Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine
Abstract
:1. Introduction
2. AI in Drug Discovery
3. Machine Learning in Drug Discovery
3.1. Virtual Screening
3.2. Target Identification
3.3. Lead Optimization
4. AI in Predictive Modeling and Personalized Medicine and Formulation
4.1. AI and Personalized Medicines
4.1.1. Prediction of Drug Responses and Optimization of Treatment Regimens
4.1.2. Tailoring Treatments to Individual Patients Based on Their Genetic Makeup, Lifestyle, and Other Factors
4.2. AI in Formulation and Drug Delivery
4.2.1. Optimization of Excipients and Drug Combinations and Compatibility
4.2.2. Enhancing Solubility and Bioavailability
4.2.3. AI in Designing Nanocarriers and Targeted Delivery Systems
4.2.4. AI in Microfluidic Chip Design for Advanced Nanomedicine Fabrication
4.2.5. Challenges and Future Directions
5. Examples of AI Applications in the Pharmaceutical Industry
5.1. Target Identification
5.2. Drug Design
5.3. Compound Selection
5.4. Synthesis Route Prediction
5.5. Robotic Synthesis
5.6. Process Optimization
5.7. Continuous Manufacturing and PAT Technology
5.8. Digital Twin Technology
5.9. Predictive Maintenance
5.10. Supply Chain Optimization
5.11. Medical Imaging
AI Application | Overview | Case Example | Reference |
---|---|---|---|
Synthesis Route Prediction | AI predicts optimal synthetic routes for APIs, analyzing chemical databases and literature to propose efficient pathways | IBM’s “Rxn for Chemistry” tool predicts chemical reaction pathways, used to streamline synthesis. | [124,125] |
Robotic Synthesis | AI-driven robotics automate chemical synthesis, enabling high-throughput experimentation and faster drug discovery. | The “Chemputer” from the University of Glasgow automates drug molecule synthesis. | [130,131] |
Drug Design | AI predicts molecular structures and properties of potential drug candidates, identifying druggable targets. | Insilico Medicine designed a novel drug for idiopathic pulmonary fibrosis using AI in just 18 months. | [50,122] |
Drug Discovery | AI algorithms along with CRSIP technology enable the identification of which genes when deleted lead to resistance or sensitization to cancer medicines | AstraZeneca used AI to CRISPR gene-editing technology to identify new targets and make better medicines. | [121] |
Compound Selection | AI analyzes chemical libraries to identify promising drug candidates based on properties like solubility, permeability, and toxicity. | Exscientia used AI to identify a novel compound for treating inflammatory and immunomodulatory diseases. | [123] |
Process Optimization | AI optimizes manufacturing processes by analyzing data from production lines to identify inefficiencies and recommend improvements. | Pfizer used AI to improve yield and reduce production time for its COVID-19 vaccine manufacturing. | [132,133] |
Continuous Manufacturing and PAT Technology | AI-driven optimization enhances various facets of pharmaceutical production, from raw material sourcing to final product packaging. | Pharmaceutical companies applied AI in continuous manufacturing, increasing efficiency. | [135] |
Medical imaging | AI algorithms have been designed to support radiologists by automating time-consuming tasks, accelerating workflows, and enabling improved detection. | Bayer is using AI algorithms for reduced workload and delivering faster decisions to patients. | [140] |
Digital Twin Technology | AI creates a virtual replica of the manufacturing process (digital twin) to simulate, monitor, and optimize processes in real-time without disrupting actual production. | Johnson & Johnson used digital twins to simulate and optimize their production processes, improving efficiency. | [136] |
Predictive Maintenance | AI models analyze equipment sensor data to predict when maintenance is needed, helping to avoid unexpected breakdowns and schedule maintenance activities effectively. | Pfizer used AI for predictive maintenance in its manufacturing facilities, reducing downtime and maintenance costs. | [138] |
Supply Chain Optimization | AI optimizes the pharmaceutical supply chain by predicting demand, managing inventory, and optimizing logistics based on market trends and performance data. | Novartis employed AI to manage supply chain logistics, leading to better inventory management and reduced costs. | [139] |
5.12. Future Perspectives and Conclusions
5.13. Use of AI Tools
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, K.A.; Huang, X. Machine Learning-based Virtual Screening and Its Applications to Alzheimer’s Drug Discovery: A Review. Curr. Pharm. Des. 2018, 24, 3347–3358. [Google Scholar] [CrossRef] [PubMed]
- Carracedo-Reboredo, P.; Linares-Blanco, J.; Rodriguez-Fernandez, N.; Cedron, F.; Novoa, F.J.; Carballal, A.; Maojo, V.; Pazos, A.; Fernandez-Lozano, C. A review on machine learning approaches and trends in drug discovery. Comput. Struct. Biotechnol. J. 2021, 19, 4538–4558. [Google Scholar] [CrossRef] [PubMed]
- Bai, F.; Li, S.; Li, H. AI enhances drug discovery and development. Natl. Sci. Rev. 2024, 11, nwad303. [Google Scholar] [CrossRef]
- Hill, A.; True, J.M.; Jones, C.H. Transforming drug development with synthetic biology and AI. Trends Biotechnol. 2024, 42, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Niazi, S.K. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Des. Dev. Ther. 2023, 17, 2691–2725. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.S.; Oskoui, S.E.; Russell, S.; Borens, A. Digital Research Environment(DRE)-enabled Artificial Intelligence (AI) to facilitate early stage drug development. Front. Pharmacol. 2023, 14, 1115356. [Google Scholar] [CrossRef]
- Luo, Y.; Peng, J.; Ma, J. Next Decade’s AI-Based Drug Development Features Tight Integration of Data and Computation. Heal. Data Sci. 2022, 2022, 9816939. [Google Scholar] [CrossRef]
- Gallego, V.; Naveiro, R.; Roca, C.; Rios Insua, D.; Campillo, N.E. AI in drug development: A multidisciplinary perspective. Mol. Divers. 2021, 25, 1461–1479. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Roberts, R.A.; Lal-Nag, M.; Chen, X.; Huang, R.; Tong, W. AI-based language models powering drug discovery and development. Drug Discov. Today 2021, 26, 2593–2607. [Google Scholar] [CrossRef] [PubMed]
- Chakravarty, K.; Antontsev, V.G.; Khotimchenko, M.; Gupta, N.; Jagarapu, A.; Bundey, Y.; Hou, H.; Maharao, N.; Varshney, J. Accelerated Repurposing and Drug Development of Pulmonary Hypertension Therapies for COVID-19 Treatment Using an AI-Integrated Biosimulation Platform. Molecules 2021, 26, 1912. [Google Scholar] [CrossRef]
- Burki, T. Pharma blockchains AI for drug development. Lancet 2019, 393, 2382. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, L. AI for drug discovery. Nat. Rev. Urol. 2024, 21, 517. [Google Scholar] [CrossRef]
- Sexton, J.Z.; Fursmidt, R.; O’Meara, M.J.; Omta, W.; Rao, A.; Egan, D.A.; Haney, S.A. Machine Learning and Assay Development for Image-based Phenotypic Profiling of Drug Treatments. In Assay Guidance Manual; Markossian, S., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2004. [Google Scholar]
- Sarkar, C.; Das, B.; Rawat, V.S.; Wahlang, J.B.; Nongpiur, A.; Tiewsoh, I.; Lyngdoh, N.M.; Das, D.; Bidarolli, M.; Sony, H.T. Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. Int. J. Mol. Sci. 2023, 24, 2026. [Google Scholar] [CrossRef]
- Hong, E.; Jeon, J.; Kim, H.U. Recent development of machine learning models for the prediction of drug-drug interactions. Korean J. Chem. Eng. 2023, 40, 276–285. [Google Scholar] [CrossRef]
- Hao, Y.; Lynch, K.; Fan, P.; Jurtschenko, C.; Cid, M.; Zhao, Z.; Yang, H.S. Development of a Machine Learning Algorithm for Drug Screening Analysis on High-Resolution UPLC-MSE/QTOF Mass Spectrometry. J. Appl. Lab. Med. 2023, 8, 53–66. [Google Scholar] [CrossRef]
- Liu, Q.; Huang, R.; Hsieh, J.; Zhu, H.; Tiwari, M.; Liu, G.; Jean, D.; ElZarrad, M.K.; Fakhouri, T.; Berman, S.; et al. Landscape Analysis of the Application of Artificial Intelligence and Machine Learning in Regulatory Submissions for Drug Development From 2016 to 2021. Clin. Pharmacol. Ther. 2023, 113, 771–774. [Google Scholar] [CrossRef]
- Gaudelet, T.; Day, B.; Jamasb, A.R.; Soman, J.; Regep, C.; Liu, G.; Hayter, J.B.R.; Vickers, R.; Roberts, C.; Tang, J.; et al. Utilizing graph machine learning within drug discovery and development. Brief. Bioinform. 2021, 22, bbab159. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, H.; Liu, C.; Jean, D.; Huang, S.M.; ElZarrad, M.K.; Blumenthal, G.; Wang, Y. Application of Machine Learning in Drug Development and Regulation: Current Status and Future Potential. Clin. Pharmacol. Ther. 2020, 107, 726–729. [Google Scholar] [CrossRef]
- Reda, C.; Kaufmann, E.; Delahaye-Duriez, A. Machine learning applications in drug development. Comput. Struct. Biotechnol. J. 2020, 18, 241–252. [Google Scholar] [CrossRef]
- Rodrigues, T.; Bernardes, G.J.L. Machine learning for target discovery in drug development. Curr. Opin. Chem. Biol. 2020, 56, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Gonzalez, A.; Cabezon, A.; Seco-Gonzalez, A.; Conde-Torres, D.; Antelo-Riveiro, P.; Pineiro, A.; Garcia-Fandino, R. The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Pharmaceuticals 2023, 16, 891. [Google Scholar] [CrossRef] [PubMed]
- Mshani, I.H.; Jackson, F.M.; Mwanga, R.Y.; Kweyamba, P.A.; Mwanga, E.P.; Tambwe, M.M.; Hofer, L.M.; Siria, D.J.; Gonzalez-Jimenez, M.; Wynne, K.; et al. Screening of malaria infections in human blood samples with varying parasite densities and anaemic conditions using AI-Powered mid-infrared spectroscopy. Malar. J. 2024, 23, 188. [Google Scholar] [CrossRef] [PubMed]
- Bittner, M.I.; Farajnia, S. AI in drug discovery: Applications, opportunities, and challenges. Patterns 2022, 3, 100529. [Google Scholar] [CrossRef]
- Yuan, H.Y.; Tong, X.F.; Ren, Y.Y.; Li, Y.Y.; Wang, X.L.; Chen, L.L.; Chen, S.D.; Jin, X.Z.; Wang, X.D.; Targher, G.; et al. AI-based digital pathology provides newer insights into lifestyle intervention-induced fibrosis regression in MASLD: An exploratory study. Liver Int. 2024, 44, 10. [Google Scholar] [CrossRef] [PubMed]
- Leitner, J.; Chiang, P.H.; Agnihotri, P.; Dey, S. The Effect of an AI-Based, Autonomous, Digital Health Intervention Using Precise Lifestyle Guidance on Blood Pressure in Adults with Hypertension: Single-Arm Nonrandomized Trial. JMIR Cardio 2024, 8, e51916. [Google Scholar] [CrossRef]
- Khokhar, S.; Holden, J.; Toomer, C.; Del Parigi, A. Weight Loss with an AI-Powered Digital Platform for Lifestyle Intervention. Obes. Surg. 2024, 34, 1810–1818. [Google Scholar] [CrossRef]
- Chatterjee, A.; Pahari, N.; Prinz, A.; Riegler, M. AI and semantic ontology for personalized activity eCoaching in healthy lifestyle recommendations: A meta-heuristic approach. BMC Med. Inform. Decis. Mak. 2023, 23, 278. [Google Scholar] [CrossRef]
- AI’s potential to accelerate drug discovery needs a reality check. Nature 2023, 622, 217. [CrossRef]
- Zargaran, A.; Sousi, S.; Glynou, S.P.; Mortada, H.; Zargaran, D.; Mosahebi, A. A systematic review of generative adversarial networks (GANs) in plastic surgery. J. Plast. Reconstr. Aesthetic Surg. 2024, 95, 377–385. [Google Scholar] [CrossRef]
- Yoon, J.T.; Lee, K.M.; Oh, J.H.; Kim, H.G.; Jeong, J.W. Insights and Considerations in Development and Performance Evaluation of Generative Adversarial Networks (GANs): What Radiologists Need to Know. Diagnostics 2024, 14, 1756. [Google Scholar] [CrossRef] [PubMed]
- Schneider, P.; Walters, W.P.; Plowright, A.T.; Sieroka, N.; Listgarten, J.; Goodnow, R.A., Jr.; Fisher, J.; Jansen, J.M.; Duca, J.S.; Rush, T.S.; et al. Rethinking drug design in the artificial intelligence era. Nat. Rev. Drug Discov. 2020, 19, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Yadalam, P.K.; Anegundi, R.V.; Ramadoss, R.; Shrivastava, D.; Almufarrij, R.A.S.; Srivastava, K.C. AI-based 3D-QSAR model of FDA-approved repurposed drugs for inhibiting sclerostin. Technol. Health. Care 2024, 32, 3007–3019. [Google Scholar] [CrossRef] [PubMed]
- Stafford, K.A.; Anderson, B.M.; Sorenson, J.; van den Bedem, H. AtomNet PoseRanker: Enriching Ligand Pose Quality for Dynamic Proteins in Virtual High-Throughput Screens. J. Chem. Inf. Model. 2022, 62, 1178–1189. [Google Scholar] [CrossRef] [PubMed]
- Atomwise. Available online: https://www.atomwise.com (accessed on 12 August 2024).
- Benevolent AI Drug Discovery. Available online: https://www.benevolent.com (accessed on 12 August 2024).
- Beis, G.; Serafeim, A.P.; Papasotiriou, I. Data-driven analysis and druggability assessment methods to accelerate the identification of novel cancer targets. Comput. Struct. Biotechnol. J. 2023, 21, 46–57. [Google Scholar] [CrossRef] [PubMed]
- DeepMind’s AlphaFold Algorithm. Available online: https://deepmind.google/technologies/alphafold (accessed on 12 August 2024).
- Niemyska, W.; Rubach, P.; Gren, B.A.; Nguyen, M.L.; Garstka, W.; Bruno da Silva, F.; Rawdon, E.J.; Sulkowska, J.I. AlphaKnot: Server to analyze entanglement in structures predicted by AlphaFold methods. Nucleic Acids Res. 2022, 50, W44–W50. [Google Scholar] [CrossRef]
- Recursion. AI Algorithm. Available online: https://www.recursion.com (accessed on 12 August 2024).
- Efficacy and Safety of REC-2282 in Patients with Progressive Neurofibromatosis Type 2 (NF2) Mutated Meningiomas (POPLAR-NF2). Available online: https://clinicaltrials.gov/study/NCT05130866?term=POPLAR&rank=2 (accessed on 12 August 2024).
- Parvatikar, P.P.; Patil, S.; Khaparkhuntikar, K.; Patil, S.; Singh, P.K.; Sahana, R.; Kulkarni, R.V.; Raghu, A.V. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antivir. Res. 2023, 220, 105740. [Google Scholar] [CrossRef]
- Siddiqui, G.A.; Stebani, J.A.; Wragg, D.; Koutsourelakis, P.S.; Casini, A.; Gagliardi, A. Application of Machine Learning Algorithms to Metadynamics for the Elucidation of the Binding Modes and Free Energy Landscape of Drug/Target Interactions: A Case Study. Chemistry 2023, 29, e202302375. [Google Scholar] [CrossRef]
- Brinkhaus, H.O.; Rajan, K.; Schaub, J.; Zielesny, A.; Steinbeck, C. Open data and algorithms for open science in AI-driven molecular informatics. Curr. Opin. Struct. Biol. 2023, 79, 102542. [Google Scholar] [CrossRef]
- DGIdb. Available online: https://www.dgidb.org (accessed on 12 August 2024).
- The Connectivity Map. Available online: https://www.broadinstitute.org/connectivity-map-cmap (accessed on 12 August 2024).
- DeepChem. Available online: https://deepchem.io (accessed on 13 August 2024).
- Schrödinger’s Maestro Platform. Available online: https://www.schrodinger.com/platform/products/maestro (accessed on 13 August 2024).
- Insilico Medicine. Available online: https://insilico.com (accessed on 13 August 2024).
- XtalPi. Available online: https://www.xtalpi.com/en (accessed on 13 August 2024).
- Cyclica. Available online: https://cyclicarx.com/science (accessed on 13 August 2024).
- Le, N.Q.K.; Tran, T.X.; Nguyen, P.A.; Ho, T.T.; Nguyen, V.N. Recent progress in machine learning approaches for predicting carcinogenicity in drug development. Expert Opin. Drug Metab. Toxicol. 2024, 20, 621–628. [Google Scholar] [CrossRef]
- Chang, W.T.; Liu, C.F.; Feng, Y.H.; Liao, C.T.; Wang, J.J.; Chen, Z.C.; Lee, H.C.; Shih, J.Y. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline. Arch. Toxicol. 2022, 96, 2731–2737. [Google Scholar] [CrossRef] [PubMed]
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhaes, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef]
- Mukherjee, D.; Roy, D.; Thakur, S. Transforming Cancer Care: The Impact of AI-Driven Strategies. Curr. Cancer Drug Targets 2024, 24, 1–4. [Google Scholar] [CrossRef]
- Bhinder, B.; Gilvary, C.; Madhukar, N.S.; Elemento, O. Artificial Intelligence in Cancer Research and Precision Medicine. Cancer Discov. 2021, 11, 900–915. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Schilling, B.; Liu, D.; Sucker, A.; Livingstone, E.; Jerby-Arnon, L.; Zimmer, L.; Gutzmer, R.; Satzger, I.; Loquai, C.; et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat. Med. 2019, 25, 1916–1927. [Google Scholar] [CrossRef] [PubMed]
- Johannet, P.; Coudray, N.; Donnelly, D.M.; Jour, G.; Illa-Bochaca, I.; Xia, Y.; Johnson, D.B.; Wheless, L.; Patrinely, J.R.; Nomikou, S.; et al. Using Machine Learning Algorithms to Predict Immunotherapy Response in Patients with Advanced Melanoma. Clin. Cancer Res. 2021, 27, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [Google Scholar] [CrossRef]
- Blasiak, A.; Khong, J.; Kee, T. CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence. Transl. Life Sci. Innov. 2020, 25, 95–105. [Google Scholar] [CrossRef]
- Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Goncalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [Google Scholar] [CrossRef]
- Kuenzi, B.M.; Park, J.; Fong, S.H.; Sanchez, K.S.; Lee, J.; Kreisberg, J.F.; Ma, J.; Ideker, T. Predicting Drug Response and Synergy Using a Deep Learning Model of Human Cancer Cells. Cancer Cell 2020, 38, 672–684.e676. [Google Scholar] [CrossRef]
- Sheu, Y.H.; Magdamo, C.; Miller, M.; Das, S.; Blacker, D.; Smoller, J.W. AI-assisted prediction of differential response to antidepressant classes using electronic health records. NPJ Digit. Med. 2023, 6, 73. [Google Scholar] [CrossRef]
- Arnold, P.I.M.; Janzing, J.G.E.; Hommersom, A. Machine learning for antidepressant treatment selection in depression. Drug Discov. Today 2024, 29, 104068. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Read, S.J. Development of a multivariate prediction model for antidepressant resistant depression using reward-related predictors. Front. Psychiatry 2024, 15, 1349576. [Google Scholar] [CrossRef]
- Stankoski, S.; Jordan, M.; Gjoreski, H.; Lustrek, M. Smartwatch-Based Eating Detection: Data Selection for Machine Learning from Imbalanced Data with Imperfect Labels. Sensors 2021, 21, 1902. [Google Scholar] [CrossRef]
- Lam, B.; Catt, M.; Cassidy, S.; Bacardit, J.; Darke, P.; Butterfield, S.; Alshabrawy, O.; Trenell, M.; Missier, P. Using Wearable Activity Trackers to Predict Type 2 Diabetes: Machine Learning-Based Cross-sectional Study of the UK Biobank Accelerometer Cohort. JMIR Diabetes 2021, 6, e23364. [Google Scholar] [CrossRef]
- Kargarandehkordi, A.; Slade, C.; Washington, P. Personalized AI-Driven Real-Time Models to Predict Stress-Induced Blood Pressure Spikes Using Wearable Devices: Proposal for a Prospective Cohort Study. JMIR Res. Protoc. 2024, 13, e55615. [Google Scholar] [CrossRef]
- Garbarino, S.; Bragazzi, N.L. Revolutionizing Sleep Health: The Emergence and Impact of Personalized Sleep Medicine. J. Pers. Med. 2024, 14, 598. [Google Scholar] [CrossRef]
- Schalkamp, A.K.; Peall, K.J.; Harrison, N.A.; Sandor, C. Wearable movement-tracking data identify Parkinson’s disease years before clinical diagnosis. Nat. Med. 2023, 29, 2048–2056. [Google Scholar] [CrossRef]
- Alonso, T.R.; Gagol, A.; Scherer, M.; Matji, A.; Torrado-Santiago, S.; Serrano, D.R.; Garcia-Arieta, A.; Torrado, J.J. A multivariate investigation into the relationship between pharmaceutical characteristics and patient preferences of bioequivalent ibuprofen tablets. Patient Prefer. Adherence 2018, 12, 1927–1935. [Google Scholar] [CrossRef]
- Walsh, D.; Serrano, D.R.; Worku, Z.A.; Madi, A.M.; O’Connell, P.; Twamley, B.; Healy, A.M. Engineering of pharmaceutical cocrystals in an excipient matrix: Spray drying versus hot melt extrusion. Int. J. Pharm. 2018, 551, 241–256. [Google Scholar] [CrossRef]
- Serrano, D.R.; Walsh, D.; O’Connell, P.; Mugheirbi, N.A.; Worku, Z.A.; Bolas-Fernandez, F.; Galiana, C.; Dea-Ayuela, M.A.; Healy, A.M. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating. Eur. J. Pharm. Biopharm. 2018, 124, 13–27. [Google Scholar] [CrossRef]
- Lamy, B.; Tewes, F.; Serrano, D.R.; Lamarche, I.; Gobin, P.; Couet, W.; Healy, A.M.; Marchand, S. New aerosol formulation to control ciprofloxacin pulmonary concentration. J. Control. Release 2018, 271, 118–126. [Google Scholar] [CrossRef]
- Gholap, A.D.; Uddin, M.J.; Faiyazuddin, M.; Omri, A.; Gowri, S.; Khalid, M. Advances in artificial intelligence for drug delivery and development: A comprehensive review. Comput. Biol. Med. 2024, 178, 108702. [Google Scholar] [CrossRef]
- Aundhia, C.; Parmar, G.; Talele, C.; Shah, N.; Talele, D. Impact of Artificial Intelligence on Drug Development and Delivery. Curr. Top. Med. Chem. 2024; in press. [Google Scholar] [CrossRef]
- Lou, H.; Lian, B.; Hageman, M.J. Applications of Machine Learning in Solid Oral Dosage Form Development. J. Pharm. Sci. 2021, 110, 3150–3165. [Google Scholar] [CrossRef]
- Momeni, M.; Afkanpour, M.; Rakhshani, S.; Mehrabian, A.; Tabesh, H. A prediction model based on artificial intelligence techniques for disintegration time and hardness of fast disintegrating tablets in pre-formulation tests. BMC Med. Inform. Decis. Mak. 2024, 24, 88. [Google Scholar] [CrossRef]
- Serrano, D.R.; Kara, A.; Yuste, I.; Luciano, F.C.; Ongoren, B.; Anaya, B.J.; Molina, G.; Diez, L.; Ramirez, B.I.; Ramirez, I.O.; et al. 3D Printing Technologies in Personalized Medicine, Nanomedicines, and Biopharmaceuticals. Pharmaceutics 2023, 15, 313. [Google Scholar] [CrossRef]
- Konta, A.A.; Garcia-Pina, M.; Serrano, D.R. Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful? Bioengineering 2017, 4, 79. [Google Scholar] [CrossRef]
- Yuste, I.; Luciano, F.C.; Anaya, B.J.; Sanz-Ruiz, P.; Ribed-Sanchez, A.; Gonzalez-Burgos, E.; Serrano, D.R. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics 2023, 12, 1229. [Google Scholar] [CrossRef]
- Anaya, B.J.; Cerda, J.R.; D’Atri, R.M.; Yuste, I.; Luciano, F.C.; Kara, A.; Ruiz, H.K.; Ballesteros, M.P.; Serrano, D.R. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int. J. Pharm. 2023, 642, 123194. [Google Scholar] [CrossRef]
- Malebari, A.M.; Kara, A.; Khayyat, A.N.; Mohammad, K.A.; Serrano, D.R. Development of Advanced 3D-Printed Solid Dosage Pediatric Formulations for HIV Treatment. Pharmaceuticals 2022, 15, 435. [Google Scholar] [CrossRef] [PubMed]
- Ayyoubi, S.; Cerda, J.R.; Fernandez-Garcia, R.; Knief, P.; Lalatsa, A.; Healy, A.M.; Serrano, D.R. 3D printed spherical mini-tablets: Geometry versus composition effects in controlling dissolution from personalised solid dosage forms. Int. J. Pharm. 2021, 597, 120336. [Google Scholar] [CrossRef] [PubMed]
- Cerda, J.R.; Arifi, T.; Ayyoubi, S.; Knief, P.; Ballesteros, M.P.; Keeble, W.; Barbu, E.; Healy, A.M.; Lalatsa, A.; Serrano, D.R. Personalised 3D Printed Medicines: Optimising Material Properties for Successful Passive Diffusion Loading of Filaments for Fused Deposition Modelling of Solid Dosage Forms. Pharmaceutics 2020, 12, 345. [Google Scholar] [CrossRef]
- Vora, L.K.; Gholap, A.D.; Jetha, K.; Thakur, R.R.S.; Solanki, H.K.; Chavda, V.P. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics 2023, 15, 1916. [Google Scholar] [CrossRef] [PubMed]
- Obeid, S.; Madzarevic, M.; Krkobabic, M.; Ibric, S. Predicting drug release from diazepam FDM printed tablets using deep learning approach: Influence of process parameters and tablet surface/volume ratio. Int. J. Pharm. 2021, 601, 120507. [Google Scholar] [CrossRef] [PubMed]
- Alhijjaj, M.; Nasereddin, J.; Belton, P.; Qi, S. Impact of Processing Parameters on the Quality of Pharmaceutical Solid Dosage Forms Produced by Fused Deposition Modeling (FDM). Pharmaceutics 2019, 11, 633. [Google Scholar] [CrossRef]
- Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv. Drug Deliv. Rev. 2021, 175, 113805. [Google Scholar] [CrossRef]
- Chen, S.; Li, T.; Yang, L.; Zhai, F.; Jiang, X.; Xiang, R.; Ling, G. Artificial intelligence-driven prediction of multiple drug interactions. Brief. Bioinform. 2022, 23, bbac427. [Google Scholar] [CrossRef]
- Patel, S.; Patel, M.; Kulkarni, M.; Patel, M.S. DE-INTERACT: A machine-learning-based predictive tool for the drug-excipient interaction study during product development-Validation through paracetamol and vanillin as a case study. Int. J. Pharm. 2023, 637, 122839. [Google Scholar] [CrossRef]
- Matji, A.; Donato, N.; Gagol, A.; Morales, E.; Carvajal, L.; Serrano, D.R.; Worku, Z.A.; Healy, A.M.; Torrado, J.J. Predicting the critical quality attributes of ibuprofen tablets via modelling of process parameters for roller compaction and tabletting. Int. J. Pharm. 2019, 565, 209–218. [Google Scholar] [CrossRef]
- Mansuri, A.; Volkel, M.; Mihiranga, D.; Feuerbach, T.; Winck, J.; Vermeer, A.W.P.; Hoheisel, W.; Thommes, M. Predicting self-diffusion coefficients in semi-crystalline and amorphous solid dispersions using free volume theory. Eur. J. Pharm. Biopharm. 2023, 190, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Bolger, M.B. Perspective on a chemistry classification system for AI-assisted formulation development. J. Control. Release 2022, 352, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.; Namazi, N.I.; Alshehri, S.; Naguib, I.A.; Alsubaiyel, A.M.; Venkatesan, K.; Elmokadem, E.M.; Pishnamazi, M.; Abourehab, M.A.S. Solubility Optimization of Loxoprofen as a Nonsteroidal Anti-Inflammatory Drug: Statistical Modeling and Optimization. Molecules 2022, 27, 4357. [Google Scholar] [CrossRef]
- Obrezanova, O. Artificial intelligence for compound pharmacokinetics prediction. Curr. Opin. Struct. Biol. 2023, 79, 102546. [Google Scholar] [CrossRef] [PubMed]
- Ghayoor, A.; Kohan, H.G. Revolutionizing pharmacokinetics: The dawn of AI-powered analysis. J. Pharm. Pharm. Sci. 2024, 27, 12671. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Garcia, R.; Lalatsa, A.; Statts, L.; Bolas-Fernandez, F.; Ballesteros, M.P.; Serrano, D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020, 573, 118817. [Google Scholar] [CrossRef]
- Smith, L.; Serrano, D.R.; Mauger, M.; Bolas-Fernandez, F.; Dea-Ayuela, M.A.; Lalatsa, A. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis. Mol. Pharm. 2018, 15, 2570–2583. [Google Scholar] [CrossRef]
- Pineros, I.; Slowing, K.; Serrano, D.R.; de Pablo, E.; Ballesteros, M.P. Analgesic and anti-inflammatory controlled-released injectable microemulsion: Pseudo-ternary phase diagrams, in vitro, ex vivo and in vivo evaluation. Eur. J. Pharm. Sci. 2017, 101, 220–227. [Google Scholar] [CrossRef]
- Serrano, D.R.; Lalatsa, A.; Dea-Ayuela, M.A.; Bilbao-Ramos, P.E.; Garrett, N.L.; Moger, J.; Guarro, J.; Capilla, J.; Ballesteros, M.P.; Schatzlein, A.G.; et al. Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol. Pharm. 2015, 12, 420–431. [Google Scholar] [CrossRef]
- Serrano, D.R.; Gallagher, K.H.; Healy, A.M. Emerging Nanonisation Technologies: Tailoring Crystalline Versus Amorphous Nanomaterials. Curr. Top. Med. Chem. 2015, 15, 2327–2340. [Google Scholar] [CrossRef]
- Torrado, J.J.; Serrano, D.R.; Uchegbu, I.F. The oral delivery of amphotericin B. Ther. Deliv. 2013, 4, 9–12. [Google Scholar] [CrossRef] [PubMed]
- Lalatsa, A.; Statts, L.; Adriana de Jesus, J.; Adewusi, O.; Auxiliadora Dea-Ayuela, M.; Bolas-Fernandez, F.; Dalastra Laurenti, M.; Felipe Domingues Passero, L.; Serrano, D.R. Topical buparvaquone nano-enabled hydrogels for cutaneous leishmaniasis. Int. J. Pharm. 2020, 588, 119734. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Garcia, R.; Prada, M.; Bolas-Fernandez, F.; Ballesteros, M.P.; Serrano, D.R. Oral Fixed-Dose Combination Pharmaceutical Products: Industrial Manufacturing Versus Personalized 3D Printing. Pharm. Res. 2020, 37, 132. [Google Scholar] [CrossRef]
- Bezerra-Souza, A.; Fernandez-Garcia, R.; Rodrigues, G.F.; Bolas-Fernandez, F.; Dalastra Laurenti, M.; Passero, L.F.; Lalatsa, A.; Serrano, D.R. Repurposing Butenafine as An Oral Nanomedicine for Visceral Leishmaniasis. Pharmaceutics 2019, 11, 353. [Google Scholar] [CrossRef] [PubMed]
- Serrano, D.R.; Hernandez, L.; Fleire, L.; Gonzalez-Alvarez, I.; Montoya, A.; Ballesteros, M.P.; Dea-Ayuela, M.A.; Miro, G.; Bolas-Fernandez, F.; Torrado, J.J. Hemolytic and pharmacokinetic studies of liposomal and particulate amphotericin B formulations. Int. J. Pharm. 2013, 447, 38–46. [Google Scholar] [CrossRef]
- Fernandez-Garcia, R.; Munoz-Garcia, J.C.; Wallace, M.; Fabian, L.; Gonzalez-Burgos, E.; Gomez-Serranillos, M.P.; Raposo, R.; Bolas-Fernandez, F.; Ballesteros, M.P.; Healy, A.M.; et al. Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: Poly-aggregates, oligomers and monomers. J. Control. Release 2022, 341, 716–732. [Google Scholar] [CrossRef]
- Serrano, D.R.; Ruiz-Saldana, H.K.; Molero, G.; Ballesteros, M.P.; Torrado, J.J. A novel formulation of solubilised amphotericin B designed for ophthalmic use. Int. J. Pharm. 2012, 437, 80–82. [Google Scholar] [CrossRef]
- Das, K.P.; J, C. Nanoparticles and convergence of artificial intelligence for targeted drug delivery for cancer therapy: Current progress and challenges. Front. Med. Technol. 2022, 4, 1067144. [Google Scholar] [CrossRef]
- Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine. Adv. Mater. 2020, 32, e1901989. [Google Scholar] [CrossRef]
- Kara, A.; Vassiliadou, A.; Ongoren, B.; Keeble, W.; Hing, R.; Lalatsa, A.; Serrano, D.R. Engineering 3D Printed Microfluidic Chips for the Fabrication of Nanomedicines. Pharmaceutics 2021, 13, 2134. [Google Scholar] [CrossRef] [PubMed]
- Ongoren, B.; Kara, A.; Casettari, L.; Tiboni, M.; Lalatsa, A.; Sanz-Perez, A.; Gonzalez-Burgos, E.; Romero, A.; Juberias, A.; Torrado, J.J.; et al. Leveraging 3D-printed microfluidic micromixers for the continuous manufacture of melatonin loaded SNEDDS with enhanced antioxidant activity and skin permeability. Int. J. Pharm. 2024, 663, 124536. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Bi, M.; Wang, Y.; Liu, J.; Jiang, X.; Xu, Z.; Zhang, X. Artificial intelligence-powered microfluidics for nanomedicine and materials synthesis. Nanoscale 2021, 13, 19352–19366. [Google Scholar] [CrossRef] [PubMed]
- Goda, K.; Lu, H.; Fei, P.; Guck, J. Revolutionizing microfluidics with artificial intelligence: A new dawn for lab-on-a-chip technologies. Lab Chip 2023, 23, 3737–3740. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.Z.; Xiong, T.; Pak, O.S.; Zhu, L. Data-Driven Intelligent Manipulation of Particles in Microfluidics. Adv. Sci. 2023, 10, e2205382. [Google Scholar] [CrossRef] [PubMed]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef] [PubMed]
- McKinsey. How Artificial Intelligence Can Power Clinical Development. Available online: https://www.mckinsey.com/industries/life-sciences/our-insights/how-artificial-intelligence-can-power-clinical-development (accessed on 6 October 2024).
- Buntz, B. 6 Signs AI Momentum in Drug Discovery Is Building. Available online: https://www.drugdiscoverytrends.com/six-signs-ai-driven-drug-discovery-trends-pharma-industry (accessed on 6 October 2024).
- AstraZeneca AI Models. Available online: https://www.astrazeneca.com/what-science-can-do/topics/data-science-ai/how-data-and-ai-are-helping-unlock-the-secrets-of-disease.html# (accessed on 14 August 2024).
- Zhavoronkov, A.; Ivanenkov, Y.A.; Aliper, A.; Veselov, M.S.; Aladinskiy, V.A.; Aladinskaya, A.V.; Terentiev, V.A.; Polykovskiy, D.A.; Kuznetsov, M.D.; Asadulaev, A.; et al. Deep learning enables rapid identification of potent DDR1 kinase inhibitors. Nat. Biotechnol. 2019, 37, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Exscientia. Available online: https://www.exscientia.com/pipeline (accessed on 14 August 2024).
- RXn for Chemsitry. Available online: https://rxn.app.accelerate.science/rxn/home (accessed on 14 August 2024).
- Schwaller, P.; Laino, T.; Gaudin, T.; Bolgar, P.; Hunter, C.A.; Bekas, C.; Lee, A.A. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Central Sci. 2019, 5, 1572–1583. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Rao, J.; Zhang, Z.; Xu, J.; Yang, Y. Predicting Retrosynthetic Reactions Using Self-Corrected Transformer Neural Networks. J. Chem. Inf. Model. 2020, 60, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yu, V.; Kong, M.; Mei, Y.; Yuan, L.; Huang, Z.; Kuang, K.; Wang, K.; Yao, H.; Zou, J.; et al. Artificial Intelligence for Retrosynthesis Prediction. Engineering 2023, 25, 32–50. [Google Scholar] [CrossRef]
- Back, S.; Aspuru-Guzik, A.; Ceriotti, M.; Gryn’ova, G.; Grzybowski, B.; Gu, G.H.; Hein, J.; Hippalgaonkar, K.; Hormazabal, R.; Jung, Y.; et al. Accelerated chemical science with AI. Digit. Discov. 2024, 3, 23–33. [Google Scholar] [CrossRef]
- Segler, M.H.S.; Preuss, M.; Waller, M.P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 2018, 555, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Gromski, P.S.; Grnada, J.M.; Cronin, L. Universal Chemical Synthesis and Discovery with ‘The Chemputer’. Trends Chem. 2020, 2, 4–12. [Google Scholar] [CrossRef]
- Leonov, A.I.; Hammer, A.J.S.; Lach, S.; Mehr, S.H.M.; Caramelli, D.; Angelone, D.; Khan, A.; O’Sullivan, S.; Craven, M.; Wilbraham, L.; et al. An integrated self-optimizing programmable chemical synthesis and reaction engine. Nat. Commun. 2024, 15, 1240. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Virmani, T.; Pathak, V.; Sharma, A.; Pathak, K.; Kumar, G.; Pathak, D. Artificial Intelligence-Based Data-Driven Strategy to Accelerate Research, Development, and Clinical Trials of COVID Vaccine. BioMed Res. Int. 2022, 2022, 7205241. [Google Scholar] [CrossRef] [PubMed]
- Peckham, O. Pfizer Discusses Use of Supercomputing and AI for Covid Drug Development. Available online: https://www.hpcwire.com/2022/03/24/pfizer-discusses-use-of-supercomputing-and-ai-for-covid-drug-development (accessed on 14 August 2024).
- Lee, S.L.; O’Connor, T.F.; Yang, X.; Cruz, C.N.; Chatterjee, S.; Madurawe, R.D.; Moore, C.M.V.; Yu, L.X.; Woodcock, J. Modernizing Pharmaceutical Manufacturing: From Batch to Continuous Production. J. Pharm. Innov. 2015, 10, 191–199. [Google Scholar] [CrossRef]
- Roggo, Y.; Jelsch, M.; Heger, P.; Ensslin, S.; Krumme, M. Deep learning for continuous manufacturing of pharmaceutical solid dosage form. Eur. J. Pharm. Biopharm. 2020, 153, 95–105. [Google Scholar] [CrossRef]
- Johnson & Johnson Digital Twins. Available online: https://consumergoods.com/johnson-johnson-digs-deeper-data-unlock-product-innovation (accessed on 14 August 2024).
- Kavasidis, I.; Lallas, E.; Gerogiannis, V.C.; Charitou, T.; Karageorgos, A. Predictive maintenance in pharmaceutical manufacturing lines using deep transformers. Procedia Comput. Sci. 2023, 220, 576583. [Google Scholar] [CrossRef]
- Pzifer Preventive Mainteinance AI. Available online: https://www.ge.com/digital/customers/pfizer-cuts-downtime-moving-predictive-maintenance (accessed on 14 August 2024).
- Novartis Supply Chain. Available online: https://www.novartis.com/sites/novartis_com/files/novartis-responsible-use-of-ai-systems.pdf (accessed on 15 August 2024).
- Bayer Global. AI-Driven Thencology. Available online: https://www.bayer.com/en/pharma/artificial-intelligence#4 (accessed on 14 August 2024).
- Liu, J.; Du, H.; Huang, L.; Xie, W.; Liu, K.; Zhang, X.; Chen, S.; Zhang, Y.; Li, D.; Pan, H. AI-Powered Microfluidics: Shaping the Future of Phenotypic Drug Discovery. ACS Appl. Mater. Interfaces 2024, 16, 38832–38851. [Google Scholar] [CrossRef]
- Moingeon, P. Harnessing the power of AI-based models to accelerate drug discovery against immune diseases. Expert Rev. Clin. Immunol. 2024, 20, 1135–1138. [Google Scholar] [CrossRef]
- Shen, C.; Song, J.; Hsieh, C.Y.; Cao, D.; Kang, Y.; Ye, W.; Wu, Z.; Wang, J.; Zhang, O.; Zhang, X.; et al. DrugFlow: An AI-Driven One-Stop Platform for Innovative Drug Discovery. J. Chem. Inf. Model. 2024, 64, 5381–5391. [Google Scholar] [CrossRef]
- Khan, M.K.; Raza, M.; Shahbaz, M.; Hussain, I.; Khan, M.F.; Xie, Z.; Shah, S.S.A.; Tareen, A.K.; Bashir, Z.; Khan, K. The recent advances in the approach of artificial intelligence (AI) towards drug discovery. Front. Chem. 2024, 12, 1408740. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.K.G.; Rassam, A.; Karamshahi, F.; Abunora, R.; Abouseada, M. The Role of AI in Drug Discovery. Chembiochem 2024, 25, e202300816. [Google Scholar] [CrossRef] [PubMed]
- Gangwal, A.; Lavecchia, A. Unleashing the power of generative AI in drug discovery. Drug Discov. Today 2024, 29, 103992. [Google Scholar] [CrossRef] [PubMed]
- Thuault, S. Drug discovery by AI trained on aging biology. Nat. Aging 2024, 4, 437. [Google Scholar] [CrossRef] [PubMed]
- Mullard, A. When can AI deliver the drug discovery hits? Nat. Rev. Drug Discov. 2024, 23, 159–161. [Google Scholar] [CrossRef]
- Iyer, J.S.; Juyal, D.; Le, Q.; Shanis, Z.; Pokkalla, H.; Pouryahya, M.; Pedawi, A.; Stanford-Moore, S.A.; Biddle-Snead, C.; Carrasco-Zevallos, O.; et al. AI-based automation of enrollment criteria and endpoint assessment in clinical trials in liver diseases. Nat. Med. 2024, 1–10. [Google Scholar] [CrossRef]
- Goldberg, J.M.; Amin, N.P.; Zachariah, K.A.; Bhatt, A.B. The Introduction of AI Into Decentralized Clinical Trials: Preparing for a Paradigm Shift. JACC Adv. 2024, 3, 101094. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Sun, Z.; Guo, Q.; Liu, X.; Cheng, K.; Li, C. Generative AI intervention clinical trials: A call for pre-registration (Correspondence). Int. J. Surg. 2024, 110, 5926–5927. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Cheng, Z.; Chen, Y.; Tu, W.; Su, J. TrialView: An AI-powered Visual Analytics System for Temporal Event Data in Clinical Trials. Proc. Annu. Hawaii Int. Conf. Syst. Sci. 2024, 2024, 1169–1178. [Google Scholar] [PubMed] [PubMed Central]
- Hutson, M. How AI is being used to accelerate clinical trials. Nature 2024, 627, S2–S5. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Annu; Shin, D.K.; Munjal, K.; Priyanka; Dhama, K.; Emran, T.B. Revolutionizing clinical trials: The role of AI in accelerating medical breakthroughs. Int. J. Surg. 2023, 109, 4211–4220. [Google Scholar] [CrossRef] [PubMed]
- Perni, S.; Lehmann, L.S.; Bitterman, D.S. Patients should be informed when AI systems are used in clinical trials. Nat. Med. 2023, 29, 1890–1891. [Google Scholar] [CrossRef] [PubMed]
- Balasundaram, A.; Stalin, C.; Ghanta, M.K. Views on artificial intelligence (AI) assisted clinical trials. Bioinformation 2021, 17, 616–622. [Google Scholar] [CrossRef] [PubMed]
- Kolla, L.; Gruber, F.K.; Khalid, O.; Hill, C.; Parikh, R.B. The case for AI-driven cancer clinical trials-The efficacy arm in silico. Biochim. Biophys. Acta Rev. Cancer 2021, 1876, 188572. [Google Scholar] [CrossRef]
- Calaprice-Whitty, D.; Galil, K.; Salloum, W.; Zariv, A.; Jimenez, B. Improving Clinical Trial Participant Prescreening with Artificial Intelligence (AI): A Comparison of the Results of AI-Assisted vs Standard Methods in 3 Oncology Trials. Ther. Innov. Regul. Sci. 2020, 54, 69–74. [Google Scholar] [CrossRef]
- Woo, M. An AI boost for clinical trials. Nature 2019, 573, S100–S102. [Google Scholar] [CrossRef]
- Okati, L.; Lo, S.; Gnjidic, D.; Li, S.J.; Thillainadesan, J. Mobile applications on app stores for deprescribing: A scoping review. Br. J. Clin. Pharmacol. 2024. [Google Scholar] [CrossRef]
- Askr, H.; Elgeldawi, E.; Aboul Ella, H.; Elshaier, Y.; Gomaa, M.M.; Hassanien, A.E. Deep learning in drug discovery: An integrative review and future challenges. Artif. Intell. Rev. 2023, 56, 5975–6037. [Google Scholar] [CrossRef]
- Baxi, V.; Edwards, R.; Montalto, M.; Saha, S. Digital pathology and artificial intelligence in translational medicine and clinical practice. Mod. Pathol. 2022, 35, 23–32. [Google Scholar] [CrossRef]
- Bess, A.; Berglind, F.; Mukhopadhyay, S.; Brylinski, M.; Griggs, N.; Cho, T.; Galliano, C.; Wasan, K.M. Artificial intelligence for the discovery of novel antimicrobial agents for emerging infectious diseases. Drug Discov. Today 2022, 27, 1099–1107. [Google Scholar] [CrossRef]
- Bhalla, S.; Lagana, A. Artificial Intelligence for Precision Oncology. Adv. Exp. Med. Biol. 2022, 1361, 249–268. [Google Scholar] [CrossRef] [PubMed]
- Brasil, S.; Allocca, M.; Magrinho, S.C.M.; Santos, I.; Raposo, M.; Francisco, R.; Pascoal, C.; Martins, T.; Videira, P.A.; Pereira, F.; et al. Systematic Review: Drug Repositioning for Congenital Disorders of Glycosylation (CDG). Int. J. Mol. Sci. 2022, 23, 8725. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Baig, A.A.; Gautam, R.K.; Kamal, M.A. Application of Artificial Intelligence in Drug Discovery. Curr. Pharm. Des. 2022, 28, 2690–2703. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.L.; Parmesar, K.; Saleem, M.A.; Ramanan, A.V. Future of machine learning in paediatrics. Arch. Dis. Child. 2022, 107, 223–228. [Google Scholar] [CrossRef]
- Danishuddin; Kumar, V.; Faheem, M.; Woo Lee, K. A decade of machine learning-based predictive models for human pharmacokinetics: Advances and challenges. Drug Discov. Today 2022, 27, 529–537. [Google Scholar] [CrossRef]
- Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F. Artificial intelligence in drug discovery: Applications and techniques. Brief. Bioinform. 2022, 23, bbab430. [Google Scholar] [CrossRef]
- Dhakal, A.; McKay, C.; Tanner, J.J.; Cheng, J. Artificial intelligence in the prediction of protein-ligand interactions: Recent advances and future directions. Brief. Bioinform. 2022, 23, bbab476. [Google Scholar] [CrossRef]
- Gonsard, A.; AbouTaam, R.; Prevost, B.; Roy, C.; Hadchouel, A.; Nathan, N.; Taytard, J.; Pirojoc, A.; Delacourt, C.; Wanin, S.; et al. Children’s views on artificial intelligence and digital twins for the daily management of their asthma: A mixed-method study. Eur. J. Pediatr. 2023, 182, 877–888. [Google Scholar] [CrossRef]
- Vidovszky, A.A.; Fisher, C.K.; Loukianov, A.D.; Smith, A.M.; Tramel, E.W.; Walsh, J.R.; Ross, J.L. Increasing acceptance of AI-generated digital twins through clinical trial applications. Clin. Transl. Sci. 2024, 17, e13897. [Google Scholar] [CrossRef]
- Huang, Z.; Shen, Y.; Li, J.; Fey, M.; Brecher, C. A Survey on AI-Driven Digital Twins in Industry 4.0: Smart Manufacturing and Advanced Robotics. Sensors 2021, 21, 6340. [Google Scholar] [CrossRef]
- Roche, V.; Robert, J.P.; Salam, H. A holistic AI-based approach for pharmacovigilance optimization from patients behavior on social media. Artif. Intell. Med. 2023, 144, 102638. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Mazloom, R.; Goligerdian, A.; Staley, J.; Amini, M.; Wyckoff, G.J.; Riviere, J.; Jaberi-Douraki, M. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats. Top. Companion Anim. Med. 2019, 37, 100366. [Google Scholar] [CrossRef]
- Ball, R.; Dal Pan, G. “Artificial Intelligence” for Pharmacovigilance: Ready for Prime Time? Drug Saf. 2022, 45, 429–438. [Google Scholar] [CrossRef] [PubMed]
- An, G.; Cockrell, C. Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development. Front. Syst. Biol. 2022, 2, 928387. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.L.G. AI in imaging: The regulatory landscape. Br. J. Radiol. 2024, 97, 483–491. [Google Scholar] [CrossRef]
- Derraz, B.; Breda, G.; Kaempf, C.; Baenke, F.; Cotte, F.; Reiche, K.; Kohl, U.; Kather, J.N.; Eskenazy, D.; Gilbert, S. New regulatory thinking is needed for AI-based personalised drug and cell therapies in precision oncology. NPJ Precis. Oncol. 2024, 8, 23. [Google Scholar] [CrossRef]
- van Kolfschooten, H. The AI cycle of health inequity and digital ageism: Mitigating biases through the EU regulatory framework on medical devices. J. Law Biosci. 2023, 10, lsad031. [Google Scholar] [CrossRef] [PubMed]
- Samaan, J.S.; Yeo, Y.H.; Rajeev, N.; Ng, W.H.; Srinivasan, N.; Samakar, K. Towards Responsible AI in Patient Education: Ethical, Linguistic, and Regulatory Considerations. Obes. Surg. 2023, 33, 4160–4161. [Google Scholar] [CrossRef] [PubMed]
- Townsend, B.A.; Sihlahla, I.; Naidoo, M.; Naidoo, S.; Donnelly, D.L.; Thaldar, D.W. Mapping the regulatory landscape of AI in healthcare in Africa. Front. Pharmacol. 2023, 14, 1214422. [Google Scholar] [CrossRef]
- Mesko, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit. Med. 2023, 6, 120. [Google Scholar] [CrossRef]
- Petrick, N.; Chen, W.; Delfino, J.G.; Gallas, B.D.; Kang, Y.; Krainak, D.; Sahiner, B.; Samala, R.K. Regulatory considerations for medical imaging AI/ML devices in the United States: Concepts and challenges. J. Med. Imaging 2023, 10, 051804. [Google Scholar] [CrossRef] [PubMed]
- Connor, S.; Li, T.; Roberts, R.; Thakkar, S.; Liu, Z.; Tong, W. Adaptability of AI for safety evaluation in regulatory science: A case study of drug-induced liver injury. Front. Artif. Intell. 2022, 5, 1034631. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, S.; Nevejans, N.; Allen, C.; Blyth, A.; Leonard, S.; Pagallo, U.; Holzinger, K.; Holzinger, A.; Sajid, M.I.; Ashrafian, H. Legal, regulatory, and ethical frameworks for development of standards in artificial intelligence (AI) and autonomous robotic surgery. Int. J. Med. Robot. Comput. Assist. Surg. 2019, 15, e1968. [Google Scholar] [CrossRef] [PubMed]
- The HIPAA Privacy Rule. Available online: https://www.hhs.gov/hipaa/for-professionals/privacy/index.html (accessed on 6 October 2024).
- FDA’s Digital Health Innovation Plan. Available online: https://www.fda.gov/media/106331/download (accessed on 14 August 2024).
- AI Regulation in Europe. Available online: https://www.consilium.europa.eu/es/policies/artificial-intelligence (accessed on 6 October 2024).
Software Platform | Description | Key Features | Ref. |
---|---|---|---|
DeepMind AlphaFold (Google, Mountain View, CA, USA) https://deepmind.google/technologies/alphafold/, accessed on 10 October 2024 | Deep learning model for protein structure prediction | Predicts protein structures with high accuracy | [39] |
Atomwise (Atomwise Inc., San Francisco, CA, USA) https://www.atomwise.com/, accessed on 10 October 2024 | AI-driven drug discovery platform | Virtual screening, lead optimization | [36] |
Recursion Pharmaceuticals (Recursion, Salt Lake City, UT, USA) https://www.recursion.com/, accessed on 10 October 2024 | High-throughput screening platform | Cellular phenotypic analysis, rare diseases | [41] |
BenevolentAI (Benevolent AI, London, UK) https://www.benevolent.com/, accessed on 10 October 2024 | Drug discovery and development platform | Predictive modeling, target identification | [37] |
Schrödinger Maestro (Schrödinger, New York, NY, USA) https://www.schrodinger.com/, accessed on 10 October 2024 | Molecular modeling and simulations | Molecular docking, QSAR modeling | [49] |
Insilico Medicine (Insilico Medicine, Hong Kong) https://insilico.com/, accessed on 10 October 2024 | Drug discovery and biomarker development | Generative modeling, drug repurposing, and aging research | [50] |
XtalPi (QuantumPharm Inc., Boston, MA, USA) https://www.xtalpi.com, accessed on 10 October 2024 | AI-driven drug crystal prediction | Predicts drug crystal forms, stability | [51] |
Cyclica (Cyclica, Toronto, ON, Canada) https://cyclicarx.com/science/, accessed on 10 October 2024 | AI-driven drug discovery platform | Polypharmacology prediction, target deconvolution | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serrano, D.R.; Luciano, F.C.; Anaya, B.J.; Ongoren, B.; Kara, A.; Molina, G.; Ramirez, B.I.; Sánchez-Guirales, S.A.; Simon, J.A.; Tomietto, G.; et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics 2024, 16, 1328. https://doi.org/10.3390/pharmaceutics16101328
Serrano DR, Luciano FC, Anaya BJ, Ongoren B, Kara A, Molina G, Ramirez BI, Sánchez-Guirales SA, Simon JA, Tomietto G, et al. Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics. 2024; 16(10):1328. https://doi.org/10.3390/pharmaceutics16101328
Chicago/Turabian StyleSerrano, Dolores R., Francis C. Luciano, Brayan J. Anaya, Baris Ongoren, Aytug Kara, Gracia Molina, Bianca I. Ramirez, Sergio A. Sánchez-Guirales, Jesus A. Simon, Greta Tomietto, and et al. 2024. "Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine" Pharmaceutics 16, no. 10: 1328. https://doi.org/10.3390/pharmaceutics16101328