Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes
Abstract
:1. Introduction
2. Results
2.1. Binary Expression Vector for Rice Transformation
2.2. Establishment of Transgenic Rice Using Agrobacterium-Mediated Transformation via In Vitro Culture System
2.3. Stable and Inherited Expression of Transgenes in Transgenic Plants
2.4. Transgenic Rice Expressed Ubi::Cas9–eGFP
2.5. Heterologous Expression of the MdFT1 Gene Resulted in Overall Changes in Agronomic Traits of Transgenic Rice
3. Discussion
4. Materials and Methods
4.1. Gene Cloning and Construction of Plant Transformation Binary Vectors
4.2. Agrobacterium Transformation
4.3. Culture Media and Plant Materials
4.4. Rice Embryogenic Callus Induction and Transformation
4.5. Transgenic Plants’ In Vitro Cultivation
4.6. PCR Analysis
4.7. RNA Isolation, cDNA Synthesis, and Quantification of Transgene Expression
4.8. Plant Phenotyping
4.9. Microscopic Imaging Analysis
4.10. Measurements of Free Amino Acid Contents
4.11. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohidem, N.A.; Hashim, N.; Shamsudin, R.; Che Man, H. Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture 2022, 12, 741. [Google Scholar] [CrossRef]
- Zhao, M.; Lin, Y.; Chen, H. Improving nutritional quality of rice for human health. Theor. Appl. Genet. 2020, 133, 1397–1413. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, N.K.; Ziska, L.H. Rice: Importance for global nutrition. J. Nutr. Sci. Vitaminol. 2019, 65, S2–S3. [Google Scholar] [CrossRef]
- Gelvin, S.B. Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front. Plant Sci. 2012, 3, 52. [Google Scholar] [CrossRef]
- Binns, A.N.; Thomashow, M.F. Cell biology of Agrobacterium infection and transformation of plants. Annu. Rev. Microbiol. 1988, 42, 575–606. [Google Scholar] [CrossRef]
- Ayres, N.M.; Park, W.D. Genetic transformation of rice. Crit. Rev. Plant Sci. 1994, 13, 219–239. [Google Scholar] [CrossRef]
- Lv, Z.; Jiang, R.; Chen, J.; Chen, W. Nanoparticle-mediated gene transformation strategies for plant genetic engineering. Plant J. 2020, 104, 880–891. [Google Scholar] [CrossRef]
- Azizi-Dargahlou, S.; Pouresmaeil, M. Agrobacterium tumefaciens-mediated plant Transformation: A review. Mol. Biotechnol. 2024, 66, 1563–1580. [Google Scholar] [CrossRef]
- Gelvin, S.B. Agrobacterium-mediated plant transformation: The biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. 2003, 67, 16–37. [Google Scholar] [CrossRef]
- Ziemienowicz, A.; Tzfira, T.; Hohn, B. Mechanisms of T-DNA integration. In Agrobacterium: From Biology to Biotechnology; Tzfira, T., Citovsky, V., Eds.; Springer: New York, NY, USA, 2008; pp. 395–440. [Google Scholar] [CrossRef]
- Christie, P.J. Type IV secretion: The Agrobacterium VirB/D4 and related conjugation systems. Biochim. Biophys. Acta-Mol. Cell Res. 2004, 1694, 219–234. [Google Scholar] [CrossRef]
- Anand, A.; Mysore, K. Agrobacterium biology and crown gall disease. In Plant-Associated Bacteria; Gnanamanickam, S.S., Ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 359–384. [Google Scholar] [CrossRef]
- Pitzschke, A.; Hirt, H. New insights into an old story: Agrobacterium-induced tumour formation in plants by plant transformation. EMBO J. 2010, 29, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Gelvin, S.B. Integration of Agrobacterium T-DNA into the plant genome. Annu. Rev. Genet. 2017, 51, 195–217. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-H.; Yu, M.; Lai, E.-M. Agrobacterium-mediated plant transformation: Biology and applications. Arab. Book 2017, 15, e0186. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Zheng, P.; Marmey, P.; Zhang, S.; Tian, W.; Chen, S.; Beachy, R.N.; Fauquet, C. Comparative analysis of transgenic rice plants obtained by Agrobacterium-mediated transformation and particle bombardment. Mol. Breed. 2001, 7, 25–33. [Google Scholar] [CrossRef]
- Hobbs, S.L.; Warkentin, T.D.; DeLong, C.M. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol. Biol. 1993, 21, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Rivera, A.L.; Gómez-Lim, M.; Fernández, F.; Loske, A.M. Physical methods for genetic plant transformation. Phys. Life Rev. 2012, 9, 308–345. [Google Scholar] [CrossRef]
- Heidari Japelaghi, R.; Haddad, R.; Valizadeh, M.; Dorani Uliaie, E.; Jalali Javaran, M. High-efficiency Agrobacterium-mediated transformation of tobacco (Nicotiana tabacum). J. Plant Mol. Breed. 2018, 6, 38–50. [Google Scholar] [CrossRef]
- Do, V.G.; Lee, Y.; Kim, S.; Kweon, H.; Do, G. Antisense expression of apple TFL1-like gene (MdTFL1) promotes early flowering and causes phenotypic changes in tobacco. Int. J. Mol. Sci. 2022, 23, 6006. [Google Scholar] [CrossRef]
- Niedbała, G.; Niazian, M.; Sabbatini, P. Modeling Agrobacterium-mediated gene transformation of tobacco (Nicotiana tabacum)—A model plant for gene transformation studies. Front. Plant Sci. 2021, 12, 695110. [Google Scholar] [CrossRef]
- Chan, M.-T.; Chang, H.-H.; Ho, S.-L.; Tong, W.-F.; Yu, S.-M. Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Mol. Biol. 1993, 22, 491–506. [Google Scholar] [CrossRef]
- Dong, J.; Teng, W.; Buchholz, W.G.; Hall, T.C. Agrobacterium-mediated transformation of Javanica rice. Mol. Breed. 1996, 2, 267–276. [Google Scholar] [CrossRef]
- Hiei, Y.; Ohta, S.; Komari, T.; Kumashiro, T. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 1994, 6, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Hiei, Y.; Komari, T. Improved protocols for transformation of indica rice mediated by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult. 2006, 85, 271–283. [Google Scholar] [CrossRef]
- Nishimura, A.; Aichi, I.; Matsuoka, M. A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 2006, 1, 2796–2802. [Google Scholar] [CrossRef]
- Rahman, S.U.; Khan, M.O.; Ullah, R.; Ahmad, F.; Raza, G. Agrobacterium-mediated transformation for the development of transgenic crops; present and future prospects. Mol. Biotechnol. 2023, 66, 1836–1852. [Google Scholar] [CrossRef]
- Do, V.G.; Lee, Y.; Kim, S.; Yang, S.; Park, J.; Do, G. Introducing MdTFL1 promotes heading date and produces semi-draft phenotype in rice. Int. J. Mol. Sci. 2023, 24, 10365. [Google Scholar] [CrossRef]
- Olhoft, P.M.; Bernal, L.M.; Grist, L.B.; Hill, D.S.; Mankin, S.L.; Shen, Y.; Kalogerakis, M.; Wiley, H.; Toren, E.; Song, H.-S. A novel Agrobacterium rhizogenes-mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. Vitr. Cell. Dev. Biol. Plant. 2007, 43, 536–549. [Google Scholar] [CrossRef]
- Ishida, Y.; Hiei, Y.; Komari, T. Agrobacterium-mediated transformation of maize. Nat. Protoc. 2007, 2, 1614–1621. [Google Scholar] [CrossRef]
- Hashmi, M.H.; Saeed, F.; Demirel, U.; Bakhsh, A. Establishment of highly efficient and reproducible Agrobacterium-mediated transformation system for tomato (Solanum lycopersicum L.). Vitr. Cell. Dev. Biol. Plant. 2022, 58, 1066–1076. [Google Scholar] [CrossRef]
- Kong, J.; Martin-Ortigosa, S.; Finer, J.; Orchard, N.; Gunadi, A.; Batts, L.A.; Thakare, D.; Rush, B.; Schmitz, O.; Stuiver, M. Overexpression of the transcription factor GROWTH-REGULATING FACTOR5 improves transformation of dicot and monocot species. Front. Plant Sci. 2020, 11, 572319. [Google Scholar] [CrossRef]
- Noureen, A.; Zuhaib Khan, M.; Amin, I.; Zainab, T.; Ahmad, N.; Haider, S.; Mansoor, S. Broad-spectrum resistance against multiple PVY-strains by CRSIPR/Cas13 system in Solanum tuberosum crop. GM Crops Food 2022, 13, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A. Development of efficient, reproducible and stable Agrobacterium-mediated genetic transformation of five potato cultivars. Food Technol. Biotechnol. 2020, 58, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Zhang, Q. Optimising the tissue culture conditions for high efficiency transformation of indica rice. Plant Cell Rep. 2005, 23, 540–547. [Google Scholar] [CrossRef]
- Miao, J.; Guo, D.; Zhang, J.; Huang, Q.; Qin, G.; Zhang, X.; Wan, J.; Gu, H.; Qu, L.-J. Targeted mutagenesis in rice using CRISPR-Cas system. Cell Res. 2013, 23, 1233–1236. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.K.; Tripathi, A.K.; Pareek, A.; Sopory, S.K.; Singla-Pareek, S.L. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 2011, 7, 49. [Google Scholar] [CrossRef]
- Jeon, J.S.; Lee, S.; Jung, K.H.; Jun, S.H.; Jeong, D.H.; Lee, J.; Kim, C.; Jang, S.; Lee, S.; Yang, K. T-DNA insertional mutagenesis for functional genomics in rice. Plant J. 2000, 22, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Van Giap, D.; Jung, J.-W.; Kim, N.-S. Production of functional recombinant cyclic citrullinated peptide monoclonal antibody in transgenic rice cell suspension culture. Transgenic Res. 2019, 28, 177–188. [Google Scholar] [CrossRef]
- Chung, N.-D.; Kim, N.-S.; Jang, S.-H.; Oh, S.-M.; Jang, S.-H.; Kim, T.-G.; Jang, Y.-S.; Yang, M.-S. Production of functional human vascular endothelial growth factor165 in transgenic rice cell suspension cultures. Enzyme Microb. Technol. 2014, 63, 58–63. [Google Scholar] [CrossRef]
- Jung, J.-W.; Huy, N.-X.; Kim, H.-B.; Kim, N.-S.; Yang, M.-S. Production of recombinant human acid α-glucosidase with high-mannose glycans in gnt1 rice for the treatment of Pompe disease. J. Biotech. 2017, 249, 42–50. [Google Scholar] [CrossRef]
- Do, V.G.; Yang, M.-S. Production of mature recombinant human Activin A in transgenic rice cell suspension culture. Curr. Issues Mol. Biol. 2024, 46, 1164–1176. [Google Scholar] [CrossRef]
- Do, V.G.; Lee, Y.; Kim, J.-H.; Kwon, Y.-S.; Park, J.-T.; Yang, S.; Park, J.; Win, N.M.; Kim, S. The synergistic effects of environmental and genetic factors on the regulation of anthocyanin accumulation in plant tissues. Int. J. Mol. Sci. 2023, 24, 12946. [Google Scholar] [CrossRef] [PubMed]
- Howe, A.; Sato, S.; Dweikat, I.; Fromm, M.; Clemente, T. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Rep. 2006, 25, 784–791. [Google Scholar] [CrossRef] [PubMed]
- Hiei, Y.; Komari, T. Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nat. Protoc. 2008, 3, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, K.; Kawahigashi, H.; Kayano, T.; Ohkawa, Y. Enhancement of regeneration of rice (Oryza sativa L.) calli by integration of the gene involved in regeneration ability of the callus. Plant Sci. 2003, 165, 395–402. [Google Scholar] [CrossRef]
- Toki, S. Rapid and efficient Agrobacterium-mediated transformation. Plant Mol. Biol. Rep. 1997, 15, 16–21. [Google Scholar] [CrossRef]
- Frame, B.R.; Zhang, H.; Cocciolone, S.M.; Sidorenko, L.V.; Dietrich, C.R.; Pegg, S.E.; Zhen, S.; Schnable, P.S.; Wang, K. Production of transgenic maize from bombarded type II callus: Effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell. Dev. Biol. Plant. 2000, 36, 21–29. [Google Scholar] [CrossRef]
- Gordon-Kamm, W.J.; Spencer, T.M.; Mangano, M.L.; Adams, T.R.; Daines, R.J.; Start, W.G.; O‘Brien, J.V.; Chambers, S.A.; Adams, W.R.; Willetts, N.G. Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 1990, 2, 603–618. [Google Scholar] [CrossRef]
- Chetty, V.; Ceballos, N.; Garcia, D.; Narváez-Vásquez, J.; Lopez, W.; Orozco-Cárdenas, M. Evaluation of four Agrobacterium tumefaciens strains for the genetic transformation of tomato (Solanum lycopersicum L.) cultivar Micro-Tom. Plant Cell Rep. 2013, 32, 239–247. [Google Scholar] [CrossRef]
- Bakhsh, A.; Anayol, E.; Ozcan, S.F. Comparison of transformation efficiency of five Agrobacterium tumefaciens strains in Nicotiana Tabacum L. Emir. J. Food Agric. 2014, 26, 259. [Google Scholar] [CrossRef]
- Wang, S.; Chen, H.; Wang, Y.; Pan, C.; Tang, X.; Zhang, H.; Chen, W.; Chen, Y. Effects of Agrobacterium tumefaciens strain types on the Agrobacterium-mediated transformation efficiency of filamentous fungus Mortierella alpina. Lett. Appl. Microbiol. 2020, 70, 388–393. [Google Scholar] [CrossRef]
- Prías-Blanco, M.; Chappell, T.M.; Freed, E.F.; Illa-Berenguer, E.; Eckert, C.A.; Parrott, W.A. An Agrobacterium strain auxotrophic for methionine is useful for switchgrass transformation. Transgenic Res. 2022, 31, 661–676. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.-R.; Yan, L.; Du, W.-P.; Jun, S.; Min, L.; Xu, L.-Y.; Xiao, F.-M.; Liu, Y.-S. Optimization of Agrobacterium tumefaciens-mediated immature embryo transformation system and transformation of glyphosate-resistant gene 2mG2-EPSPS in maize (Zea mays L.). J. Integr. Agric. 2013, 12, 2134–2142. [Google Scholar] [CrossRef]
- Xie, K.; Minkenberg, B.; Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 2015, 112, 3570–3575. [Google Scholar] [CrossRef] [PubMed]
- Zafar, K.; Khan, M.Z.; Amin, I.; Mukhtar, Z.; Yasmin, S.; Arif, M.; Ejaz, K.; Mansoor, S. Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Front. Plant Sci. 2020, 11, 575. [Google Scholar] [CrossRef]
- Molina-Risco, M.; Ibarra, O.; Faion-Molina, M.; Kim, B.; Septiningsih, E.M.; Thomson, M.J. Optimizing Agrobacterium-mediated transformation and CRISPR-Cas9 gene editing in the tropical japonica rice variety presidio. Int. J. Mol. Sci. 2021, 22, 10909. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Tian, J.; Li, R.; Chen, X.; Luo, Z.; Chen, M.; Zhao, X.; Zhang, D.; Persson, S.; Yuan, Z. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding. J. Genet. Genom. 2020, 47, 273–280. [Google Scholar] [CrossRef]
- Upadhyaya, N.M.; Surin, B.; Ramm, K.; Gaudron, J.; Schünmann, P.H.; Taylor, W.; Waterhouse, P.M.; Wang, M.-B. Agrobacterium-mediated transformation of Australian rice cultivars Jarrah and Amaroo using modified promoters and selectable markers. Funct. Plant Biol. 2000, 27, 201–210. [Google Scholar] [CrossRef]
- Shin, Y.J.; Hong, S.Y.; Kwon, T.H.; Jang, Y.S.; Yang, M.S. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture. Biotechnol. Bioeng. 2003, 82, 778–783. [Google Scholar] [CrossRef]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef]
- Pin, P.; Nilsson, O. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ. 2012, 35, 1742–1755. [Google Scholar] [CrossRef]
- Kotoda, N.; Hayashi, H.; Suzuki, M.; Igarashi, M.; Hatsuyama, Y.; Kidou, S.-i.; Igasaki, T.; Nishiguchi, M.; Yano, K.; Shimizu, T. Molecular characterization of FLOWERING LOCUS T-like genes of apple (Malus× domestica Borkh.). Plant Cell Physiol. 2010, 51, 561–575. [Google Scholar] [CrossRef] [PubMed]
- Kojima, S.; Takahashi, Y.; Kobayashi, Y.; Monna, L.; Sasaki, T.; Araki, T.; Yano, M. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 2002, 43, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Weigel, D.; Glazebrook, J. Transformation of Agrobacterium using the freeze-thaw method. Cold Spring Harb. Protoc. 2006, 7, pdb.prot4666. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gong, X.; Deng, H.; Tan, J.; Sun, Y.; Wang, F.; Wu, W.; Zhou, Z.; Xu, R.; He, H. The rice aspartyl-tRNA synthetase YLC3 regulates amino acid homeostasis and chloroplast development under low temperature. Front. Plant Sci. 2022, 13, 847364. [Google Scholar] [CrossRef]
Primer Set | Primer Name | Sequence (5′→3′) | Amplicon Length (bp) | Note | |
---|---|---|---|---|---|
1 | HygR | F | CTCGGAGGGCGAAGAATCTC | 563 | Used for gDNA PCR |
R | CAATGACCGCTGTTATGCGG | ||||
2 | eGFP | F | GTGAGCAAGGGCGAGGAGCT | 717 | Used for gDNA PCR |
R | TTACTTGTACAGCTCGTCCATGCCGAG | ||||
3 | MdFT1 | F | GGTACCATGCCTAGGGATAGGGAC | 525 | Used for gene cloning and gDNA PCR and RT–PCR |
R | TCTAGATTATCTTCTCCTTCCACCG | ||||
4 | OsAct1 | F | GCGTCTGGATTGGTGGTTCT | 142 | Used for RT–PCR |
R | ACCGCTCTACAAACTTGGCA |
Construction | Rice Cultivar | Callus Induction (%) | Resistant Calli (%) | Transformation Efficiency (%) | Shoot Regeneration Rate (%) |
---|---|---|---|---|---|
Ubi::Cas9–eGFP | Samkwang | 98.0 ± 2.1 | 59.4 ± 3.5 | 53.4 ± 1.6 | 64.8 ± 8.3 |
Ramy3D::MdFT1 | Dongjin | 94.1 ± 3.8 | 50.1 ± 2.3 | 47.4 ± 3.4 | 58.3 ± 8.1 |
Amino Acid (a.a) | Concentration (mg/mL) | ||
---|---|---|---|
Full Name | Abbreviation | WT | MdFT1 |
Aspartic acid | Asp | 9.04 ± 0.17 b | 10.72 ± 0.02 a |
Threonine | Thr | 3.42 ± 0.08 b | 4.13 ± 0.01 a |
Serine | Ser | 4.03 ± 0.09 b | 4.68 ± 0.01 a |
Glutamic acid | Glu | 15.27 ± 0.32 b | 17.38 ± 0.10 a |
Glycine | Gly | 3.68 ± 0.11 b | 4.91 ± 0.03 a |
Alanine | Ala | 7.16 ± 0.26 b | 7.90 ± 0.04 a |
Cysteine | Cys | 0.88 ± 0.03 b | 1.36 ± 0.01 a |
Valine | Val | 52.68 ± 1.53 b | 59.69 ± 0.34 a |
Methionine | Met | 1.94 ± 0.06 b | 2.27 ± 0.01 a |
Isoleucine | Ile | 3.92 ± 0.12 b | 4.48 ± 0.02 a |
Leucine | Leu | 8.32 ± 0.22 b | 9.49 ± 0.02 a |
Tyrosine | Tyr | 2.19 ± 0.04 b | 2.69 ± 0.02 a |
Phenylalanine | Phe | 5.17 ± 0.11 b | 5.97 ± 0.01 a |
Lysine | Lys | 4.30 ± 0.09 b | 5.52 ± 0.01 a |
NH3 | 1.91 ± 0.10 b | 2.02 ± 0.04 a | |
Histidine | His | 2.31 ± 0.05 b | 2.82 ± 0.00 a |
Arginine | Arg | 7.08 ± 0.15 b | 7.80 ± 0.01 a |
Proline | Pro | 3.63 ± 0.72 b | 4.66 ± 0.93 a |
Component | Producer /Product No. | Callus Induction (N6CI) | Co-Culture (N6CO) | Selection (N6SE) | Shooting (MSS) | Rooting (MSR) |
---|---|---|---|---|---|---|
CHU (N6) plus vitamins | Duchefa Biochemie C0204.0050 | 4.0 | 4.0 | 4.0 | ||
MS plus vitamins | Duchefa Biochemie M0222.0050 | 4.3 | 4.3 | |||
Sucrose | Duchefa Biochemie S0809.100 | 30 | 30 | 30 | 30 | 30 |
Glucose | Sigma Aldrich G5767-500G | 10 | ||||
Sorbitol | Sigma Aldrich S3889-1KG | 30 | ||||
Phytagel | Sigma Aldrich P8169-500G | 2.3 | 2.3 | 2.3 | ||
Gerlite | Duchefa Biochemie G1101.0500 | 4.0 | 4.0 | |||
2,4-D | Duchefa Biochemie D0911.0250 | 2 mg/L | 2 mg/L | 2 mg/L | ||
Kinetin | Duchefa Biochemie K0905.005 | 2 mg/L | 2 mg/L | 2 mg/L | 5 mg/L | |
NAA | Duchefa Biochemie N0903.0025 | 1 mg/L | ||||
IBA | Sigma Aldrich I5386-5G | 0.5 mg/L | ||||
Acetosyringone | Sigma Aldrich D134406-5G | 100 µM | ||||
Cefotaxime | Duchefa Biochemie C0111.0005 | 250 mg/L | 250 mg/L (OP) * | 250 mg/L (OP) | ||
Hygromycin B | Duchefa Biochemie H0192.0001 | 50 mg/L | 50 mg/L (OP) | 50 mg/L (OP) | ||
pH | 5.8 | 5.2 | 5.8 | 5.8 | 5.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, V.G.; Kim, S.; Win, N.M.; Kwon, S.-I.; Kweon, H.; Yang, S.; Park, J.; Do, G.; Lee, Y. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes. Plants 2024, 13, 2803. https://doi.org/10.3390/plants13192803
Do VG, Kim S, Win NM, Kwon S-I, Kweon H, Yang S, Park J, Do G, Lee Y. Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes. Plants. 2024; 13(19):2803. https://doi.org/10.3390/plants13192803
Chicago/Turabian StyleDo, Van Giap, Seonae Kim, Nay Myo Win, Soon-Il Kwon, Hunjoong Kweon, Sangjin Yang, Juhyeon Park, Gyungran Do, and Youngsuk Lee. 2024. "Efficient Regeneration of Transgenic Rice from Embryogenic Callus via Agrobacterium-Mediated Transformation: A Case Study Using GFP and Apple MdFT1 Genes" Plants 13, no. 19: 2803. https://doi.org/10.3390/plants13192803