Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain
Abstract
:1. Introduction
2. Major Dietary Components in Grain and Breeding Programs for Health Benefit
2.1. Micronutrients
2.2. β-glucans
2.3. Antioxidants
2.4. Phenolic Compounds and Avenanthramides
2.5. Tocols
2.6. Sterols
2.7. Carotenoids
2.8. Other Antioxidant Compounds
3. Assessment of Cereal Crop Genetic Resources According to the Diversity and Concentration of Health-Friendly Dietary Grain Components
4. The Effect of Dietary Components in Grain on Life Functions of Plants Themselves
4.1. Biotic Stress Resistance
4.2. Abiotic Stress Resistance
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO Save and Grow. Available online: http://www.fao.org/ag/save-and-grow/MRW/index_en.html (accessed on 12 December 2020).
- Loskutov, I.G.; Shelenga, T.V.; Rodionov, A.V.; Khoreva, V.I.; Blinova, E.V.; Konarev, A.V.; Gnutikov, A.A.; Konarev, A.V. Application of metabolomic analysis in exploration of plant genetic resources. Proc. Latv. Acad. Sci. 2019, 73, 494–501. [Google Scholar] [CrossRef] [Green Version]
- Bityutskii, N.; Loskutov, I.; Yakkonen, K.; Konarev, A.; Shelenga, T.; Khoreva, V.; Blinova, E.; Rymin, A. Screening of Avena sativa cultivars for iron, zinc, manganese, protein and oil contents and fatty acid composition in whole grains. Cereal Res. Commun. 2019, 48. [Google Scholar] [CrossRef]
- Gordeeva, E.; Shamanin, V.; Schoeva, O.; Khlestkina, E. The strategy for marker-assisted breeding of anthocyanin-rich spring bread wheat (Triticum aestivum L.) cultivars in West Siberia. Agronomy 2020, 10, 1603. [Google Scholar] [CrossRef]
- Morgounov, A.; Karaduman, Y.; Akin, B.; Aydogan, S.; Baenziger, S.; Bhatta, M.; Chudinov, V.; Dreisigacker, S.; Govindan, V.; Güler, S.; et al. Yield and quality in purple grain wheat isogenic lines. Agronomy 2020, 10, 86. [Google Scholar] [CrossRef] [Green Version]
- Leonova, S.; Shelenga, T.; Hamberg, M.; Konarev, A.V.; Loskutov, I.; Carlsson, A.S. Analysis of oil composition in cultivars and wild species of oat (Avena sativa). J. Agric. Food Chem. 2008, 56, 7983–7991. [Google Scholar] [CrossRef]
- Marshall, H.G. Oats Science and Technology (Agronomy); Sorrells, M.E., Ed.; American Society of Agronomy: Madison, WI, USA, 1992; p. 846. [Google Scholar]
- Olson, R.A. Nutritional Quality of Cereals Grains: Genetic and Agronomic Improvement; Frey, K.J., Ed.; American Society of Agronomy: Madison, WI, USA, 1987. [Google Scholar]
- Peterson, D.M. Oat–a Multifunctional Grain. In Proceedings of the 7th International Oats Conference, Helsinki, Finland, 28 July 2004; pp. 21–26. [Google Scholar]
- Rasmusson, D.C. Nutritional Quality of Barley; American Society of Agronomy: Madison, WI, USA, 1985. [Google Scholar]
- Malaguti, M.; Dinelli, G.; Leoncini, E.; Bregola, V.; Bosi, S.; Cicero, A.F.G.; Hrelia, S. Bioactive peptides in cereals and legumes: Agronomical, biochemical and clinical aspects. Int. J. Mol. Sci. 2014, 15, 21120–21135. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.; Liao, D.; Huang, H.; Li, T.; Chi, H. A systematic review and meta-analysis of beta-glucan consumption on glycemic control in hypercholesterolemic individuals. Int. J. Food Sci. Nutr. 2015, 66, 355–362. [Google Scholar] [CrossRef]
- Yang, J.; Wang, P.; Wu, W.; Zhao, Y.; Idehen, E.; Sang, S. Steroidal saponins in oat bran. J. Agric. Food Chem. 2016, 64, 1549–1556. [Google Scholar] [CrossRef]
- Sang, S.; Chu, Y. Whole grain oats, more than just a fiber: Role of unique phytochemicals. Mol. Nutr. Food Res. 2017, 61, 1600715. [Google Scholar] [CrossRef]
- Kumar, K.; Chauhan, D.; Kumar, S. Barley: A potential source of functional food ingredients. In Proceedings of the Conference: National Seminar on Technological Interventions in Food Processing and Preservation, Jaipur, India, 17 November 2017. [Google Scholar]
- Tikhonova, M.; Shoeva, O.; Tenditnik, M.; Ovsyukova, M.; Akopyan, A.; Dubrovina, N.; Amstislavskaya, T.G.; Khlestkina, E. Evaluating the effects of grain of isogenic wheat lines differing in the content of anthocyanins in mouse models of neurodegenerative disorders. Nutrients 2020, 12, 3877. [Google Scholar] [CrossRef]
- Martınez-Villaluenga, C.; Penas, E. Health benefits of oat: Current evidence and molecular mechanisms. Curr. Opin. Food Sci. 2017, 14, 26–31. [Google Scholar] [CrossRef] [Green Version]
- Gordeeva, E.I.; Glagoleva, A.Y.; Kukoeva, T.V.; Khlestkina, E.K.; Shoeva, O.Y. Purple-grained barley (Hordeum vulgare L.): Marker-assisted development of NILs for investigating peculiarities of the anthocyanin biosynthesis regulatory network. BMC Plant Biol. 2019, 19, 52. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-León, S.; Gil-Humanes, J.; Ozuna, C.V.; Giménez, M.J.; Sousa, C.; Voytas, D.F.; Barro, F. Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol. J. 2018, 16, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Jouanin, A.; Schaart, J.G.; Boyd, L.A.; Cockram, J.; Leigh, F.J.; Bates, R.; Wallington, E.J.; Visser, R.G.F.; Smulders, M.J.M. Outlook for coeliac disease patients: Towards bread wheat with hypoimmunogenic gluten by gene editing of α- and γ-gliadin gene families. BMC Plant Biol. 2019, 19, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerasimova, S.; Hertig, C.; Korotkova, A.; Kolosovskaya, E.; Otto, I.; Hiekel, S.; Kochetov, A.; Khlestkina, E.; Kumlehn, J. Conversion of hulled into naked barley by Cas endonuclease-mediated knockout of the NUD gene. BMC Plant Biol. 2020, 20, 255. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, G.; Nantel, G.; Shetty, P. The scourge of “hidden hunger”: Global dimensions of micronutrient deficiencies. Food Nutr. Agric. 2003, 32, 8–16. [Google Scholar]
- Bhullar, N.K.; Gruissem, W. Nutritional enhancement of rice for human health: The contribution of biotechnology. Biotechnol. Adv. 2013, 31, 50–57. [Google Scholar] [CrossRef]
- WHO. The World Health Report: 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Hotz, C.; Brown, K.H. Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr. Bull. 2004, 25, 94–204. [Google Scholar]
- Morgounov, A.; Gomez-Becerra, H.F.; Abugalieva, A.; Dzhunusova, M.; Yessimbekova, M.; Muminjanov, H.; Zelenskiy, Y.; Ozturk, L.; Cakmak, I. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 2007, 155, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Bouis, H.E. Micronutrient fortification of plants through plant breeding: Can it improve nutrition in man at low cost? Proc. Nutr. Soc. 2003, 62, 403–411. [Google Scholar] [CrossRef]
- Graham, R.D.; Welch, R.M.; Bouis, H.E. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Adv. Agron. 2001, 70, 77–142. [Google Scholar]
- Kutman, U.B.; Yidiz, B.; Ozturk, L.; Cakmak, I. Biofortification of durum wheat with zinc through soil and foliar application of nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Rengel, Z.; Graham, R.D. Importance of seed Zn content for wheat growth on Zn-deficient soil. Plant Soil 1995, 173, 259–266. [Google Scholar] [CrossRef]
- Frossard, E.; Bucher, M.; Machler, F.; Mozafar, A.; Hurell, R. Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J. Sci. Food Agric. 2000, 80, 861–879. [Google Scholar] [CrossRef]
- White, P.; Broadley, M.R. Biofortifying crops with essential mineral elements. Trends Plant Sci. 2005, 10, 586–593. [Google Scholar] [CrossRef]
- White, P.; Broadley, M.R. Physiological limits to Zn biofortification of edible crops. Front. Plant Sci. 2011, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Frankin, S.; Kunta, S.; Abbo, S.; Sela, H.; Goldberg, B.Z.; Bonfil, D.J.; Levy, A.A.; Ragolsky, A.-N.; Nashef, K.; Roychowdhury, R. In Focus: The 1st International Conference of Wheat Landraces for Healthy Food. J. Sci. Food Agric. 2018, 100. [Google Scholar] [CrossRef]
- Gyawali, S.; Otte, M.L.; Chao, S.; Jilal, A.; Jacob, D.L.; Amezrou, R.; Verma, R.P.S. Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J. Cereal Sci. 2017, 77, 266–274. [Google Scholar] [CrossRef]
- Wood, P.J.; Beer, M.U. Functional oat products. In Functional Foods: Biochemical and Processing Aspects; Mazza, G., Ed.; Technomic Publishing Company Inc.: Lancaster, PA, USA, 1998; pp. 1–37. [Google Scholar]
- Toole, G.A.; Gall, G.L.; Colquhoun, I.J.; Drea, S.; Opanowicz, M.; Bed, Z.; Shewry, P.R.; Mills, E.N.C. Spectroscopic analysis of diversity in the spatial distribution of arabinoxylan structures in endosperm cell walls of cereal species in the health grain diversity collection. J. Cereal Sci. 2012, 56, 134–141. [Google Scholar] [CrossRef] [Green Version]
- Loskutov, I.G.; Polonskiy, V.I. Content of β-glucans in oat grain as a perspective direction of breeding for health products and fodder. Agric. Biol. 2017, 52, 646–657. [Google Scholar] [CrossRef]
- Welch, R.W.; Leggett, J.M.; Lloyd, J.D. Variation in the kernel (1 3)(1 4)-β-D-glucan content of oat cultivars and wild Avena species and its relationship to other characteristics. J. Cereal Sci. 1991, 13, 173–178. [Google Scholar] [CrossRef]
- Havrlentová, M.; Hlinková, A.; Ofajová, A.; Kováčik, P.; Dvončová, D.; Deáková, A. Effect of fertilization on b-D-glucan content in oat grain (Avena sativa L.). Agriculture 2013, 59, 111–119. [Google Scholar] [CrossRef]
- Decker, E.A.; Rose, D.J.; Stewart, D. Processing of oats and the impact of processing operations on nutrition and health benefits. Br. J. Nutr. 2014, 112, 58–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clemens, R.; Van Klinken, B.J.W. The future of oats in the food and health continuum. Br. J. Nutr. 2014, 112, 75–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fastnaught, C.E.; Berglund, P.T.; Holm, E.T.; Fox, G.J. Genetic and environmental variation in β-glucan content and quality parameters of barley for food. Crop. Sci. 1996, 36, 941–946. [Google Scholar] [CrossRef]
- Dzyubenko, N.; Zwer, P.; Loskutov, I. Abstracts of Oral and Poster Presentation. In Proceedings of the 10th International Oat Conference: Innovation for Food and Health “OATS 2016”, St Petersburg, Russia, 11–15 July 2016. [Google Scholar]
- Tiwari, U.; Cummins, E. Meta-analysis of the effect of beta-glucan intake on blood cholesterol and glucose levels. Nutrition 2011, 27, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Joyce, S.A.; Kamil, A.; Fleige, L.; Gahan, C.G. The cholesterol-lowering effect of oats and oat beta glucan: Modes of action and potential role of bile acids and the microbiome. Front. Nutr. 2019, 6, 171. [Google Scholar] [CrossRef]
- Wood, P.J. Oat and rye beta-glucan: Properties and function. Cereal Chem. 2010, 87, 315–330. [Google Scholar] [CrossRef]
- Piironen, V.; Anna-Maija, L.; Laura, N.; Li, L.; Mariann, R.; Anna, F.; Danuta, B.; Kurt, G.; Courtin, C.; Delcour, J.; et al. Phytochemical and fiber components in oat varieties in the Healthgrain diversity screen. J. Agr. Food Chem. 2008, 56, 9777–9784. [Google Scholar] [CrossRef]
- Redaelli, R.; Frate, V.D.; Bellato, S.; Terracciano, G.; Ciccoritti, R.; Germeier, C.U.; Stefanis, E.D.; Sgrulletta, D. Genetic and environmental variability in total and soluble β-glucan in European oat genotypes. J. Cereal Sci. 2013, 57, 193–199. [Google Scholar] [CrossRef]
- Polonskiy, V.; Loskutov, I.; Sumina, A. Biological role and health benefits of antioxidant compounds in cereals. Biol. Commun. 2020, 65, 53–67. [Google Scholar] [CrossRef]
- Welch, R.W.; Brown, J.C.W.; Leggett, J.M. Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: Very high groat (1 3), (1 4)-β-D-glucan in an Avena atlantica genotype. J. Cereal Sci. 2000, 31, 273–279. [Google Scholar] [CrossRef]
- Saastamoinen, M.; Plaami, S.; Kumpulainen, J. Genetic and environmental variation in β-glucan content of oats cultivated or tested in Finland. J. Cereal Sci. 1992, 16, 279–290. [Google Scholar] [CrossRef]
- Havrlentová, M.; Bieliková, M.; Mendel, L.; Kraic, J.; Hozlár, P. The correlation of (1–3) (1–4)-β-d-glucan with some qualitative parameters in the oat grain. Agriculture 2008, 54, 65–71. [Google Scholar]
- Gajdošová, A.; Petruláková, Z.; Havrlentová, M.; Červená, V.; Hozová, B.; Šturdík, E.; Kogan, G. The content of water-soluble and water-insoluble β-d-glucans in selected oats and barley varieties. Carbohydr. Polym. 2007, 70, 46–52. [Google Scholar] [CrossRef]
- Tiwari, U.; Cummins, E. Simulation of the factors affecting β-glucan levels during the cultivation of oats. J. Cereal Sci. 2009, 50, 175–183. [Google Scholar] [CrossRef]
- Griffey, C.; Brooks, W.; Kurantz, M.; Thomason, W.; Taylor, F.; Obert, D.; Moreau, R.; Flores, R.; Sohn, M.; Hicks, K.; et al. Grain composition of Virginia winter barley and implications for use in feed, food, and biofuels production. J. Cereal Sci. 2010, 51, 41–49. [Google Scholar] [CrossRef]
- Knutsen, S.H.; Holtekjilen, A.K. Preparation and analysis of dietary fibre constituents in whole grain from hulled and hull-less barley. Food Chem. 2007, 102, 707–715. [Google Scholar] [CrossRef]
- Huth, M.; Dongowski, G.; Gebhart, E.; Flamme, W. Functional properties of dietary fibre enriched exudates from barley. J. Cereal Sci. 2002, 32, 115–117. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Chen, J. Analysis of β-glucan content in barley cultivars from different locations of China. Food Chem. 2002, 79, 251–254. [Google Scholar] [CrossRef]
- Cox, T.S.; Frey, K.J. Complementarity of genes for high groat-protein percentage from Avena sativa L. and A. sterilis L. Crop. Sci. 1985, 25, 106–109. [Google Scholar] [CrossRef]
- Peterson, D.M.; Wesenberg, D.M.; Burrup, D.E. β-Glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop. Sci. 1995, 35, 965–970. [Google Scholar] [CrossRef]
- Yalcin, E.; Celik, S.; Akar, T.; Sayim, I.; Koksel, H. Effects of genotype and environment on β-glucan and dietary fibre contents of hull-less barleys grown in Turkey. Food Chem. 2007, 101, 171–176. [Google Scholar] [CrossRef]
- Lee, C.J.; Horsley, R.D.; Manthey, F.A.; Schwarz, P.B. Comparison of β-glucan content of barley and oat. Cereal Chem. 1997, 74, 571–575. [Google Scholar] [CrossRef]
- Hang, A.; Obert, D.; Gironella, A.I.N.; Burton, C.S. Barley amylase and β-glucan: Their relationships to protein, agronomic traits, and environmental factors. Crop. Sci. 2007, 47, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Chen, J.; Wang, J.; Ding, S. Cultivar and environmental effects on (1–3, 1–4)-β-glucan and protein content in malting barley. J. Cereal Sci. 2001, 34, 295–301. [Google Scholar] [CrossRef]
- Rey, J.I.; Hayes, P.M.; Petrie, S.E.; Corey, A.; Flowers, M.; Ohm, J.B.; Ong, C.; Rhinhart, K.; Ross, A.S. Production of dryland barley for human food: Quality and agronomic performance. Crop. Sci. 2009, 49, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Aman, P.; Graham, H.; Tilley, A. Content and solubility of mixed-linked (1–3;1–4)-β-glucan in barley and oats during kernel development and storage. J. Cereal Sci. 1989, 10, 45–50. [Google Scholar] [CrossRef]
- Chawade, A.; Sikora, P.; Brautigam, M.; Larsson, M.; Vivekanand, V.; Nakash, M.A.; Chen, T.; Olsson, O. Development and characterization of an oat TILLING-population and identification of mutations in lignin and β-glucan biosynthesis genes. BMC Plant Biol. 2010, 10, 86–99. [Google Scholar] [CrossRef] [Green Version]
- Sikora, P.; Tosh, S.M.; Brummer, Y.; Olsson, O. Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans. Food Chem. 2013, 137, 83–91. [Google Scholar] [CrossRef]
- Collins, H.M.; Burton, R.A.; Topping, D.L.; Liao, M.-L.; Bacic, A.; Fincher, G.B. Variability in fine structures of noncellulosic cell wall polysaccharides from cereal grains: Potential importance in human health and nutrition. Cereal Chem. 2010, 87, 272–282. [Google Scholar] [CrossRef]
- Song, G.; Huo, P.; Wu, B.; Zhang, Z. A genetic linkage map of hexaploid naked oat constructed with SSR markers. Crop. J. 2015, 3, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Burton, R.A.; Wilson, S.M.; Hrmova, M.; Harvey, A.J.; Shirley, N.J.; Medhurst, A.; Fincher, G.B. Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1–3;1–4)-β-D-glucans. Science 2006, 311, 1940–1942. [Google Scholar] [CrossRef] [PubMed]
- Newell, M.A.; Asoro, F.G.; Scott, V.P.; White, P.J.; Beavis, W.D.; Jannink, J.-L. Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin. Appl. Genet. 2012, 125, 1687–1696. [Google Scholar] [CrossRef] [Green Version]
- Carlson, M.O.; Montilla-Bascon, G.; Hoekenga, O.A.; Tinker, N.A.; Poland, J.; Baseggio, M.; Sorrells, M.E.; Jannink, J.-L.; Gore, M.A.; Yeats, T.H.; et al. Multivariate genome-wide association analyses reveal the genetic basis of seed fatty acid composition in oat (Avena sativa L.). G3 GenesGenomesGenet 2019, 9, 2963–2975. [Google Scholar] [CrossRef] [Green Version]
- Andersson, A.A.M.; Lampi, A.M.; Nyström, L.; Piironen, V.; Li, L.; Ward, J.L.; Gebruers, K.; Courtin, C.M.; Delcour, J.A.; Boros, D.; et al. Phytochemical and dietary fiber components in barley varieties in the healthgrain diversity screen. J. Agric. Food Chem. 2008, 56, 9767–9776. [Google Scholar] [CrossRef]
- Do, T.D.T.; Cozzolino, D.; Muhlhausler, B.; Box, A.; Able, A.J. Antioxidant capacity and vitamin E in barley: Effect of genotype and storage. Food Chem. 2015, 187, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Edelmann, M.; Kariluoto, S.; Nyström, L.; Piironen, V. Folate in barley grain and fractions. J. Cereal Sci. 2013, 58, 37–44. [Google Scholar] [CrossRef]
- Gong, L.X.; Jin, C.; Wu, L.J.; Wu, X.Q.; Zhang, Y. Tibetan hullless Barley (Hordeum vulgare L.) as a potential source of antioxidants. Cereal Chem. 2012, 89, 290–295. [Google Scholar] [CrossRef]
- Edelmann, M.; Kariluoto, S.; Nyström, L.; Piironen, V. Folate in oats and its milling fractions. Food Chem. 2012, 135, 1938–1947. [Google Scholar] [CrossRef]
- Khlestkina, E.К.; Usenko, N.I.; Gordeeva, E.I.; Stabrovskaya, O.I.; Sharfunova, I.B.; Otmakhova, Y.S. Evaluation of wheat products with high flavonoid content: Justification of importance of marker-assisted development and production of flavonoid-rich wheat cultivars. Vavilovskii Zhurnal Genetiki Selektsii 2017, 21, 545–553. [Google Scholar] [CrossRef]
- Boutigny, A.-L.; Richard-Forget, F.; Barreau, C. Natural mechanisms for cereal resistance to the accumulation of Fusarium trichothecenes. Eur. J. Plant Pathol. 2008, 121, 411–423. [Google Scholar] [CrossRef]
- Branković, G.; Dragičević, V.; Dodig, D.; Zorić, M.; Knežević, D.; Žilić, S.; Denčić, S.; Šurlan, G. Genotype × environment interaction for antioxidants and phytic acid contents in bread and durum wheat as influenced by climate. Chilean J. Agric. Res. 2015, 75, 139–146. [Google Scholar]
- Adom, K.K.; Liu, R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002, 50, 6182–6187. [Google Scholar] [CrossRef] [PubMed]
- Boz, H. Ferulic acid in cereals-a review. Czech J. Food Sci. 2015, 33, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mattila, P.; Pihlava, J.M.; Hellstrom, J. Contents of phenolic acids, alkyl- and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agric. Food Chem. 2005, 53, 8290–8295. [Google Scholar] [CrossRef]
- Ndolo, V.U.; Beta, T. Comparative studies on composition and distribution of phenolic acids in cereal grain botanical fractions. Cereal Chem. 2014, 91, 522–530. [Google Scholar] [CrossRef]
- Liu, R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007, 46, 207–219. [Google Scholar] [CrossRef]
- Glagoleva, A.Y.; Shmakov, N.V.; Shoeva, O.Y.; Vasiliev, G.V.; Shatskaya, N.V.; Börner, A.; Afonnikov, D.A.; Khlestkina, E.K. Metabolic pathways and genes identified by RNA-seq analysis of barley near-isogenic lines differing by allelic state of the black lemma and pericarp (Blp) gene. BMC Plant Biol. 2017, 17, 182. [Google Scholar] [CrossRef] [Green Version]
- Shoeva, O.Y.; Mursalimov, S.R.; Gracheva, N.V.; Glagoleva, A.Y.; Börner, A.; Khlestkina, E.K. Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Nat. Sci. Rep. 2020, 10, 179. [Google Scholar] [CrossRef]
- Bollina, V.; Kumaraswamy, G.K.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S.; Faubert, D.; Hamzehzarghani, H. Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium Head blight. Mol. Plant Pathol. 2010, 11, 769–782. [Google Scholar] [CrossRef] [PubMed]
- Bollina, V.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S. Identification of metabolites related to mechanisms of resistance in barley against Fusarium graminearum, based on mass spectrometry. Plant Mol. Biol. 2011, 77, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Zilic, S.; Sukalovic, V.H.T.; Dodig, D.; Maksimovic, V.; Maksimovic, M.; Basic, Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sci. 2011, 54, 417–424. [Google Scholar] [CrossRef]
- Dykes, L.; Rooney, L.W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World 2007, 52, 105–111. [Google Scholar] [CrossRef]
- Lee, C.; Han, D.; Kim, B.; Bae, N.; Baik, B.K. Antioxidant and anti-hypertensive activity of anthocyaninrich extracts from hulless pigmented barley cultivars. Int. J. Food Sci. Technol. 2013, 48, 984–991. [Google Scholar] [CrossRef]
- Usenko, N.I.; Khlestkina, E.К.; Asavasanti, S.; Gordeeva, E.I.; Yudina, R.S.; Otmakhova, Y.S. Possibilities of enriching food products with anthocyanins by using new forms of cereals. Foods Raw Mater. 2018, 6, 128–135. [Google Scholar] [CrossRef]
- Arbuzova, V.S.; Badaeva, E.D.; Efremova, T.T.; Osadchaya, T.S.; Trubacheeva, N.V.; Dobrovolskaya, O.B. A cytogenetic study of the blue-grain line of the common wheat cultivar Saratovskaya 29. Rus. J. Genet. 2012, 4, 785–791. [Google Scholar] [CrossRef]
- Gordeeva, E.; Badaeva, E.; Yudina, R.; Shchukina, L.; Shoeva, O.; Khlestkina, E. Marker-assisted development of a blue-grained substitution line carrying the Thinopyrum ponticum Chromosome 4Th(4D) in the spring bread wheat saratovskaya 29 background. Agronomy 2019, 9, 723. [Google Scholar] [CrossRef] [Green Version]
- Strygina, K.V.; Börner, A.; Khlestkina, E.K. Identification and characterization of regulatory network components for anthocyanin synthesis in barley aleurone. BMC Plant Biol. 2017, 17, 184. [Google Scholar] [CrossRef] [Green Version]
- Zeven, A.C. Wheats with purple and blue grains: A review. Euphytica 1991, 56, 243–258. [Google Scholar] [CrossRef]
- Syed Jaafar, S.N.; Baron, J.; Siebenhandl-Ehn, S.; Rosenau, T.; Böhmdorfer, S.; Grausgrube, H. Increased anthocyanin content in purple pericarp × blue aleurone wheat crosses. Plant Breed. 2013, 132, 546–552. [Google Scholar] [CrossRef]
- King, C. New Possibilities with Purple Wheat. Available online: https://www.topcropmanager.com/new-possibilities-with-purple-wheat-20050/ (accessed on 29 October 2020).
- Welch, R.W. The chemical composition of oats. In The Oat Crop: Production and Utilization; Welch, R.W., Ed.; Chapman & Hall: London, UK, 1995; pp. 279–320. [Google Scholar]
- Collins, F.W. Oat phenolics: Avenanthramides, novel substituted N-cinnamoylanthranilate alkaloids from oat groats and hulls. J. Agric. Food Chem. 1989, 37, 60–66. [Google Scholar] [CrossRef]
- Jastrebova, J.; Skoglund, M.; Dimberg, L.H. Selective and sensitive LC–MS determination of avenanthramides in oats. Chromatographia 2006, 63, 419–423. [Google Scholar] [CrossRef]
- Fu, J.; Zhu, Y.; Yerke, A.; Wise, M.L.; Johnson, J.; Chu, Y.; Sang, S. Oat avenanthramides induce heme oxygenase-1 expression via Nrf2-mediated signaling in HK-2 cells. Mol. Nutr. Food Res. 2015, 59, 2471–2479. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.G.; Morales, C.C.; Wallace, T.C.; Plotkin, L.I.; Bellido, T. Avenanthramides prevent osteoblast and osteocyte apoptosis and induce osteoclast apoptosis in vitro in an Nrf2-independent manner. Nutrients 2016, 8. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, V.; Mohd, A.S.; Ashraf, T. Avenanthramides of oats: Medicinal importance and future perspectives. Pharmacogn. Rev. 2018, 12, 66–71. [Google Scholar] [CrossRef]
- Redaelli, R.; Dimberg, L.; Germeier, C.U.; Berardo, N.; Locatelli, S.; Guerrini, L. Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm. Euphytica 2016, 207, 273–292. [Google Scholar] [CrossRef]
- Leonova, S.; Gnutikov, A.; Loskutov, I.; Blinova, E.; Gustafsson, K.-E.; Olsson, O. Diversity of avenanthramide content in wild and cultivated oats. Proc. Appl. Bot. Genet. Breed. 2020, 181, 30–47. [Google Scholar] [CrossRef]
- Peterson, D.M. Oat antioxidants. J. Cereal Sci. 2001, 33, 115–129. [Google Scholar] [CrossRef]
- Gutierrez-Gonzalez, J.J.; Wise, M.L.; Garvin, D.F. A developmental profile of tocol accumulation in oat seeds. J. Cereal Sci. 2013, 57, 79–83. [Google Scholar] [CrossRef]
- Falk, J.; Krahnstover, A.; van der Kooij, T.A.W.; Schlensog, M.; Krupinska, K. Tocopherol and tocotrienol accumulation during development of caryopses from barley (Hordeum vulgare L.). Phytochemistry 2004, 65, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Tohno-oka, T.; Kavada, N.; Yoshioka, T. Relationship between grain hardness and endosperm cell wall polysaccharides in barley. Czech. J. Genet. Plant. Breed. 2004, 40, 116. [Google Scholar]
- Piironen, V.; Toivo, J.; Lampi, A.M. Plant sterols in cereals and cereal products. Cereal Chem. 2002, 79, 148–154. [Google Scholar] [CrossRef]
- Ndolo, V.U.; Beta, T. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem. 2013, 139, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Larsson, H.; Kuktaite, R.; Olsson, M.E.; Johansson, E. Carotenoid content in organically produced wheat: Relevance for human nutritional health on consumption. Int. J. Environ. Res. Public Health. 2015, 2, 14068–14083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colasuonno, P.; Marcotuli, I.; Blanco, A.; Maccaferri, M.; Condorelli, G.E.; Tuberosa, R.; Parada, R.; de Camargo, A.C.; Schwember, A.R.; Gadaleta, A. Carotenoid pigment content in durum wheat (Triticum turgidum L. var durum): An overview of quantitative trait loci and candidate genes. Front. Plant Sci. 2019, 7, 1347. [Google Scholar] [CrossRef] [Green Version]
- Carraro-Lemes, C.F.; Scheffer-Basso, S.M.; Deuner, C.; Berghahn, S. Analysis of genotypic variability in Avena spp. regarding allelopathic potentiality. Planta Daninha 2019, 37, 1–12. [Google Scholar] [CrossRef]
- Beleggia, R.; Rau, D.; Laido, G.; Platani, C.; Nigro, F.; Fragasso, M.; de Vita, P.; Scossa, F.; Fernie, A.R.; Nikoloski, Z.; et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol. Biol. Evol. 2016, 33, 1740–1753. [Google Scholar] [CrossRef] [Green Version]
- Berni, R.; Cantini, C.; Romi, M.; Hausman, J.-F.; Guerriero, G.; Cai, G. Agrobiotechnology goes wild: Ancient local varieties as sources of bioactives. Int. J. Mol. Sci. 2018, 19, 2248. [Google Scholar] [CrossRef] [Green Version]
- Loskutov, I.G.; Shelenga, T.V.; Konarev, A.V.; Khoreva, V.I.; Shavarda, A.L.; Blinova, E.V.; Gnutikov, A.A. Biochemical aspects of interactions between fungi and plants: A case study of Fusarium in oats. Agric. Biol. 2019, 54, 575–588. [Google Scholar] [CrossRef]
- Matthews, S.B.; Santra, M.; Mensack, M.M.; Wolfe, P.; Byrne, P.F.; Thompson, H.J. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry. PLoS ONE 2012, 7, e44179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreno-Quintero, N.; Bouwmeester, H.J.; Keurentjes, J.J. Genetic analysis of metabolome–phenotype interactions: From model to crop species. Trends Genet. 2013, 29, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Novotelnov, N.V.; Ezhov, I.S. About antibiotic and antioxidant properties of grain yellow pigments. Proc. Acad. Sci. USSR 1954, 99, 297–300. [Google Scholar]
- Khlestkina, E.K. The adaptive role of flavonoids: Emphasis on cereals. Cereal Res. Commun. 2013, 41, 185–198. [Google Scholar] [CrossRef]
- Skadhauge, B.; Thomsen, K.; von Wettstein, D. The role of barley test a layer and its flavonoid content in resistance to fusarium infections. Hereditas 1997, 126, 147–160. [Google Scholar] [CrossRef]
- Atanasova-Penichon, V.; Barreau, C.; Richard-Forget, F. Antioxidant secondary metabolites in cereals: Potential involvement in resistance to fusarium and mycotoxin accumulation. Front. Microbiol. 2016, 7, 566. [Google Scholar] [CrossRef] [Green Version]
- Haikka, H.; Manninen, O.; Hautsalo, J.; Pietilä, L.; Jalli, M.; Veteläinen, M. Genome-wide association study and genomic prediction for Fusarium graminearum resistance traits in nordic oat (Avena sativa L.). Agronomy 2020, 10, 174. [Google Scholar] [CrossRef] [Green Version]
- Polišenská, I.; Jirsa, O.; Vaculová, K.; Pospíchalová, M.; Wawroszova, S.; Frydrych, J. Fusarium mycotoxins in two hulless oat and barley cultivars used for food purposes. Foods 2020, 9, 1037. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Boutigny, A.-L.; Barreau, C.; Atanasova-Penichon, V.; Verdal-Bonnin, M.-N.; Pinson-Gadais, L.; Richard-Forget, F. Ferulic acid, an efficient inhibitor of type B trichothecene biosynthesis and tri gene expression in fusarium liquid cultures. Mycol. Res. 2009, 113, 746–753. [Google Scholar] [CrossRef]
- Gauthier, L.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Richard-Forget, F.; Penichon, V.A. Fungal biotransformation of chlorogenic and caffeic acids by Fusarium graminearum: New insights in the contribution of phenolic acids to resistance to deoxynivalenol accumulation in cereals. Int. J. Food Microbiol. 2016, 221, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Choo, T.M.; Vigier, B.; Savard, M.E.; Blackwell, B.; Martin, R.; Wang, J.M.; Yang, J.; el-Sayed, M.A.-A. Black barley as a means of mitigating deoxynivalenol contamination. Crop. Sci. 2015, 55, 1096–1103. [Google Scholar] [CrossRef]
- Ferruz, E.; Atanasova-Pénichon, V.; Bonnin-Verdal, M.-N.; Marchegay, G.; Pinson-Gadais, L.; Ducos, C.; Lorán, S.; Ariño, A.; Barreau, C.; Richard, F.-F.; et al. Effects of phenolic acids on the growth and production of T-2 and HT-2 toxins by Fusarium langsethiae and Fsporotrichioides. Molecules 2016, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumaraswamy, G.K.; Kushalappa, A.C.; Choo, T.M.; Dion, Y.; Rioux, S. Differential metabolic response of barley genotypes, varying in resistance, to trichothecene-producing and -nonproducing(tri5-) isolates of Fusarium graminearum. Plant Pathol. 2012, 61, 509–521. [Google Scholar] [CrossRef]
- Søltoft, M.; Jørgensen, L.N.; Svensmark, B.; Fomsgaard, I.S. Benzoxazinoid concentrations show correlation with fusarium head blight resistance in Danish wheat varieties. Biochem. Syst. Ecol. 2008, 36, 245–259. [Google Scholar] [CrossRef]
- Siranidou, E.; Kang, Z.; Buchenauer, H. Studies on symptom development, phenolic compounds and morphological defence responses in wheat cultivars differing in resistance to Fusarium Head Blight. J. Phytopathol. 2002, 150, 200–208. [Google Scholar] [CrossRef]
- Matsukawa, T.; Isobe, T.; Ishihara, A.; Iwamura, H. Occurrence of avenanthramides and hydroxycinnamoylCoA: Hydroxyanthranilate N-hydroxycinnamoyltransferase activity in oat seeds. Zeitschrift Naturforschung C 2000, 55, 30–36. [Google Scholar] [CrossRef]
- Peterson, D.M.; Dimberg, L.H. Avenanthramide concentrations and hydroxycinnamoyl-CoA: Hydroxyanthranilate N-hydroxycinnamoyltransferase activities in developing oats. J. Cereal Sci. 2008, 47, 101–108. [Google Scholar] [CrossRef]
- Bryngelsson, S.; Ishihara, A.; Dimberg, L.H. Levels of avenanthramides and activity of hydroxycinnamoylCoA: Hydroxyanthranilate N-Hydroxycinnamoyl transferase (HHT) in steeped or germinated oat samples. Cereal Chem. 2003, 80, 356–360. [Google Scholar] [CrossRef]
- Dimberg, L.H.; Molteberg, E.L.; Solheim, R.; Frølich, W. Variation in oat groats due to variety, storage and heat treatment I: Phenolic compounds. J. Cereal Sci. 1996, 24, 263–272. [Google Scholar] [CrossRef]
- Gould, K.S. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotech. 2004, 5, 314–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorofeev, V.F.; Yakubtsiner, M.M.; Rudenko, M.I.; Migushova, E.F.; Udachin, R.A.; Merejko, A.F.; Semenova, L.V.; Novikova, M.V.; Gradchaninova, O.D.; Shitova, I.P. Wheat of the World; Kolos: Leningrad, Russia, 1976. [Google Scholar]
- Shoeva, O.Y.; Gordeeva, E.I.; Arbuzova, V.S.; Khlestkina, E.K. Anthocyanins participate in protection of wheat seedlings from osmotic stress: A case study of near isogenic lines. Cereal Res. Commun. 2017, 45, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Gordeeva, E.I.; Shoeva, O.Y.; Yudina, R.S.; Kukoeva, T.V.; Khlestkina, E.K. Effect of seed pre-sowing gamma-irradiation treatment in bread wheat lines differing by anthocyanin pigmentation. Cereal Res. Commun. 2018, 46, 41–53. [Google Scholar] [CrossRef]
- Shoeva, O.Y.; Khlestkina, E.K. Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Res. Commun. 2018, 46, 242–252. [Google Scholar] [CrossRef]
- Marbach, I.; Meyer, A.M. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol. 1974, 54, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Strumeyer, D.H.; Malin, M.J. Condensed tannins in grain sorghum. Isolation, fractionation, and characterization. J. Agric. Food Chem. 1975, 23, 909–914. [Google Scholar] [CrossRef]
- Gelman, N.S. Wheat grain dehydrogenases: Grain Biochemistry. Sbornik Acad. Sci. USSR 1951, 17–33. [Google Scholar]
- Dimberg, L.H.; Gissén, C.; Nilsson, J. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Ambio 2005, 34, 331–337. [Google Scholar] [CrossRef]
- Emmons, C.; Peterson, D.M. Antioxidant activity and phenolic content of oat as affected by cultivar and location. Crop. Sci. 2001, 41, 1676–1681. [Google Scholar] [CrossRef]
- Peterson, D.M.; Wesenberg, D.M.; Burrup, D.E.; Erikson, C.A. Relationships among agronomic traits and grain composition in oat genotypes grown in different environments. Crop. Sci. 2005, 45, 1249–1255. [Google Scholar] [CrossRef] [Green Version]
- Wise, M.L.; Doehlert, D.C.; McMullen, M.S. Association of avenanthramide concentration in oat (Avena sativa L.) grain with crown rust incidence and genetic resistance. Cereal Chem. 2008, 85, 639–641. [Google Scholar] [CrossRef]
- Oraby, H.F.; El-Tohamy, M.F.; Kamel, A.M.; Ramadan, M.F. Changes in the concentration of avenanthramides in response to salinity stress in CBF3 transgenic oat. J. Cereal Sci. 2017, 76, 263–270. [Google Scholar] [CrossRef]
- Havrlentová, M.; Deáková, L.; Kraic, J.; Žofajová, A. Can β-D-glucan protect oat seeds against a heat stress? Nova Biotechnologica Chimica 2016, 15, 107. [Google Scholar] [CrossRef] [Green Version]
- Bhatty, R.S.; Macgregor, A.W.; Rossnagel, B.G. Total and acid-soluble β-glucan content in hulless and its relationship to acid-extract viscosity. Cereal Chem. 1991, 68, 221–227. [Google Scholar]
- Bohn, M.; Lüthje, S.; Sperling, P.; Heinz, E.; Dörffling, K. Plasma membrane lipid alterations induced by cold acclimation and abscisic acid treatment of winter wheat seedlings differing in frost resistance. J. Plant. Physiol. 2007, 164, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Valitova, J.; Renkova, A.; Mukhitova, F.; Dmitrieva, S.; Beckett, R.P.; Minibayeva, F.V. Membrane sterols and genes of sterol biosynthesis are involved in the response of Triticum aestivum seedlings to cold stress. Plant. Physiol. Biochem. 2019, 142, 452–459. [Google Scholar] [CrossRef]
- Takahashi, D.; Imai, H.; Kawamura, Y.; Uemura, M. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance. Cryobiology 2016, 72, 123–134. [Google Scholar] [CrossRef] [Green Version]
Crops | Content, mg/kg | ||
---|---|---|---|
Fe | Mn | Zn | |
Winter soft wheat (Triticum aestivum L.) | 21.8 (19−4) | 4.3 (3.3−4.9) | 17.1 (13−21) |
Spring soft wheat (T. aestivum) | 17.5 (15−22) | 3.3 (2.4−4.1) | 19.2 (14−22) |
Soft wheat (mean) | 19.7 (15−24) | 3.8 (2.4−4.9) | 18.2 (13−22) |
Winter and spring rye (Secale cereale L.) | 20.3 (14−30) | 4.2 (2.6−7.0) | 18.4 (15−24) |
Spring barley (Hordeum vulgare L.) | 33.2 (24−79) | 10.1 (7−21) | 10.6 (6−33) |
Oats (Avena sativa L.) | 26.7 (19−37) | 6.1 (3.5−9.9) | 26.3 (10−70) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loskutov, I.G.; Khlestkina, E.K. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. Plants 2021, 10, 86. https://doi.org/10.3390/plants10010086
Loskutov IG, Khlestkina EK. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. Plants. 2021; 10(1):86. https://doi.org/10.3390/plants10010086
Chicago/Turabian StyleLoskutov, Igor G., and Elena K. Khlestkina. 2021. "Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain" Plants 10, no. 1: 86. https://doi.org/10.3390/plants10010086