Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer
Abstract
:1. Introduction
2. Results
2.1. Anatomy
2.2. Photosynthetic Pigments
2.3. Chlorophyll Fluorescence Measurements in the Dark-Adapted State
2.4. Chlorophyll Fluorescence Measurements in the Light-Adapted State
2.5. Gas Exchange Measurements
3. Discussion
4. Materials and Methods
4.1. Plant Material, Experimental Site, and Sampling
4.2. Tissue Fixation for Light and Scanning Electron Microscopy
4.3. Fresh Plant Material and Epi-Fluorescence Microscopy
4.4. Photosynthetic Pigments
4.5. Chlorophyll Fluorescence Measurements in the Dark-Adapted Material
- (a)
- The quantum yields and efficiencies:
- (b)
- The specific fluxes per active (i.e., QA-reducing) reaction center (RC):
- (c)
- 1/VI = (FM − F0)/(FI − F0), the relative pool size of the final PSI electron acceptors;
4.6. Chlorophyll Fluorescence Measurements in the Light-Adapted Material
4.7. Effects of Varying External Gas Partial Pressures on Light-Adapted Material
4.8. Gas Exchange Measurements
4.9. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blanke, M.M.; Lenz, F. Fruit photosynthesis. Plant Cell Environ. 1989, 12, 31–46. [Google Scholar] [CrossRef]
- Dogane, Y.; Ando, T. An estimation of carbon evolution during flowering and capsule development in a Laeliocattleya orchid. Sci. Hortic. 1990, 42, 339–349. [Google Scholar] [CrossRef]
- Nilsen, E.T.; Karpa, D.; Mooney, H.A.; Field, C. Patterns of stem photosynthesis in two invasive legumes (Spartium junceum, Cytisus scoparius) of the California coastal region. Am. J. Bot. 1993, 80, 1126–1136. [Google Scholar] [CrossRef]
- Clement, C.; Mischler, P.; Burrus, M.; Audran, J.C. Characteristics of the photosynthetic apparatus and CO2-fixation in the flower bud of Lilium. I. Corolla. Int. J. Plant Sci. 1997, 158, 794–800. [Google Scholar] [CrossRef]
- Pfanz, H.; Aschan, G.; Langefeld-Heyser, R.; Wittman, C.; Loose, M. Ecology and ecophysiology of tree stems–corticular and wood photosynthesis. Naturwissenschaften 2002, 89, 147–162. [Google Scholar]
- Aschan, G.; Pfanz, H. Non-foliar photosynthesis—A strategy of additional carbon acquisition. Flora 2003, 198, 81–97. [Google Scholar] [CrossRef]
- Dima, E.; Manetas, Y.; Psaras, G.K. Chlorophyll distribution pattern in inner stem tissues: Evidence from epifluorescence microscopy and reflectance measurements in 20 woody species. Trees 2006, 20, 515–521. [Google Scholar] [CrossRef]
- Yiotis, C.; Petropoulou, Y.; Manetas, Y. Evidence for light-independent and steeply decreasing PSII efficiency along twig depth in four tree species. Photosynthetica 2009, 47, 223–231. [Google Scholar] [CrossRef]
- Yiotis, C.; Manetas, Y. Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: Evidence for innately high photorespiration and cyclic electron flow rates. Planta 2010, 232, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Brazel, A.J.; Ó’Maoiléidigh, D.S. Photosynthetic activity of reproductive organs. J. Exp. Bot. 2019, 70, 1737–1753. [Google Scholar] [CrossRef]
- Nilsen, E.T. Stem photosynthesis: Extent, patterns, and role in plant carbon economy. In Plant Stems: Physiology and Functional Morphology; Gartner, B., Ed.; Academic Press: San Diego, CA, USA, 1995; pp. 223–240. [Google Scholar]
- Goffman, F.D.; Ruckle, M.; Ohlrogge, J.; Shachar-Hill, Y. Carbon dioxide concentrations are very high in developing oilseeds. Plant Physiol. Biochem. 2004, 42, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Borisjuk, L.; Rolletschek, H. The oxygen status of the developing seed. New Phytol. 2009, 182, 17–30. [Google Scholar] [CrossRef]
- Bazzaz, F.A.; Carlson, R.W.; Harper, J.L. Contribution to reproductive effort by photosynthesis of flowers and fruits. Nature 1979, 279, 554–555. [Google Scholar] [CrossRef]
- Carrara, S.; Pardossi, A.; Soldatini, G.F.; Tognoni, F.; Guidi, L. Photosynthetic activity of ripening tomato fruit. Photosynthetica 2001, 39, 75–78. [Google Scholar] [CrossRef]
- Kalachanis, D.; Manetas, Y. Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems. Physiol. Plant. 2010, 139, 313–323. [Google Scholar] [CrossRef]
- Ranjan, S.; Singh, R.; Soni, D.K.; Pathre, U.V.; Shirke, P.A. Photosynthetic performance of Jatropha curcas fruits. Plant Physiol. Biochem. 2012, 52, 66–76. [Google Scholar] [CrossRef]
- Ferroni, L.; Pantaleoni, L.; Baldisserotto, C.; Aro, E.M.; Pancaldi, S. Low photosynthetic activity is linked to changes in the organization of photosystem II in the fruit of Arum italicum. Plant Physiol. Biochem. 2013, 63, 140–150. [Google Scholar] [CrossRef]
- Hetherington, S.E.; Smillie, R.M.; Davies, W.J. Photosynthetic activities of vegetative and fruiting tissues of tomato. J. Exp. Bot. 1998, 49, 1173–1181. [Google Scholar] [CrossRef]
- Lemos Filho, J.P.; Isaias, R.M.S. Comparative stomatal conductance and chlorophyll a fluorescence in leaves vs. fruits of the cerrado legume tree, Dalbergia miscolobium. Braz. J. Plant Physiol. 2004, 16, 89–93. [Google Scholar] [CrossRef]
- Aschan, G.; Pfanz, H.; Vodnik, D.; Batič, F. Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica 2005, 43, 55–64. [Google Scholar] [CrossRef]
- Kyzeridou, A.; Stamatakis, K.; Petropoulou, Y. The non-foliar hypoxic photosynthetic syndrome: Evidence or enhanced pools and functionality of xanthophyll cycle components and active cyclic electron flow in fruit chlorenchyma. Planta 2015, 241, 1051–1059. [Google Scholar] [CrossRef]
- Cheng, L.; Ma, F. Diurnal operation of the xanthophyll cycle and the antioxidant system in apple peel. J. Am. Soc. Hortic. Sci. 2004, 129, 313–320. [Google Scholar] [CrossRef]
- Anderson, J.M. Photoregulation of the composition, function, and structure of thylakoid membranes. Annu. Rev. Plant Physiol. 1986, 37, 93–136. [Google Scholar] [CrossRef]
- Murchie, E.H.; Horton, P. Contrasting patterns of photosynthetic acclimation to the light environment are dependent on the differential expression of the responses to altered irradiance and spectral quality. Plant Cell Environ. 1998, 21, 139–148. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Ač, A.; Marek, M.V.; Kalina, J.; Urban, O. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiol. Biochem. 2007, 45, 577–588. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Gilmore, A.M.; Adams, W.W. In vivo functions of carotenoids in higher plants. FASEB 1996, 10, 403–412. [Google Scholar] [CrossRef]
- Demmig-Adams, B.; Adams, W.W., III. The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends Plant Sci. 1996, 1, 21–26. [Google Scholar] [CrossRef]
- Choudhury, N.; Behera, R. Photoinhibition of photosynthesis: Role of carotenoids in photoprotection of chloroplast constituents. Photosynthetica 2001, 39, 481–488. [Google Scholar] [CrossRef]
- Thayer, S.S.; Björkman, O. Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth. Res. 1990, 23, 331–343. [Google Scholar] [CrossRef]
- Demmig-Adams, B. Survey of Thermal Energy Dissipation and Pigment Composition in Sun and Shade Leaves. Plant Cell Physiol. 1998, 39, 474–482. [Google Scholar] [CrossRef]
- Esteban, R.; Olascoaga, B.; Becerril, J.M.; García-Plazaola, J.I. Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiol. Plant. 2010, 140, 69–78. [Google Scholar] [CrossRef]
- Manetas, Y. Probing corticular photosynthesis through in vivo chlorophyll fluorescence measurements: Evidence that high internal CO2 levels suppress electron flow and increase the risk of photoinhibition. Physiol. Plant. 2004, 120, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Levizou, E.; Petropoulou, Y.; Manetas, Y. Carotenoid composition of peridermal twigs does not fully conform to a shade acclimation hypothesis. Photosynthetica 2004, 42, 591–596. [Google Scholar] [CrossRef]
- Kotakis, C.; Petropoulou, Y.; Stamatakis, K.; Yiotis, C.; Manetas, Y. Evidence for active cyclic electron flow in twig chlorenchyma in the presence of an extremely deficient linear electron transport activity. Planta 2006, 225, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.G.; Krol, M.; Sveshnikov, D.; Malmberg, G.; Gardeström, P.; Hurry, V.; Öquist, G.; Huner, N.P.A. Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine. Planta 2006, 223, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Filippou, M.; Fasseas, C.; Karabourniotis, G. Photosynthetic characteristics of olive tree (Olea europaea) bark. Tree Physiol. 2007, 27, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Levizou, E.; Manetas, Y. Maximum and effective PSII yields in the cortex of the main stem of young Prunus cerasus trees: Effects of seasons and exposure. Trees 2008, 22, 159–164. [Google Scholar] [CrossRef]
- Karabourniotis, G. Light-guiding function of foliar sclereids in the evergreen sclerophyll Phillyrea latifolia. J. Exp. Bot. 1998, 49, 739–746. [Google Scholar] [CrossRef]
- Karabourniotis, G.; Bornman, J.F.; Nikolopoulos, D. A possible optical role of the bundle sheath extensions of the heterobaric leaves of Vitis vinifera and Quercus coccifera. Plant Cell Environ. 2000, 23, 423–430. [Google Scholar] [CrossRef]
- Geigenberger, P. Response of plant metabolism to too little oxygen. Curr. Opin. Plant Biol. 2003, 6, 247–256. [Google Scholar] [CrossRef]
- Méchin, V.; Thévenot, C.; Le Guilloux, M.; Prioul, J.L.; Damerval, C. Developmental analysis of maize endosperm proteome suggests a pivotal role for pyruvate orthophosphate dikinase. Plant Physiol. 2007, 143, 1203–1219. [Google Scholar] [CrossRef] [PubMed]
- Strasser, R.J.; Tsimili-Michael, M.; Srivastava, A. Analysis of the chlorophyl a fluorescence transient. In Chlorophyll a Fluorescence. A signature of Photosynthesis; Papageorgiou, G.C., Ed.; Springer: Dordrecht, The Netherlands, 2004; pp. 321–362. [Google Scholar]
- Stirbet, A. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B 2011, 104, 236–257. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.X.; Chen, L.S.; Zheng, J.G.; Han, S.; Tang, N.; Smith, B.R. Aluminum-induced effects on Photosystem II photochemistry in Citrus leaves assessed by the chlorophyll a fluorescence transient. Tree Physiol. 2008, 28, 1863–1871. [Google Scholar] [CrossRef]
- Oukarroum, A.; Schansker, G.; Strasser, R.J. Drought stress effects on photosystem I content and photosystem II thermotolerance analyzed using Chl a fluorescence kinetics in barley varieties differing in their drought tolerance. Physiol. Plant. 2009, 137, 188–199. [Google Scholar] [CrossRef]
- Krüger, G.H.; Tsimilli-Michael, M.; Strasser, R.J. Light stress provokes plastic and elastic modifications in structure and function of photosystem II in camellia leaves. Physiol. Plant. 1997, 101, 265–277. [Google Scholar] [CrossRef]
- Di Castri, F. Climatographical comparisons between Chile and the western coast of North America. In Mediterranean Type Ecosystems; Springer: Berlin/Heidelberg, Germany, 1973; pp. 21–36. [Google Scholar]
- Flexas, J.; Diaz-Espejo, A.; Gago, J.; Gallé, A.; Galmés, J.; Gulías, J.; Medrano, H. Photosynthetic limitations in Mediterranean plants: A review. Environ. Exp. Bot. 2014, 103, 12–23. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Galmés, J.; Medrano, H.; Flexas, J. Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol. 2007, 175, 81–93. [Google Scholar] [CrossRef]
- Valentini, R.; Epron, D.; de Angelis, P.; Matteucci, G.; Dreyer, E. In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Q. cerris L.) leaves: Diurnal cycles under different levels of water supply. Plant Cell Environ. 1995, 18, 631–640. [Google Scholar] [CrossRef]
- Niyogi, K.K. Safety valves for photosynthesis. Curr. Opin. Plant Biol. 2000, 3, 455–460. [Google Scholar] [CrossRef]
- Li, P.; Cheng, L. The shaded side of apple fruit becomes more sensitive to photoinhibition with fruit development. Physiol. Plant. 2008, 134, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Xu, O.; Wu, J.; Cao, Y.; Yang, X.; Wang, Z.; Huang, J.; Xia, G.; Zhang, O.; Hu, Y. Photosynthetic characteristics of leaves and fruits of Hickory (Carya cathayensis Sarg.) and Pecan (Carya illinoensis K. Koch) during fruit development stages. Trees 2016, 30, 1523–1534. [Google Scholar] [CrossRef]
- Simkin, A.J.; Faralli, M.; Ramamoorthy, S.; Lawson, T. Photosynthesis in non-foliar tissues: Implications for yield. Plant J. 2020, 101, 1001–1015. [Google Scholar] [CrossRef] [PubMed]
- Papageorgiou, G. The non-photochemical quenching of the electronically excited state of chlorophyll a in plants: Definitions, timelines, viewpoints, open questions. In Nonphotochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria; Advances in Photosynthesis and Respiration Series; Demmig-Adams, B., Garab, G., Adams, W., III, Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 40, pp. 1–44. [Google Scholar]
- Ogaya, R.; Peñuelas, J. Comparative seasonal gas exchange and chlorophyll fluorescence of two dominant woody species in a Holm Oak Forest. Flora 2003, 198, 132–141. [Google Scholar] [CrossRef]
- Marques da Silva, J. Chlorophyll fluorescence parameters of three Mediterranean shrubs in a summer-autumn period in central Portugal. Biol. Plant. 2007, 51, 741–745. [Google Scholar] [CrossRef]
- Sofo, A.; Dichio, B.; Montanaro, G.; Xiloyannis, C. Photosynthetic performance and light response of two olive cultivars under different water and light regimes. Photosynthetica 2009, 47, 602–608. [Google Scholar] [CrossRef]
- García-Plazaola, J.I.; Faria, T.; Abadia, J.; Chaves, M.M.; Pereira, J.S. Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suber L.) leaves under Mediterranean climate. J. Exp. Bot. 1997, 48, 1667–1674. [Google Scholar] [CrossRef]
- Baquedano, F.J.; Castillo, F. Drought tolerance in the mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. Photosynthetica 2007, 45, 229–238. [Google Scholar] [CrossRef]
- Wittmann, C.; Aschan, G.; Pfanz, H. Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light regime. Basic Appl. Ecol. 2001, 2, 145–154. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Tsimilli-Michael, M.; Strasser, R.J. In vivo assessment of stress impact on plant’s vitality: Applications in detecting and evaluating the beneficial role of mycorrhization on host plants. In Mycorrhiza 3; Varma, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 679–703. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.-M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Maxwell, K.; Johnson, G.N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 2000, 51, 659–668. [Google Scholar] [CrossRef] [PubMed]
- IMAGING-PAM M-Series Chlorophyll Fluorometer. Instrument Description and Information for Users; Heinz Walz GmbH: Effeltrich, Germany, 2014. [Google Scholar]
- Zeliou, K.; Manetas, Y.; Petropoulou, Y. Transient winter leaf reddening in Cistus creticus characterizes weak (stress-sensitive) individuals, yet anthocyanins cannot alleviate the adverse effects on photosynthesis. J. Exp. Bot. 2009, 60, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Tseliou, E.; Chondrogiannis, C.; Kalachanis, D.; Goudoudaki, S.; Manoussopoulos, Y.; Grammatikopoulos, G. Integration of biophysical photosynthetic parameters into one photochemical index for early detection of Tobacco Mosaic Virus infection in pepper plants. J. Plant Physiol. 2021, 267, 153542. [Google Scholar] [CrossRef] [PubMed]
Pigments | Leaves | Pericarps |
---|---|---|
Chls | 39.75 ± 3.59 a | 44.69 ± 6.32 a |
Car | 8.46 ± 0.46 a | 12.75 ± 1.24 b |
Chl a/b | 2.61 ± 0.13 a | 1.95 ± 0.18 b |
Car/Chls | 0.21 ± 0.01 a | 0.28 ± 0.02 b |
Absorptance | 0.724 ± 0.044 a | 0.723 ± 0.046 a |
Parameter | Leaves | Pericarps |
---|---|---|
φPo | 0.81 ± 0.02 a | 0.79 ± 0.04 b |
φEo | 0.44 ± 0.05 a | 0.43 ± 0.05 a |
ψEo | 0.55 ± 0.05 a | 0.57 ± 0.04 a |
φRo | 0.19 ± 0.03 a | 0.17 ± 0.04 b |
δRo | 0.44 ± 0.05 a | 0.39 ± 0.06 b |
VK/VJ | 0.35 ± 0.05 a | 0.38 ± 0.06 a |
1/VI | 1.32 ± 0.06 a | 1.29 ± 0.06 a |
1-VI | 0.24 ± 0.03 a | 0.22 ± 0.04 a |
t1/2(I-P) (msec) | 136 ± 23 a | 62 ± 24 b |
ABS/RC | 1.74 ± 0.26 a | 1.99 ± 0.39 b |
TR/RC | 1.41 ± 0.19 a | 1.55 ± 0.24 b |
DIo/RC | 0.33 ± 0.08 a | 0.44 ± 0.16 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalachanis, D.; Chondrogiannis, C.; Petropoulou, Y. Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer. Plants 2024, 13, 2867. https://doi.org/10.3390/plants13202867
Kalachanis D, Chondrogiannis C, Petropoulou Y. Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer. Plants. 2024; 13(20):2867. https://doi.org/10.3390/plants13202867
Chicago/Turabian StyleKalachanis, Dimitrios, Christos Chondrogiannis, and Yiola Petropoulou. 2024. "Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer" Plants 13, no. 20: 2867. https://doi.org/10.3390/plants13202867