | [94] | |
White fir | 30, 50, 70 | / | / | / | [13] | |
White fir | 30, 50, 70 | / | / | / | [89] | |
Russian fir | 50, 60, 70 | / | / | / | [86] | |
Bamboo | 30, 40, 50 | 3,5% MAPP | / | / | [87] | |
Lignocel | 40, 60 | 2.5–10% comm. | / | / | [102] | |
PP/HDPE | Poplar | 70 | 0.5,1,1.5,2 MAH 7 | / | / | [103] |
TPU | Poplar | 10, 20, 30, 40 | 5% EPDM-g-MAH, POE 8-g-MAH, PEG6000 9, Chitosan, MDI 10 | / | / | [82] |
PLA | Poplar | 10, 20, 30, 40 | / | / | / | [14] |
Spruce | 10,30 | / | / | / | [88] | |
Spruce | 10, 20, 30 | / | / | / | [18] | |
Mater-Bi 11 | Wood flour | 15 | / | / | / | [15] |
Temperature (°C) | Frequency (rad s−1) | Strain (%) | Plates Diameter (mm) | Gap (mm) | Ref. |
---|---|---|---|---|---|
175 | 0.1–500 | 0.05 | 25 | 2 | [69] |
175 | 0.1–500 | 0.05 | 25 | 2 | [70] |
175 | 0.6–628 | 0.05 | 25 | 2 | [71] |
180 | 0.5–1000 | / | 25 | / | [84] |
170 | 0.01–100 | 0.1 | 25 | 1 | [79] |
180 | 0.1–100 | 0.1 | 25 | 2 | [53] |
190 | 0.06–628 | / | 25 | 1 | [85] |
170 | 0.01–10 | / | 25 | 2 | [96] |
170 | 0.1–100 | / | 25 | 1 | [107] |
180 | 0.1–100 | / | / | / | [60] |
180 | 0.01–100 | 0.1 | 25 | 2 | [58] |
180 | 0.1–100 | 0.1 | 25 | 1.5 | [54] |
180 | 0.1–100 | 0.1 | 25 | 1.5 | [65] |
200 | 0.6–628 | / | 25 | 1.5 | [72] |
180 | 0.01–100 | 0.01 | 25 | 2.5 | [78] |
210 | 0.1–500 | / | 25 | 2 | [55] |
170 | 0.05–500 | 0.05 | 25 | 0.5 | [83] |
170 | 0.6–629 | / | 25 | / | [93] |
170, 190 | 0.6–62.8 | 1 | / | / | [92] |
210 | 0.1–500 | / | 25 | 2 | [104] |
160 | 0.01–100 | / | 25 | 2 | [98] |
140, 160, 180 | 0.1–1000 | 3 | 25 | 1.5 | [99] |
200 | 0.01–60 | / | 25 | 1 | [90] |
180 | 0.1–100 | 0.03 | 25 | / | [77] |
200 | 0.1–100 | 5 | 25 | 1 | [97] |
190 | 0.01–100 | 0.2 | 25 | 1 | [101] |
190 | 0.06–628 | 0.1 | 25 | 2.5 | [95] |
190 | 0.1–200 | 1 | 25 | 2 | [94] |
170 | 0.1–100 | 0.01,0.02 | 25 | 2.5 | [13] |
170 | 0.1–100 | 0.01,0.02 | 25 | 2.5 | [89] |
175, 195 | 0.63–500 | 0.1,5 | 25 | 1,4 | [86] |
190 | 0.01–100 | / | 30 | 2.2 | [87] |
190 | 0.3–3962 | 6.28 | 35 | 1 | [102] |
190 | 0.1–100 | / | 25 | 2 | [103] |
200 | 0.06–628 | / | 25 | 3 | [82] |
175 | 0.06–628 | 0.1 | 25 | 2 | [14] |
155 | 0.1–99 | 0.05,0.1 | 25 | 2 | [88] |
155, 165, 175 | 0.1–100 | 0.05,0.1 | 25 | 2 | [18] |
140 | / | / | / | / | [15] |
Pressure-Driven | Rotational | ||||
---|---|---|---|---|---|
Parameters | Wall Slip | ||||
Wood content | |||||
Particle size | |||||
Matrix molecular weight | / | / | / | ||
Testing temperature | / | ||||
Matrix recycling | / | / | |||
Coupling agents | / | ||||
Lubricants | / | ||||
Toughening agents | / | / | / | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzanti, V.; Mollica, F. A Review of Wood Polymer Composites Rheology and Its Implications for Processing. Polymers 2020, 12, 2304. https://doi.org/10.3390/polym12102304
Mazzanti V, Mollica F. A Review of Wood Polymer Composites Rheology and Its Implications for Processing. Polymers. 2020; 12(10):2304. https://doi.org/10.3390/polym12102304
Chicago/Turabian StyleMazzanti, Valentina, and Francesco Mollica. 2020. "A Review of Wood Polymer Composites Rheology and Its Implications for Processing" Polymers 12, no. 10: 2304. https://doi.org/10.3390/polym12102304