Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy
Abstract
:1. Introduction
2. Comprehensive Overview of Targeted Alpha Therapy (TαT)
- Key Facts:
- α-Emitters deposit high energies over short distances, classifying them as high-LET radiation.
- High-LET α-radiation induces complex DNA damage, resulting in direct ionization even in hypoxic tissue.
- Combining TαT with other treatments can address limitations such as target downregulation, tumor heterogeneity, as well as reduce side effects of either therapy alone.
2.1. Physico-Chemical Properties and Therapeutic Implications of Alpha Particle-Emitting Radionuclides
2.2. Biological Mechanisms of Action and Cellular Response to TαT
2.3. Current Advances and Innovations in TαT
2.4. Rationale for Combining TαT with Other Cancer Therapies
2.5. Pre-Clinical and Clinical Insights: TαT and TRNT
2.6. Future Perspectives and Challenges
Method | Author | Year | Study | Cancer Type | TRNT Agent | Main Findings | Ref. |
---|---|---|---|---|---|---|---|
TαT | Heynickx et al. | 2021 | Review | mCRPC | Various PSMA radioligands | Reviews salivary gland toxicity as a dose-limiting factor in PSMA-TRNT. | [124] |
Soldatos et al. | 2019 | Clinical | Bone metastases in PCa | Xofigo® | Toxicological profiling of Ra-223 for the treatment of bone metastases in PCa. | [126] | |
Kratochwil et al. | 2021 | Clinical | SSTR tumors | [225Ac]Ac-DOTA-TOC | Five-year follow-up study on hematological and renal toxicity in patients. | [125] | |
Sathekge et al. | 2023 | Clinical | mCRPC | [225Ac]Ac-PSMA-617 | Treatment of chemotherapy-naïve patients: 20 patients (95%) any decline in PSA; 18 patients (86%) PSA decline of ≥50% | [119] | |
TαT & TRNT | Meyer et al. | 2023 | Pre-clinical | PCa (C4-2) | [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA-617 | Combination therapy enhanced overall survival in mice models. | [130] |
Scholz et al. | 2023 | Pre-clinical | PCa (LNCaP bone metastasis) | Xofigo®, [177Lu]Lu-PSMA-617 | Demonstrated increased antitumor activity in combination therapy. | [129] | |
Kulkarni et al. | 2019 | Clinical | mCRPC | [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA-617 | Combination therapy reduced side effects of Ac-225 monotherapy. | [133] | |
Khreish et al. | 2019 | Clinical | mCRPC | [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA-617 | Demonstrated PSA response in patients progressing after Lu-177 monotherapy. | [131] | |
Rosar et al. | 2021 | Clinical | mCRPC | [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA-617 | Partial remission observed. Efficacy and safety established in patients with poor prognosis. | [132] | |
Langbein et al. | 2019, 2022 | Clinical | mCRPC | [225Ac]Ac-PSMA-617, [177Lu]Lu-PSMA radioligands | Investigated salivary gland toxicity. Combination therapy significantly impaired function compared to Lu-177 alone. | [134,135] | |
Kostos et al. | 2022 | Clinical | mCRPC | [177Lu]Lu-PSMA I&T, Xofigo® | Evaluating safety and efficacy. Hypothesis: combined treatment will be more effective for treating metastases. | [128] | |
Tagawa et al. | 2023 | Clinical | mCRPC | [225Ac]Ac-J591, [177Lu]Lu-PSMA I&T | Safe administration with observed PSA decline > 50% in 11 patients. Non-overlapping toxicities noted. | [92] |
3. Integration of External Beam Radiation Therapy (EBRT) with Targeted Alpha Therapy (TαT)
- Key Facts:
- Combination therapy of EBRT and TαT can increase the dose delivered to the tumor while protecting healthy tissue. Its effectiveness in hypoxic tissue can overcome resistance to EBRT in poorly oxygenated tumors as well as treat oligometastatic disease.
- Clinical studies combining Xofigo® (Ra-223) with SBRT in osteosarcoma and mCRPC demonstrate improved outcomes.
3.1. Comprehensive Overview of EBRT in Cancer Treatment
3.2. Mechanisms Underlying Radiobiological Effects of EBRT
3.3. Current Advances and Innovations in EBRT
3.4. Rationale for Combining EBRT with TαT
3.5. Pre-Clinical and Clinical Insights: EBRT and TαT Synergy
3.6. Future Perspectives and Challenges
Method | Authors | Year | Study | Cancer Type | EBRT Modality | TRNT Agent | Main Findings | Ref. |
---|---|---|---|---|---|---|---|---|
EBRT | Bilski et al. | 2021 | Review | Neuroendocrine tumors | Photons | NA | Role of radiotherapy in treatment of neuroendocrine cancer of the lung. | [154] |
Lin et al. | 2021 | Review | Various | Photons (FLASH) | NA | Ultra-high dose rate FLASH radiotherapy reduces radiation-induced damage in healthy tissue without decreasing antitumor effectiveness. | [157] | |
Kundapur et al. | 2024 | Review | Various | Photons (Minibeam) | NA | Potential of minibeams to induce immunomodulation augmenting a direct tumoricidal effect, leading to pronounced cell kill and subsequent immune surveillance. | [156] | |
EBRT & TRNT | Oddstig et al. | 2011 | Pre-clinical | Small Cell Lung Carcinoma | Photons (2–8 Gy) | [177Lu]Lu-DOTA-TATE | Radiation induces up-regulation of somatostatin receptors in small cell lung cancer. | [165] |
Cornelissen et al. | 2012 | Pre-clinical | Breast cancer (MDA-MB-468) | Photons (10 Gy) | [111In]In-DTPA-anti-γH2AX-TAT | Amplification of DNA damage by γH2AX-targeted radiopharmaceutical and exposure to external radiation. | [166] | |
Melzig et al. | 2018 | Pre-clinical | Head and Neck tumors (A431) | Carbon ions/Photons | [131I]I-cetuximab/[131I]I-benzamide | Combination inhibited tumor growth effectively, attributed to reduced microvascular density and decreased proliferation index. | [160] | |
Hartrampf et al. | 2020 | Clinical | Meningioma | Photons (IMRT) | [177Lu]Lu-DOTATATE/-TOC | Combination of PRRT and fractionated EBRT resulted in disease stabilization in 7 of 10 patients with advanced symptomatic meningioma. | [163] | |
EBRT & TαT | Anderson et al. | 2020 | Clinical | Osteosarcoma | Photons (SBRT) | Xofigo | Combination therapy of Ra-223 and EBRT for metastatic osteosarcoma. | [167] |
Hasan et al. | 2020 | Clinical | PCa | SABR | Xofigo® | Randomized trial of Ra-223 and SABR versus SABR for oligometastatic PCa. | [168], NCT04037358 |
4. Integration of Immune Checkpoint Inhibitors (ICI) with Targeted Alpha Therapy (TαT)
- Key Facts
- Combining ICI with TαT can enhance immune response and tumor inflammation by inducing immunogenic cell death, overcoming resistance in heterogenous or poorly accessible tumors.
- Studies show that combining ICI with TRNT, such as TαT, improves survival and immune response in various cancers. Ongoing clinical trials, like those combining [225Ac]Ac-J591 with pembrolizumab, aim to validate these findings across different cancer types.
4.1. Biological Basis of Immune Evasion and Restoration in ICI
4.2. Comprehensive Overview of ICI in Cancer Treatment
4.3. Current Advances and Innovations in ICI
4.4. Rationale for Combining ICI with TαT
4.5. Pre-Clinical and Clinical Insights: ICI and TαT Synergy
4.6. Future Perspectives and Challenges
Method | Authors | Year | Study | Cancer Type | ICI Agent | TRNT Agent | Main Findings | Ref. |
---|---|---|---|---|---|---|---|---|
ICI | Bonaventura et al. | 2019 | Review | Various | Various | NA | Cold tumors: A therapeutic challenge for immunotherapy. | [187] |
Sun et al. | 2020 | Meta-analysis | Various | Anti-PD-1, Anti-PD-L1 | NA | Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for advanced or metastatic cancer. | [178] | |
Arina et al. | 2020 | Review | Various | Various | NA | Radiotherapy and immunotherapy for cancer: From ‘systemic’ to ‘multisite’. | [185] | |
Yap et al. | 2021 | Review | Various | Various | NA | Development of immunotherapy combination strategies in cancer. | [171] | |
Sharma et al. | 2023 | Review | Various | Various | NA | Immune checkpoint therapy—current perspectives and future directions. | ||
ICI & TRNT | Chen et al. | 2019 | Pre-clinical | Colon cancer (MC38) | Anti-PD-L1 | [177Lu]Lu-EB-RGD | Increased PD-L1 expression on T cells, enhanced CD8+ T cell infiltration, and improved local tumor control. | [191] |
Patel et al. | 2021 | Pre-clinical | Various (B78, 4T1, NXS2, Panc02, B16) | Anti-CTLA-4, Anti-PD-1, Anti-PD-L1 | [131I]I-CF01012 | Enhanced CD8+ immune response. | [195] |
5. Integration of Cytostatic Chemotherapy (CCT) with Targeted Alpha Therapy (TαT)
- Key Facts:
- Combining CCT with TαT can enhance treatment effectiveness, increasing cytotoxicity due to high-LET radiation, potentially allowing for lower doses of each agent to reduce side effects.
- Studies show promise in enhancing the efficacy of taxanes through new formulations and combinations with other treatments. Early clinical trials indicate the potential of taxane and TαT combinations in PCa treatment, with ongoing studies aiming to confirm these findings.
5.1. Comprehensive Overview of CCT in Cancer Treatment
5.2. Mechanistic Insights into Taxane-Induced Cytotoxicity
5.3. Current Advances and Innovations in CCT
5.4. Rationale for Combining CCT with TαT
5.5. Pre-Clinical and Clinical Insights: CCT and TαT Synergy
5.6. Future Perspectives and Challenges
Method | Authors | Year | Study | Cancer Type | CCT Agent | TRNT Agent | Main Findings | Ref. |
---|---|---|---|---|---|---|---|---|
CCT | Xu et al. | 2022 | Pre-clinical | PCa | Cabazitaxel | NA | Cabazitaxel suppresses the proliferation and promotes apoptosis and radiosensitivity: suppression of PI3K/AKT pathway. | [218] |
Schmid et al. | 2018 | Clinical | Breast cancer (TNBC) | Nab-paclitaxel | NA | Atezolizumab and nab-paclitaxel combined prolonged progression-free survival in both the intention-to-treat population and PD-L1–positive subgroup. | [231] | |
Paz-Ares et al. | 2018 | Clinical | Lung cancer (NSCLC) | Paclitaxel/Nab-paclitaxel | NA | Combination of pembrolizumab to chemotherapy with carboplatin plus paclitaxel/nab-paclitaxel lead to significantly longer overall survival and progression-free survival than chemotherapy alone. | [233] | |
Yoneshima et al. | 2021 | Clinical | Lung cancer (NSCLC) | Nab-paclitaxel/Docetaxel | NA | Nab-paclitaxel was noninferior to docetaxel in terms of OS. | [230] | |
Cortes et al. | 2022 | Clinical | Breast cancer (TNBC) | Paclitaxel/Gemcitabine–carboplatin | NA | Patients with high PD-L1 expression benefit from combination of pembrolizumab and chemotherapy: significantly longer overall survival than chemotherapy alone. | [232] | |
CCT & TRNT | Maharaj et al. | 2021 | Clinical | mCRPC | Docetaxel | [177Lu]Lu-PSMA-617 | Low-dose docetaxel as radiosensitizer with [177Lu]Lu-PSMA-617 showed good response; no tumor resistance. | [234] |
Batra et al. | 2020 | Clinical | mCRPC | Docetaxel | [177Lu]Lu-J591 | Combination of [177Lu]Lu-J591 (single fractionated cycle) with docetaxel was well tolerated. | [235] | |
Kostos et al. | 2023 | Clinical | mCRPC | Cabazitaxel | [177Lu]Lu-PSMA-617 | Evaluation of cabazitaxel in combination with [177Lu]Lu-PSMA-617 (LuCAB) to target micrometases. | [236] NCT05340374 |
6. Integration of Brachytherapy (BT) with Targeted Alpha Therapy (TαT)
- Key Facts:
- Combining BT with TαT aims to enhance tumor cell killing by addressing regions with insufficient TαT dose, known as ‘cold spots’, leading to a uniform tumor control while sparing healthy tissues.
- New methods like diffusing α-emitters radiation therapy (DαRT) are being tested. Combining BT and TαT might enhance anti-tumor immune responses and improve therapeutic outcomes.
6.1. Comprehensive Overview of BT in Cancer Treatment
6.2. Radiobiological Mechanisms Underlying BT
6.3. Current Advances and Innovations in BT
6.4. Rationale for Combining BT with TαT
6.5. Pre-Clinical and Clinical Insights: BT and TαT Synergy
6.6. Future Perspectives and Challenges
Method | Authors | Year | Study | Cancer Type | Main Findings | Ref. |
---|---|---|---|---|---|---|
BT | Annede et al. | 2020 | Review | Various | Foundations and new insights in radiobiology modelling for brachytherapy effects. | [238] |
Fonseca et al. | 2020 | Review | Various | Requirements and future directions for in vivo dosimetry in brachytherapy. | [239] | |
Ito et al. | 2018 | Clinical | PCa | Analysis of survival outcomes for permanent I-125 seed implantation in PCa. | [245] | |
Arazi et al. | 2020 | Modeling Study | Various Solid Tumors | Modelling of macroscopic α-particle dose for Ra-224 in DαRT. | [248] | |
Tamihardja et al. | 2022 | Clinical | PCa | Comparison between Ir-192 and Co-60 sources in HDR brachytherapy for PCa. | [240] | |
Morris et al. | 2017 | Clinical | PCa | Patients with LDR brachytherapy were twice as likely to be free of biochemical failure at a median follow-up in comparison to those receiving dose-escalated EBRT. | [246] | |
BT & EBRT | Mori et al. | 2021 | Clinical | PCa | High risk patients benefit from trimodal therapy with HDR brachytherapy, hypofractionated EBRT, and ADT. | [244] |
Oshikane et al. | 2021 | Clinical | PCa | HDR brachytherapy boost combined with EBRT has significantly higher biochemical-free survival rate than EBRT alone in high-risk PCa. | [247] |
7. Outlook
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Joliot, F.; Curie, I. Artificial Production of a New Kind of Radio-Element. Nature 1934, 133, 201–202. [Google Scholar] [CrossRef]
- Becker, D.V.; Sawin, C.T. Radioiodine and thyroid disease: The beginning. Semin. Nucl. Med. 1996, 26, 155–164. [Google Scholar] [CrossRef]
- Fahey, F.H.; Grant, F.D.; Thrall, J.H. Saul Hertz, MD, and the birth of radionuclide therapy. EJNMMI Phys. 2017, 4, 15. [Google Scholar] [CrossRef]
- Hertz, S.; Roberts, A.; Evans, R.D. Radioactive Iodine as an Indicator in the Study of Thyroid Physiology. Proc. Soc. Exp. Biol. Med. 1938, 38, 510–513. [Google Scholar] [CrossRef]
- Luster, M.; Clarke, S.E.; Dietlein, M.; Lassmann, M.; Lind, P.; Oyen, W.J.G.; Tennvall, J.; Bombardieri, E. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1941–1959. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid® 2015, 26, 1–133. [Google Scholar] [CrossRef]
- Tuttle, R.M.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Führer, D.; et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019, 29, 461–470. [Google Scholar] [CrossRef]
- Hennrich, U.; Kopka, K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. Pharmaceuticals 2019, 12, 114. [Google Scholar] [CrossRef]
- Fallah, J.; Agrawal, S.; Gittleman, H.; Fiero, M.H.; Subramaniam, S.; John, C.; Chen, W.; Ricks, T.K.; Niu, G.; Fotenos, A.; et al. FDA Approval Summary: Lutetium Lu 177 Vipivotide Tetraxetan for Patients with Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2023, 29, 1651–1657. [Google Scholar] [CrossRef]
- Szponar, P.; Petrasz, P.; Brzeźniakiewicz-Janus, K.; Drewa, T.; Zorga, P.; Adamowicz, J. Precision strikes: PSMA-targeted radionuclide therapy in prostate cancer—A narrative review. Front. Oncol. 2023, 13, 1239118. [Google Scholar] [CrossRef]
- Al-Toubah, T.; Strosberg, J.; Hallanger-Johnson, J.; El-Haddad, G. Targeted radionuclide therapy in endocrine-related cancers: Advances in the last decade. Front. Endocrinol. 2023, 14, 1187870. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef] [PubMed]
- Ersahin, D.; Doddamane, I.; Cheng, D. Targeted Radionuclide Therapy. Cancers 2011, 3, 3838–3855. [Google Scholar] [CrossRef] [PubMed]
- Lepareur, N.; Ramée, B.; Mougin-Degraef, M.; Bourgeois, M. Clinical Advances and Perspectives in Targeted Radionuclide Therapy. Pharmaceutics 2023, 15, 1733. [Google Scholar] [CrossRef] [PubMed]
- Pouget, J.P.; Lozza, C.; Deshayes, E.; Boudousq, V.; Navarro-Teulon, I. Introduction to radiobiology of targeted radionuclide therapy. Front. Med. 2015, 2, 12. [Google Scholar] [CrossRef] [PubMed]
- Floberg, J.M.; Wang, L.; Bandara, N.; Rashmi, R.; Mpoy, C.; Garbow, J.R.; Rogers, B.E.; Patti, G.J.; Schwarz, J.K. Alteration of Cellular Reduction Potential Will Change (64)Cu-ATSM Signal With or Without Hypoxia. J. Nucl. Med. 2020, 61, 427–432. [Google Scholar] [CrossRef] [PubMed]
- Wu, J. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application. J. Pers. Med. 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Dhoundiyal, S.; Srivastava, S.; Kumar, S.; Singh, G.; Ashique, S.; Pal, R.; Mishra, N.; Taghizadeh-Hesary, F. Radiopharmaceuticals: Navigating the frontier of precision medicine and therapeutic innovation. Eur. J. Med. Res. 2024, 29, 26. [Google Scholar] [CrossRef] [PubMed]
- Pouget, J.-P.; Santoro, L.; Piron, B.; Paillas, S.; Ladjohounlou, R.; Pichard, A.; Poty, S.; Deshayes, E.; Constanzo, J.; Bardiès, M. From the target cell theory to a more integrated view of radiobiology in Targeted radionuclide therapy: The Montpellier group’s experience. Nucl. Med. Biol. 2022, 104–105, 53–64. [Google Scholar] [CrossRef]
- Kratochwil, C.; Giesel, F.L.; Stefanova, M.; Benešová, M.; Bronzel, M.; Afshar-Oromieh, A.; Mier, W.; Eder, M.; Kopka, K.; Haberkorn, U. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with 177Lu-Labeled PSMA-617. J. Nucl. Med. 2016, 57, 1170–1176. [Google Scholar] [CrossRef]
- Feuerecker, B.; Tauber, R.; Knorr, K.; Heck, M.; Beheshti, A.; Seidl, C.; Bruchertseifer, F.; Pickhard, A.; Gafita, A.; Kratochwil, C.; et al. Activity and Adverse Events of Actinium-225-PSMA-617 in Advanced Metastatic Castration-resistant Prostate Cancer After Failure of Lutetium-177-PSMA. Eur. Urol. 2021, 79, 343–350. [Google Scholar] [CrossRef]
- Ilhan, H.; Gosewisch, A.; Böning, G.; Völter, F.; Zacherl, M.; Unterrainer, M.; Bartenstein, P.; Todica, A.; Gildehaus, F.J.; Ilhan, H.; et al. Response to 225Ac-PSMA-I&T after failure of long-term 177Lu-PSMA RLT in mCRPC. Eur. J. Nucl. Med. Mol. Imaging 2020, 48, 1262–1263. [Google Scholar] [CrossRef]
- Friesen, C.; Glatting, G.; Koop, B.; Schwarz, K.; Morgenstern, A.; Apostolidis, C.; Debatin, K.-M.; Reske, S.N. Breaking Chemoresistance and Radioresistance with [213Bi]anti-CD45 Antibodies in Leukemia Cells. Cancer Res. 2007, 67, 1950–1958. [Google Scholar] [CrossRef]
- Song, G.; Cheng, L.; Chao, Y.; Yang, K.; Liu, Z. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. Adv. Mater. 2017, 29, 1700996. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2016, 57, 1941–1944. [Google Scholar] [CrossRef]
- Patel, C.M.; Wadas, T.J.; Shiozawa, Y.; Patel, C.M.; Wadas, T.J.; Shiozawa, Y. Progress in Targeted Alpha-Particle-Emitting Radiopharmaceuticals as Treatments for Prostate Cancer Patients with Bone Metastases. Molecules 2021, 26, 2162. [Google Scholar] [CrossRef] [PubMed]
- Alan-Selcuk, N.; Beydagi, G.; Demirci, E.; Ocak, M.; Celik, S.; Oven, B.B.; Toklu, T.; Karaaslan, I.; Akcay, K.; Sonmez, O.; et al. Clinical Experience with [225Ac]Ac-PSMA Treatment in Patients with [177Lu]Lu-PSMA–Refractory Metastatic Castration-Resistant Prostate Cancer. J. Nucl. Med. 2023, 64, 1574–1580. [Google Scholar] [CrossRef]
- Wulbrand, C.; Seidl, C.; Gaertner, F.C.; Bruchertseifer, F.; Morgenstern, A.; Essler, M.; Senekowitsch-Schmidtke, R. Alpha-Particle Emitting 213Bi-Anti-EGFR Immunoconjugates Eradicate Tumor Cells Independent of Oxygenation. PLoS ONE 2013, 8, e64730. [Google Scholar] [CrossRef] [PubMed]
- Pouget, J.-P.; Constanzo, J. Revisiting the Radiobiology of Targeted Alpha Therapy. Front. Med. 2021, 8, 692436. [Google Scholar] [CrossRef]
- Dekempeneer, Y.; Keyaerts, M.; Krasniqi, A.; Puttemans, J.; Muyldermans, S.; Lahoutte, T.; D’huyvetter, M.; Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin Biol. Ther. 2016, 16, 1035–1047. [Google Scholar] [CrossRef]
- Bal, C.; Ballal, S.; Yadav, M. Long-term outcome of 225Ac-DOTATATE Targeted Alpha Therapy in Patients with Metastatic Gastroenteropancreatic Neuroendocrine Tumors. J. Nucl. Med. 2021, 62 (Suppl. S1), 19. [Google Scholar]
- Lindegren, S.; Albertsson, P.; Bäck, T.; Jensen, H.; Palm, S.; Aneheim, E. Realizing Clinical Trials with Astatine-211: The Chemistry Infrastructure. Cancer Biother. Radiopharm. 2020, 35, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Albertsson, P.; Bäck, T.; Bergmark, K.; Hallqvist, A.; Johansson, M.; Aneheim, E.; Lindegren, S.; Timperanza, C.; Smerud, K.; Palm, S. Astatine-211 based radionuclide therapy: Current clinical trial landscape. Front. Med. 2023, 9, 1076210. [Google Scholar] [CrossRef] [PubMed]
- McDevitt, M.R.; Ma, D.; Lai, L.T.; Simon, J.; Borchardt, P.; Frank, R.K.; Wu, K.; Pellegrini, V.; Curcio, M.J.; Miederer, M.; et al. Tumor Therapy with Targeted Atomic Nanogenerators. Science 2001, 294, 1537–1540. [Google Scholar] [CrossRef]
- Roscher, M.; Bakos, G.; Benešová, M. Atomic Nanogenerators in Targeted Alpha Therapies: Curie’s Legacy in Modern Cancer Management. Pharmaceuticals 2020, 13, 76. [Google Scholar] [CrossRef] [PubMed]
- Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies—Part 1. J. Nucl. Med. 2018, 59, 878–884. [Google Scholar] [CrossRef]
- Eychenne, R.; Chérel, M.; Haddad, F.; Guérard, F.; Gestin, J.-F. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The “Hopeful Eight”. Pharmaceutics 2021, 13, 906. [Google Scholar] [CrossRef] [PubMed]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2020, 13, 49. [Google Scholar] [CrossRef]
- Morgenstern, A.; Lebeda, O.; Stursa, J.; Bruchertseifer, F.; Capote, R.; McGinley, J.; Rasmussen, G.; Sin, M.; Zielinska, B.; Apostolidis, C. Production of 230U/226Th for Targeted Alpha Therapy via Proton Irradiation of 231Pa. Anal. Chem. 2008, 80, 8763–8770. [Google Scholar] [CrossRef]
- Woods, J.J.; Unnerstall, R.; Hasson, A.; Abou, D.S.; Radchenko, V.; Thorek, D.L.J.; Wilson, J.J. Stable Chelation of the Uranyl Ion by Acyclic Hexadentate Ligands: Potential Applications for 230U Targeted α-Therapy. Inorg. Chem. 2022, 61, 3337–3350. [Google Scholar] [CrossRef]
- Kostelnik, T.I.; Orvig, C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 902–956. [Google Scholar] [CrossRef] [PubMed]
- Thiele, N.A.; Brown, V.; Kelly, J.M.; Amor-Coarasa, A.; Jermilova, U.; MacMillan, S.N.; Nikolopoulou, A.; Ponnala, S.; Ramogida, C.F.; Robertson, A.K.H.; et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. Angew. Chem. Int. Ed. 2017, 56, 14712–14717. [Google Scholar] [CrossRef] [PubMed]
- Reissig, F.; Zarschler, K.; Novy, Z.; Petrik, M.; Bendova, K.; Kurfurstova, D.; Bouchal, J.; Ludik, M.-C.; Brandt, F.; Kopka, K.; et al. Modulating the pharmacokinetic profile of Actinium-225-labeled macropa-derived radioconjugates by dual targeting of PSMA and albumin. Theranostics 2022, 12, 7203. [Google Scholar] [CrossRef] [PubMed]
- King, A.P.; Gutsche, N.T.; Raju, N.; Fayn, S.; Baidoo, K.E.; Bell, M.M.; Olkowski, C.S.; Swenson, R.E.; Lin, F.I.; Sadowski, S.M.; et al. 225Ac-MACROPATATE: A Novel α-Particle Peptide Receptor Radionuclide Therapy for Neuroendocrine Tumors. J. Nucl. Med. 2023, 64, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. 212Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022, 14, 189. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Hagemann, U.B.; Wickstroem, K.; Hammer, S.; Bjerke, R.M.; Zitzmann-Kolbe, S.; Ryan, O.B.; Karlsson, J.; Scholz, A.; Hennekes, H.; Mumberg, D.; et al. Advances in Precision Oncology: Targeted Thorium-227 Conjugates As a New Modality in Targeted Alpha Therapy. Cancer Biother. Radiopharm. 2020, 35, 497–510. [Google Scholar] [CrossRef] [PubMed]
- Ramdahl, T.; Bonge-Hansen, H.T.; Ryan, O.B.; Larsen, Å.; Herstad, G.; Sandberg, M.; Bjerke, R.M.; Grant, D.; Brevik, E.M.; Cuthbertson, A.S. An efficient chelator for complexation of thorium-227. Bioorganic Med. Chem. Lett. 2016, 26, 4318–4321. [Google Scholar] [CrossRef] [PubMed]
- Franchi, S.; Asti, M.; Di Marco, V.; Tosato, M. The Curies’ element: State of the art and perspectives on the use of radium in nuclear medicine. EJNMMI Radiopharm. Chem. 2023, 8, 38. [Google Scholar] [CrossRef]
- Poeppel, T.D.; Handkiewicz-Junak, D.; Andreeff, M.; Becherer, A.; Bockisch, A.; Fricke, E.; Geworski, L.; Heinzel, A.; Krause, B.J.; Krause, T.; et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2017, 45, 824–845. [Google Scholar] [CrossRef]
- Abou, D.S.; Ulmert, D.; Doucet, M.; Hobbs, R.F.; Riddle, R.C.; Thorek, D.L.J. Whole-Body and Microenvironmental Localization of Radium-223 in Naïve and Mouse Models of Prostate Cancer Metastasis. JNCI J. Natl. Cancer Inst. 2016, 108, djv380. [Google Scholar] [CrossRef] [PubMed]
- Henriksen, G.; Hoff, P.; Larsen, R.H. Evaluation of potential chelating agents for radium. Appl. Radiat. Isot. 2002, 56, 667–671. [Google Scholar] [CrossRef] [PubMed]
- Kozempel, J.; Mokhodoeva, O.; Vlk, M. Progress in Targeted Alpha-Particle Therapy. What We Learned about Recoils Release from In Vivo Generators. Molecules 2018, 23, 581. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, I.; Miroslavov, A.; Stepanova, E. Post-effects of radioactive decay in ligands on biologically active transport platforms. Radiat. Phys. Chem. 2019, 162, 96–106. [Google Scholar] [CrossRef]
- Trujillo-Nolasco, M.; Morales-Avila, E.; Cruz-Nova, P.; Katti, K.V.; Ocampo-García, B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021, 13, 1123. [Google Scholar] [CrossRef] [PubMed]
- Kruijff, R.M.d.; Raavé, R.; Kip, A.; Molkenboer-Kuenen, J.; Morgenstern, A.; Bruchertseifer, F.; Heskamp, S.; Denkova, A.G. The in vivo fate of 225Ac daughter nuclides using polymersomes as a model carrier. Sci. Rep. 2019, 9, 11671. [Google Scholar] [CrossRef] [PubMed]
- Singh Jaggi, J.; Kappel, B.J.; McDevitt, M.R.; Sgouros, G.; Flombaum, C.D.; Cabassa, C.; Scheinberg, D.A. Efforts to Control the Errant Products of a Targeted In vivo Generator. Cancer Res. 2005, 65, 4888–4895. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.J.; Glatting, G.; Wester, H.-J.; Eiber, M.; Beer, A.J.; Kletting, P. The effect of ligand amount, affinity and internalization on PSMA-targeted imaging and therapy: A simulation study using a PBPK model. Sci. Rep. 2019, 9, 20041. [Google Scholar] [CrossRef]
- Królicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Pawlak, D.; Kuliński, R.; Rola, R.; Merlo, A.; Morgenstern, A. Dose escalation study of targeted alpha therapy with [(225)Ac]Ac-DOTA-substance P in recurrence glioblastoma—Safety and efficacy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3595–3605. [Google Scholar] [CrossRef]
- Holzwarth, U.; Ojea Jimenez, I.; Calzolai, L. A random walk approach to estimate the confinement of α-particle emitters in nanoparticles for targeted radionuclide therapy. EJNMMI Radiopharm. Chem. 2018, 3, 9. [Google Scholar] [CrossRef]
- Henriksen, G.; Fisher, D.R.; Roeske, J.C.; Bruland, Ø.S.; Larsen, R.H. Targeting of Osseous Sites with α-Emitting 223Ra: Comparison with the β-Emitter 89Sr in Mice. J. Nucl. Med. 2003, 44, 252–259. [Google Scholar] [PubMed]
- Briggs, G.H.; Rutherford, E. A determination of the absolute velocity of the alpha-particles from radium C’. Proc. R. Soc. Lond. Ser. A-Math. Phys. Sci. 1936, 157, 183–194. [Google Scholar] [CrossRef]
- Curie, I. Recherches sur les rayons α du polonium, oscillation de parcours, vitesse d’émission, pouvoir ionisant. Ann. De Phys. 1925, 10, 299–401. [Google Scholar] [CrossRef]
- Rosenblum, S.; Dupouy, G. Mesure absolue des vitesses des principaux groupes de rayons Alpha. J. Phys. Radium 1933, 4, 262–268. [Google Scholar] [CrossRef]
- Briggs, G.H.; Rutherford, E. Measurements of the relative velocities of the α-particles from radon, radium A, and radium C’. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1934, 143, 604–617. [Google Scholar] [CrossRef]
- Laurence, G.C.; Rutherford, E. Relative velocities of the alpha-particles emitted by certain radioactive elements. Proc. R. Soc. Lond. Ser. A Contain. Pap. A Math. Phys. Character 1929, 122, 543–551. [Google Scholar] [CrossRef]
- Sóti, Z.; Magill, J.; Dreher, R. Karlsruhe Nuclide Chart — New 10th edition 2018. EPJ Nucl. Sci. Technol. 2019, 5, 11. [Google Scholar] [CrossRef]
- Rasheed, R.; Usmani, S.; Naqvi, S.A.R.; Alkandari, F.; Marafi, F. Alpha Therapy with 225Actinium Labeled Prostate Specific Membrane Antigen: Reporting New Photopeak of 78 Kilo-electron Volts for Better Image Statistics. Indian J. Nucl. Med. 2019, 34, 76–77. [Google Scholar] [CrossRef] [PubMed]
- Rodney Withers, H. Biological basis of radiation therapy for cancer. Lancet 1992, 339, 156–159. [Google Scholar] [CrossRef]
- Desouky, O.; Ding, N.; Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res. Appl. Sci. 2015, 8, 247–254. [Google Scholar] [CrossRef]
- Wilkinson, B.; Hill, M.A.; Parsons, J.L. The Cellular Response to Complex DNA Damage Induced by Ionising Radiation. Int. J. Mol. Sci. 2023, 24, 4920. [Google Scholar] [CrossRef]
- Goodhead, D.T.; Weinfeld, M. Clustered DNA Damage and its Complexity: Tracking the History. Radiat. Res. 2024. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Zhou, P.K. DNA damage repair: Historical perspectives, mechanistic pathways and clinical translation for targeted cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef]
- Nickoloff, J.A.; Sharma, N.; Allen, C.P.; Taylor, L.; Allen, S.J.; Jaiswal, A.S.; Hromas, R. Roles of homologous recombination in response to ionizing radiation-induced DNA damage. Int. J. Radiat. Biol. 2023, 99, 903–914. [Google Scholar] [CrossRef] [PubMed]
- Filippi, L.; Palumbo, B.; Bagni, O.; Frantellizzi, V.; De Vincentis, G.; Schillaci, O. DNA Damage Repair Defects and Targeted Radionuclide Therapies for Prostate Cancer: Does Mutation Really Matter? A Systematic Review. Life 2023, 13, 55. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.X.; Zhou, P.K. DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct. Target. Ther. 2020, 5, 60. [Google Scholar] [CrossRef] [PubMed]
- Groelly, F.J.; Fawkes, M.; Dagg, R.A.; Blackford, A.N.; Tarsounas, M. Targeting DNA damage response pathways in cancer. Nat. Rev. Cancer 2023, 23, 78–94. [Google Scholar] [CrossRef]
- Craig, D.J.; Nanavaty, N.S.; Devanaboyina, M.; Stanbery, L.; Hamouda, D.; Edelman, G.; Dworkin, L.; Nemunaitis, J.J. The abscopal effect of radiation therapy. Future Oncol. 2021, 17, 1683–1694. [Google Scholar] [CrossRef]
- European Medicines Agency: Xofigo—Radium Ra223 Dichloride. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xofigo (accessed on 11 March 2024).
- Parker, C.; Lewington, V.; Shore, N.; Kratochwil, C.; Levy, M.; Lindén, O.; Noordzij, W.; Park, J.; Saad, F. Targeted Alpha Therapy, an Emerging Class of Cancer Agents: A Review. JAMA Oncol. 2018, 4, 1765–1772. [Google Scholar] [CrossRef]
- Higano, C.S.; George, D.J.; Shore, N.D.; Sartor, O.; Miller, K.; Conti, P.S.; Sternberg, C.N.; Saad, F.; Sade, J.P.; Bellmunt, J.; et al. Clinical outcomes and treatment patterns in REASSURE: Planned interim analysis of a real-world observational study of radium-223 in metastatic castration-resistant prostate cancer. eClinicalMedicine 2023, 60, 101993. [Google Scholar] [CrossRef]
- Jang, A.; Kendi, A.T.; Johnson, G.B.; Halfdanarson, T.R.; Sartor, O. Targeted Alpha-Particle Therapy: A Review of Current Trials. Int. J. Mol. Sci. 2023, 24, 11626. [Google Scholar] [CrossRef]
- Pallares, R.M.; Abergel, R.J. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front. Med. 2022, 9, 1020188. [Google Scholar] [CrossRef]
- Sgouros, G.; Roeske, J.C.; McDevitt, M.R.; Palm, S.; Allen, B.J.; Fisher, D.R.; Brill, A.B.; Song, H.; Howell, R.W.; Akabani, G. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy. J. Nucl. Med. 2010, 51, 311–328. [Google Scholar] [CrossRef]
- Jurcic, J.G.; Larson, S.M.; Sgouros, G.; McDevitt, M.R.; Finn, R.D.; Divgi, C.R.; Ballangrud, Å.M.; Hamacher, K.A.; Ma, D.; Humm, J.L.; et al. Targeted α particle immunotherapy for myeloid leukemia. Blood 2002, 100, 1233–1239. [Google Scholar] [CrossRef] [PubMed]
- Zalutsky, M.R.; Reardon, D.A.; Akabani, G.; Coleman, R.E.; Friedman, A.H.; Friedman, H.S.; McLendon, R.E.; Wong, T.Z.; Bigner, D.D. Clinical Experience with α-Particle–Emitting 211At: Treatment of Recurrent Brain Tumor Patients with 211At-Labeled Chimeric Antitenascin Monoclonal Antibody 81C6. J. Nucl. Med. 2008, 49, 30–38. [Google Scholar] [CrossRef]
- Geerlings, M.W.; Kaspersen, F.M.; Apostolidis, C.; Der Hout, R.V. The feasibility of 225 Ac as a source of α-particles in radioimmunotherapy. Nucl. Med. Commun. 1993, 14, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Jurcic, J.G.; Rosenblat, T.L.; McDevitt, M.R.; Pandit-Taskar, N.; Carrasquillo, J.A.; Chanel, S.M.; Zikaras, K.; Frattini, M.G.; Maslak, P.G.; Cicic, D.; et al. Phase I Trial of the Targeted Alpha-Particle Nano-Generator Actinium-225 (225Ac)-Lintuzumab (Anti-CD33; HuM195) in Acute Myeloid Leukemia (AML). Blood 2011, 118, 768. [Google Scholar] [CrossRef]
- Jurcic, J.G.; Rosenblat, T.L. Targeted alpha-particle immunotherapy for acute myeloid leukemia. In American Society of Clinical Oncology Educational Book; Annual Meeting; American Society of Clinical Oncology: Alexandria, VA, USA, 2014; pp. e126–e131. [Google Scholar]
- Rosenblat, T.L.; McDevitt, M.R.; Carrasquillo, J.A.; Pandit-Taskar, N.; Frattini, M.G.; Maslak, P.G.; Park, J.H.; Douer, D.; Cicic, D.; Larson, S.M.; et al. Treatment of Patients with Acute Myeloid Leukemia with the Targeted Alpha-Particle Nanogenerator Actinium-225-Lintuzumab. Clin. Cancer Res. 2022, 28, 2030–2037. [Google Scholar] [CrossRef] [PubMed]
- Atallah, E.; Berger, M.; Jurcic, J.; Roboz, G.; Tse, W.; Mawad, R.; Rizzieri, D.; Begna, K.; Orozco, J.; Craig, M.; et al. A Phase 2 Study of Actinium-225 (225Ac)-lintuzumab in Older Patients with Untreated Acute Myeloid Leukemia (AML). J. Med. Imaging Radiat. Sci. 2019, 50, S37. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Thomas, C.; Sartor, A.O.; Sun, M.; Stangl-Kremser, J.; Bissassar, M.; Vallabhajosula, S.; Castellanos, S.H.; Nauseef, J.T.; Sternberg, C.N.; et al. Prostate-Specific Membrane Antigen–Targeting Alpha Emitter via Antibody Delivery for Metastatic Castration-Resistant Prostate Cancer: A Phase I Dose-Escalation Study of 225Ac-J591. J. Clin. Oncol. 2023, 42, 842–851. [Google Scholar] [CrossRef]
- Nauseef, J.T.; Sun, M.P.; Thomas, C.; Bissassar, M.; Patel, A.; Tan, A.; Fernandez, E.; Davidson, Z.; Chamberlain, T.; Earle, K.; et al. A phase I/II dose-escalation study of fractionated 225Ac-J591 for progressive metastatic castration-resistant prostate cancer (mCRPC) in patients with prior treatment with 177Lu-PSMA. J. Clin. Oncol. 2023, 41 (Suppl. S6), TPS288. [Google Scholar] [CrossRef]
- Sun, M.P.; Nauseef, J.T.; Palmer, J.; Thomas, J.E.; Stangl-Kremser, J.; Bissassar, M.; Castellanos, S.H.; Osborne, J.; Molina, A.M.; Sternberg, C.N.; et al. Phase I results of a phase I/II study of pembrolizumab and AR signaling inhibitor (ARSI) with 225Ac-J591. J. Clin. Oncol. 2023, 41 (Suppl. S6), 181. [Google Scholar] [CrossRef]
- Juergens, R.A.; Zukotynski, K.A.; Juneau, D.; Krnezich, L.; Simms, R.; Forbes, J.; Burak, E.S.; Valliant, J.; Krnezich, L.; Stafford, L.; et al. A Phase I Study of [225Ac]-FPI-1434 Radioimmunotherapy in Patients with IGF-1R Expressing Solid Tumors. J. Clin. Oncol. 2019, 37, TPS3152. [Google Scholar] [CrossRef]
- Juneau, D.; Saad, F.; Berlin, A.; Metser, U.; Puzanov, I.; Lamonica, D.; Sparks, R.; Burak, E.; Simms, R.; Rhoden, J.; et al. Preliminary Dosimetry Results from a First-in-Human Phase I Study Evaluating the Efficacy and Safety of [225Ac]-FPI-1434 in Patients with IGF-1R Expressing Solid Tumors. J. Nucl. Med. 2021, 62 (Suppl. S1), 74. [Google Scholar]
- Scott, A.; Saad, F.; Juneau, D.; Brown, M.; Kirkwood, I.; Nottage, M.; Rhoden, J.; Kazakin, J.; Schindler, J.; Baca, N.; et al. Impact of Pre-Administration of Anti-IGF-1R Antibody FPI 1175 on the Dosimetry, Tumor Uptake, and Pharmacokinetics of the IGF-1R Targeted Theranostic Imaging Agent [111In] FPI 1547 in Patients with Solid Tumors. J. Nucl. Med. 2022, 63 (Suppl. S2), 2275. [Google Scholar]
- Pandit-Taskar, N.; Wong, J.; Subbiah, V.; Chenard-Poirier, M.; Pryma, D.; Berlin, A.; Juergens, R.; Puzanov, I.; Jacene, H.; Schindler, J.; et al. Dose-escalation Study of [225Ac]-FPI-1434 (FPI-1434) in Patients (pts) with IGF-1R Expressing Advanced Solid Tumors: Preliminary Pharmacology and Dosimetry Results. J. Nucl. Med. 2023, 64 (Suppl. S1), P630. [Google Scholar]
- Karlsson, J. Abstract ND07: HER2-TTC: A Targeted thorium conjugate to treat HER2 expressing cancers with potent alpha radiation. Cancer Res. 2021, 81 (Suppl. S13), ND07. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, C. Efficacy and Safety of 225Ac-PSMA-617-Targeted Alpha Therapy in Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2022, 12, 796657. [Google Scholar] [CrossRef] [PubMed]
- Feuerecker, B.; Kratochwil, C.; Ahmadzadehfar, H.; Morgenstern, A.; Eiber, M.; Herrmann, K.; Pomykala, K.L. Clinical Translation of Targeted α-Therapy: An Evolution or a Revolution? J. Nucl. Med. 2023, 64, 685–692. [Google Scholar] [CrossRef]
- Sathekge, M.; Crumbaker, M.; Joshua, A.; Bruchertseifer, F.; Kreisl, T.; Emineni, S.; Wehbe, J.; Korn, M.; Morgenstern, A.; Emmett, L. AcTION: A phase 1 study of [225Ac]Ac-PSMA-617 in men with PSMA-positive prostate cancer with or without prior [177Lu]Lu-PSMA-617 radioligand therapy. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, S152–S153 OP-335. [Google Scholar] [CrossRef]
- Morris, M.; Ulaner, G.A.; Halperin, D.M.; Mehr, S.H.; Li, D.; Soares, H.P.; Anthony, L.B.; Kotiah, S.D.; Jacene, H.; Pavel, M.E.; et al. ACTION-1 phase Ib/3 trial of RYZ101 in somatostatin receptor subtype 2–expressing (SSTR2+) gastroenteropancreatic neuroendocrine tumors (GEP-NET) progressing after 177Lu somatostatin analogue (SSA) therapy: Initial safety analysis. J. Clin. Oncol. 2023, 41 (Suppl. S16), 4132. [Google Scholar] [CrossRef]
- Sgouros, G.; Ulaner, G.; Delie, T.; Kotiah, S.; Ferreira, D.; Ma, K.; Rearden, J.; Moran, S.; Sneeden, E.; He, B.; et al. 225Ac-DOTATATE Dosimetry Results from Part 1 of the ACTION-1 Trial. J. Nucl. Med. 2023, 64 (Suppl. S1), P129. [Google Scholar]
- Delpassand, E.S.; Tworowska, I.; Esfandiari, R.; Torgue, J.; Hurt, J.; Shafie, A.; Núñez, R. Targeted α-Emitter Therapy with 212Pb-DOTAMTATE for the Treatment of Metastatic SSTR-Expressing Neuroendocrine Tumors: First-in-Humans Dose-Escalation Clinical Trial. J. Nucl. Med. 2022, 63, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Delpassand, E.; Esfandiari, R.; Tworowska, I.; Torgue, J.; Hurt, J.D.; Nunez, R. Targeted alpha-emitter therapy with 212Pb-DOTAMTATE in neuroendocrine tumor subjects who progressed following prior 177Lu/90Y-PRRT. J. Clin. Oncol. 2022, 40 (Suppl. S16), 4128. [Google Scholar] [CrossRef]
- Privé, B.M.; Boussihmad, M.A.; Timmermans, B.; van Gemert, W.A.; Peters, S.M.B.; Derks, Y.H.W.; van Lith, S.A.M.; Mehra, N.; Nagarajah, J.; Heskamp, S.; et al. Fibroblast activation protein-targeted radionuclide therapy: Background, opportunities, and challenges of first (pre)clinical studies. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 1906–1918. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, F.; Shen, G.; Pan, L.; Liu, W.; Liang, R.; Lan, T.; Yang, Y.; Yang, J.; Liao, J.; et al. In vitro and in vivo evaluation of 211At-labeled fibroblast activation protein inhibitor for glioma treatment. Bioorganic Med. Chem. 2022, 55, 116600. [Google Scholar] [CrossRef] [PubMed]
- Aso, A.; Nabetani, H.; Matsuura, Y.; Kadonaga, Y.; Shirakami, Y.; Watabe, T.; Yoshiya, T.; Mochizuki, M.; Ooe, K.; Kawakami, A.; et al. Evaluation of Astatine-211-Labeled Fibroblast Activation Protein Inhibitor (FAPI): Comparison of Different Linkers with Polyethylene Glycol and Piperazine. Int. J. Mol. Sci. 2023, 24, 8701. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Watabe, T.; Kaneda-Nakashima, K.; Shirakami, Y.; Naka, S.; Ooe, K.; Toyoshima, A.; Nagata, K.; Haberkorn, U.; Kratochwil, C.; et al. Fibroblast activation protein targeted therapy using [177Lu]FAPI-46 compared with [225Ac]FAPI-46 in a pancreatic cancer model. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 871–880. [Google Scholar] [CrossRef]
- Watabe, T.; Liu, Y.; Kaneda-Nakashima, K.; Shirakami, Y.; Lindner, T.; Ooe, K.; Toyoshima, A.; Nagata, K.; Shimosegawa, E.; Haberkorn, U.; et al. Theranostics Targeting Fibroblast Activation Protein in the Tumor Stroma: 64Cu- and 225Ac-Labeled FAPI-04 in Pancreatic Cancer Xenograft Mouse Models. J. Nucl. Med. 2020, 61, 563–569. [Google Scholar] [CrossRef]
- Kneifel, S.; Cordier, D.; Good, S.; Ionescu, M.; Ghaffari, A.; Hofer, S.; Kretschmar, M.; Tolnay, M.; Apostolidis, C.; Waser, B.; et al. Local Trageting of Malignant Gliomas by the Difussible Peptidic Vector DOTAGA-substance P. Clin. Cancer Res. 2006, 12, 3843–3850. [Google Scholar] [CrossRef]
- Królicki, L.; Kunikowska, J.; Bruchertseifer, F.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Rola, R.; Morgenstern, A.; Rosiak, E.; et al. 225 Ac- and 213 Bi-Substance P Analogues for Glioma Therapy. Semin. Nucl. Med. 2020, 50, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Królicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Królicki, B.; Jakuciński, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Safety and efficacy of targeted alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2018, 46, 614–622. [Google Scholar] [CrossRef] [PubMed]
- Królicki, L.; Kunikowska, J.; Bruchertseifer, F.; Kulinski, R.; Pawlak, D.; Koziara, H.; Rola, R.; Morgenstern, A.; Merlo, A. Locoregional Treatment of Glioblastoma With Targeted Alpha Therapy [213Bi]Bi-DOTA-Substance P Versus [225Ac]Ac-DOTA-Substance P-Analysis of Influence Parameters. Clin. Nucl. Med. 2023, 48, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Trencsényi, G.; Csikos, C.; Képes, Z. Targeted Radium Alpha Therapy in the Era of Nanomedicine: In Vivo Results. Int. J. Mol. Sci. 2024, 25, 664. [Google Scholar] [CrossRef] [PubMed]
- Kleynhans, J.; Sathekge, M.; Ebenhan, T. Obstacles and Recommendations for Clinical Translation of Nanoparticle System-Based Targeted Alpha-Particle Therapy. Materials 2021, 14, 4784. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Sathekge, M.; Bruchertseifer, F.; Vorster, M.; Lawal, I.O.; Mokoala, K.; Reed, J.; Maseremule, L.; Ndlovu, H.; Hlongwa, K.; Maes, A.; et al. 225Ac-PSMA-617 radioligand therapy of de novo metastatic hormone-sensitive prostate carcinoma (mHSPC): Preliminary clinical findings. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Bruchertseifer, F.; Rathke, H.; Hohenfellner, M.; Giesel, F.L.; Haberkorn, U.; Morgenstern, A. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J. Nucl. Med. 2018, 59, 795. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Giesel, F.L.; Heussel, C.-P.; Kazdal, D.; Endris, V.; Nientiedt, C.; Bruchertseifer, F.; Kippenberger, M.; Rathke, H.; Leichsenring, J.; et al. Patients Resistant Against PSMA-Targeting α-Radiation Therapy Often Harbor Mutations in DNA Damage-Repair–Associated Genes. J. Nucl. Med. 2020, 61, 683–688. [Google Scholar] [CrossRef]
- Zalutsky, M.R.; Pruszynski, M. Astatine-211: Production and availability. Curr. Radiopharm. 2011, 4, 177–185. [Google Scholar] [CrossRef]
- Radchenko, V.; Morgenstern, A.; Jalilian, A.R.; Ramogida, C.F.; Cutler, C.; Duchemin, C.; Hoehr, C.; Haddad, F.; Bruchertseifer, F.; Gausemel, H.; et al. Production and Supply of α-Particle–Emitting Radionuclides for Targeted α-Therapy. J. Nucl. Med. 2021, 62, 1495–1503. [Google Scholar] [CrossRef] [PubMed]
- Heynickx, N.; Herrmann, K.; Vermeulen, K.; Baatout, S.; Aerts, A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl. Med. Biol. 2021, 98–99, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Kratochwil, C.; Apostolidis, L.; Rathke, H.; Apostolidis, C.; Bicu, F.; Bruchertseifer, F.; Choyke, P.L.; Haberkorn, U.; Giesel, F.L.; Morgenstern, A. Dosing (225)Ac-DOTATOC in patients with somatostatin-receptor-positive solid tumors: 5-year follow-up of hematological and renal toxicity. Eur. J. Nucl. Med. Mol. Imaging 2021, 49, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Soldatos, T.G.; Iakovou, I.; Sachpekidis, C. Retrospective Toxicological Profiling of Radium-223 Dichloride for the Treatment of Bone Metastases in Prostate Cancer Using Adverse Event Data. Medicina 2019, 55, 149. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, S.T.; Sun, M.P.; Nauseef, J.T.; Thomas, C.; Castellanos, S.H.; Thomas, J.E.; Davidson, Z.; Stangl-Kremser, J.; Bissassar, M.; Palmer, J.; et al. Phase I dose-escalation results of prostate-specific membrane antigen-targeted radionuclide therapy (PSMA-TRT) with alpha-radiolabeled antibody 225Ac-J591 and beta-radioligand 177Lu-PSMA I&T. J. Clin. Oncol. 2023, 41 (Suppl. S16), 5018. [Google Scholar] [CrossRef]
- Kostos, L.; Buteau, J.P.; Yeung, T.; Iulio, J.D.; Xie, J.; Cardin, A.; Chin, K.Y.; Emmerson, B.; Owen, K.L.; Parker, B.S.; et al. AlphaBet: Combination of Radium-223 and [177Lu]Lu-PSMA-I&T in men with metastatic castration-resistant prostate cancer (clinical trial protocol). Front. Med. 2022, 9, 1059122. [Google Scholar] [CrossRef]
- Scholz, A.; Knuuttila, M.; Zdrojewska, J.; Suominen, M.I.; Alhoniemi, E.; Schatz, C.A.; Zitzmann-Kolbe, S.; Käkönen, S.-M.; Hagemann, U.B. Abstract 5043: Radium-223 demonstrates increased antitumor activity in combination with 177Lu-PSMA-617 in the intratibial LNCaP xenograft model of bone metastatic prostate cancer. Cancer Res. 2023, 83 (Suppl. S7), 5043. [Google Scholar] [CrossRef]
- Meyer, C.; Stuparu, A.; Lueckerath, K.; Calais, J.; Czernin, J.; Slavik, R.; Dahlbom, M. Tandem Isotope Therapy with 225Ac- and 177Lu-PSMA-617 in a Murine Model of Prostate Cancer. J. Nucl. Med. 2023, 64, 1772–1778. [Google Scholar] [CrossRef]
- Khreish, F.; Ebert, N.; Ries, M.; Maus, S.; Rosar, F.; Bohnenberger, H.; Stemler, T.; Saar, M.; Bartholomä, M.; Ezziddin, S. 225Ac-PSMA-617/177Lu-PSMA-617 tandem therapy of metastatic castration-resistant prostate cancer: Pilot experience. Eur. J. Nucl. Med. Mol. Imaging 2019, 47, 721–728. [Google Scholar] [CrossRef]
- Rosar, F.; Krause, J.; Bartholomä, M.; Maus, S.; Stemler, T.; Hierlmeier, I.; Linxweiler, J.; Ezziddin, S.; Khreish, F. Efficacy and Safety of [225Ac]Ac-PSMA-617 Augmented [177Lu]Lu-PSMA-617 Radioligand Therapy in Patients with Highly Advanced mCRPC with Poor Prognosis. Pharmaceutics 2021, 13, 722. [Google Scholar] [CrossRef]
- Kulkarni, H.; Zhang, J.; Langbein, T.; Schuchardt, C.; Singh, A.; Mueller, D.; Baum, R. Radioligand therapy using combination of Ac-225 and Lu-177 labelled PSMA ligands for progressive end-stage metastatic prostate cancer: Effective trade-off between response and toxicity. J. Nucl. Med. 2019, 60 (Suppl. S1), 464. [Google Scholar]
- Langbein, T.; Kulkarni, H.R.; Schuchardt, C.; Mueller, D.; Volk, G.F.; Baum, R.P. Salivary Gland Toxicity of PSMA-Targeted Radioligand Therapy with 177Lu-PSMA and Combined 225Ac- and 177Lu-Labeled PSMA Ligands (TANDEM-PRLT) in Advanced Prostate Cancer: A Single-Center Systematic Investigation. Diagnostics 2022, 12, 1926. [Google Scholar] [CrossRef] [PubMed]
- Langbein, T.; Kulkarni, H.; Singh, A.; Schuchardt, C.; Zhang, J.; Baum, R. Combined PRLT using Ac-225 and Lu-177 labeled PSMA-617 (TANDEM-PRLT) in end-stage metastatic prostate cancer: A concept to reduce salivary gland toxicity? J. Nucl. Med. 2019, 60 (Suppl. S1), 77. [Google Scholar]
- Juzeniene, A.; Stenberg, V.Y.; Bruland, Ø.S.; Revheim, M.-E.; Larsen, R.H. Dual targeting with 224Ra/212Pb-conjugates for targeted alpha therapy of disseminated cancers: A conceptual approach. Front. Med. 2023, 9, 1051825. [Google Scholar] [CrossRef] [PubMed]
- Tornes, A.J.K.; Stenberg, V.Y.; Larsen, R.H.; Bruland, Ø.S.; Revheim, M.-E.; Juzeniene, A. Targeted alpha therapy with the 224Ra/212Pb-TCMC-TP-3 dual alpha solution in a multicellular tumor spheroid model of osteosarcoma. Front. Med. 2022, 9, 1058863. [Google Scholar] [CrossRef]
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005, 104, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Borras, J.M.; Lievens, Y.; Dunscombe, P.; Coffey, M.; Malicki, J.; Corral, J.; Gasparotto, C.; Defourny, N.; Barton, M.; Verhoeven, R.; et al. The optimal utilization proportion of external beam radiotherapy in European countries: An ESTRO-HERO analysis. Radiother. Oncol. 2015, 116, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Borras, J.M.; Lievens, Y.; Barton, M.; Corral, J.; Ferlay, J.; Bray, F.; Grau, C. How many new cancer patients in Europe will require radiotherapy by 2025? An ESTRO-HERO analysis. Radiother. Oncol. 2016, 119, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Norlund, A. Costs of Radiotherapy. Acta Oncol. 2003, 42, 411–415. [Google Scholar] [CrossRef]
- Grubbé, E.H. Priority in the Therapeutic Use of X-rays. Radiology 1933, 21, 156–162. [Google Scholar] [CrossRef]
- Röntgen, W.C. Ueber eine neue Art von Strahlen. Ann. Der Phys. 1898, 300, 12–17. [Google Scholar] [CrossRef]
- Zubizarreta, E.; Van Dyk, J.; Lievens, Y. Analysis of Global Radiotherapy Needs and Costs by Geographic Region and Income Level. Clin. Oncol. 2017, 29, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Laskar, S.G.; Sinha, S.; Krishnatry, R.; Grau, C.; Mehta, M.; Agarwal, J.P. Access to Radiation Therapy: From Local to Global and Equality to Equity. JCO Glob. Oncol. 2022, 8, e2100358. [Google Scholar] [CrossRef] [PubMed]
- DIRAC. The IAEA Directory of Radiotherapy Centres (DIRAC). Available online: https://dirac.iaea.org/ (accessed on 30 May 2024).
- Grau, C.; Durante, M.; Georg, D.; Langendijk, J.A.; Weber, D.C. Particle therapy in Europe. Mol. Oncol. 2020, 14, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Krause, M.; Overgaard, J.; Debus, J.; Bentzen, S.M.; Daartz, J.; Richter, C.; Zips, D.; Bortfeld, T. Radiation oncology in the era of precision medicine. Nat. Rev. Cancer 2016, 16, 234–249. [Google Scholar] [CrossRef] [PubMed]
- Laskar, S.G.; Kakoti, S. Modern Radiation Oncology: From IMRT to Particle Therapy—Present Status and the Days to Come. Indian J. Med. Paediatr. Oncol. 2022, 43, 47–51. [Google Scholar] [CrossRef]
- Byun, H.K.; Han, M.C.; Yang, K.; Kim, J.S.; Yoo, G.S.; Koom, W.S.; Kim, Y.B. Physical and Biological Characteristics of Particle Therapy for Oncologists. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2021, 53, 611. [Google Scholar] [CrossRef] [PubMed]
- Veldeman, L.; Madani, I.; Hulstaert, F.; De Meerleer, G.; Mareel, M.; De Neve, W. Evidence behind use of intensity-modulated radiotherapy: A systematic review of comparative clinical studies. Lancet Oncol. 2008, 9, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Verellen, D.; Ridder, M.D.; Linthout, N.; Tournel, K.; Soete, G.; Storme, G. Innovations in image-guided radiotherapy. Nat. Rev. Cancer 2007, 7, 949–960. [Google Scholar] [CrossRef]
- Lo, S.S.; Fakiris, A.J.; Chang, E.L.; Mayr, N.A.; Wang, J.Z.; Papiez, L.; Teh, B.S.; McGarry, R.C.; Cardenes, H.R.; Timmerman, R.D. Stereotactic body radiation therapy: A novel treatment modality. Nat. Rev. Clin. Oncol. 2009, 7, 44–54. [Google Scholar] [CrossRef]
- Bilski, M.; Mertowska, P.; Mertowski, S.; Sawicki, M.; Hymos, A.; Niedźwiedzka-Rystwej, P.; Grywalska, E. The Role of Conventionally Fractionated Radiotherapy and Stereotactic Radiotherapy in the Treatment of Carcinoid Tumors and Large-Cell Neuroendocrine Cancer of the Lung. Cancers 2021, 14, 177. [Google Scholar] [CrossRef] [PubMed]
- Arcangeli, S.; Scorsetti, M.; Alongi, F. Will SBRT replace conventional radiotherapy in patients with low-intermediate risk prostate cancer? A review. Crit. Rev. Oncol. Hematol. 2012, 84, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kron, T. Cui Bono, Proton Radiotherapy? Clin. Oncol. 2022, 34, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Gao, F.; Yang, Y.; Wu, D.; Zhang, Y.; Feng, G.; Dai, T.; Du, X. FLASH Radiotherapy: History and Future. Front. Oncol. 2021, 11, 644400. [Google Scholar] [CrossRef] [PubMed]
- Kundapur, V.; Torlakovic, E.; Auer, R.N. The Story Behind the First Mini-BEAM Photon Radiation Treatment: What is the Mini-Beam and Why is it Such an Advance? Semin. Radiat. Oncol. 2024, 34, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Hyer, D.E.; Bennett, L.C.; Geoghegan, T.J.; Bues, M.; Smith, B.R. Innovations and the use of collimators in the delivery of pencil beam scanning proton therapy. Int. J. Part. Ther. 2021, 8, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Melzig, C.; Golestaneh, A.F.; Mier, W.; Schwager, C.; Das, S.; Schlegel, J.; Lasitschka, F.; Kauczor, H.U.; Debus, J.; Haberkorn, U.; et al. Combined external beam radiotherapy with carbon ions and tumor targeting endoradiotherapy. Oncotarget 2018, 9, 29985. [Google Scholar] [CrossRef] [PubMed]
- Gorin, J.-B.; Guilloux, Y.; Morgenstern, A.; Chérel, M.; Davodeau, F.; Gaschet, J. Using α radiation to boost cancer immunity? OncoImmunology 2014, 3, e954925. [Google Scholar] [CrossRef]
- Dietrich, A.; Koi, L.; Zöphel, K.; Sihver, W.; Kotzerke, J.; Baumann, M.; Krause, M. Improving external beam radiotherapy by combination with internal irradiation. Br. J. Radiol. 2015, 88, 20150042. [Google Scholar] [CrossRef]
- Hartrampf, P.E.; Hänscheid, H.; Kertels, O.; Schirbel, A.; Kreissl, M.C.; Flentje, M.; Sweeney, R.A.; Buck, A.K.; Polat, B.; Lapa, C. Long-term results of multimodal peptide receptor radionuclide therapy and fractionated external beam radiotherapy for treatment of advanced symptomatic meningioma. Clin. Transl. Radiat. Oncol. 2020, 22, 29–32. [Google Scholar] [CrossRef]
- Ruan, S.; O’Donoghue, J.A.; Larson, S.M.; Finn, R.D.; Jungbluth, A.; Welt, S.; Humm, J.L. Optimizing the Sequence of Combination Therapy with Radiolabeled Antibodies and Fractionated External Beam. J. Nucl. Med. 2000, 41, 1905–1912. [Google Scholar] [PubMed]
- Oddstig, J.; Bernhardt, P.; Nilsson, O.; Ahlman, H.; Forssell-Aronsson, E. Radiation Induces Up-Regulation of Somatostatin Receptors 1, 2, and 5 in Small Cell Lung Cancer In Vitro Also at Low Absorbed Doses. Cancer Biother. Radiopharm. 2011, 26, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, B.; Darbar, S.; Kersemans, V.; Allen, D.; Falzone, N.; Barbeau, J.; Smart, S.; Vallis, K.A. Amplification of DNA damage by a γH2AX-targeted radiopharmaceutical. Nucl. Med. Biol. 2012, 39, 1142–1151. [Google Scholar] [CrossRef] [PubMed]
- Anderson, P.M.; Scott, J.; Parsai, S.; Zahler, S.; Worley, S.; Shrikanthan, S.; Subbiah, V.; Murphy, E. 223-Radium for metastatic osteosarcoma: Combination therapy with other agents and external beam radiotherapy. ESMO Open 2020, 5, e000635. [Google Scholar] [CrossRef] [PubMed]
- Hasan, H.; Deek, M.P.; Phillips, R.; Hobbs, R.F.; Malek, R.; Radwan, N.; Kiess, A.P.; Dipasquale, S.; Huang, J.; Caldwell, T.; et al. A phase II randomized trial of RAdium-223 dichloride and SABR Versus SABR for oligomEtastatic prostate caNcerS (RAVENS). BMC Cancer 2020, 20, 492. [Google Scholar] [CrossRef]
- Yu, J.W.; Bhattacharya, S.; Yanamandra, N.; Kilian, D.; Shi, H.; Yadavilli, S.; Katlinskaya, Y.; Kaczynski, H.; Conner, M.; Benson, W.; et al. Tumor-immune profiling of murine syngeneic tumor models as a framework to guide mechanistic studies and predict therapy response in distinct tumor microenvironments. PLoS ONE 2018, 13, e0206223. [Google Scholar] [CrossRef]
- Bates, J.P.; Derakhshandeh, R.; Jones, L.; Webb, T.J. Mechanisms of immune evasion in breast cancer. BMC Cancer 2018, 18, 556. [Google Scholar] [CrossRef]
- Yap, T.A.; Parkes, E.E.; Peng, W.; Moyers, J.T.; Curran, M.A.; Tawbi, H.A. Development of Immunotherapy Combination Strategies in Cancer. Cancer Discov. 2021, 11, 1368–1397. [Google Scholar] [CrossRef]
- Khalil, D.N.; Smith, E.L.; Brentjens, R.J.; Wolchok, J.D. The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat. Rev. Clin. Oncol. 2016, 13, 273–290. [Google Scholar] [CrossRef]
- Lu, L.; Barbi, J.; Pan, F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 2017, 17, 703–717. [Google Scholar] [CrossRef]
- Sharma, P.; Goswami, S.; Raychaudhuri, D.; Siddiqui, B.A.; Singh, P.; Nagarajan, A.; Liu, J.; Subudhi, S.K.; Poon, C.; Gant, K.L.; et al. Immune checkpoint therapy—Current perspectives and future directions. Cell 2023, 186, 1652–1669. [Google Scholar] [CrossRef] [PubMed]
- Boutros, C.; Tarhini, A.; Routier, E.; Lambotte, O.; Ladurie, F.L.; Carbonnel, F.; Izzeddine, H.; Marabelle, A.; Champiat, S.; Berdelou, A.; et al. Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat. Rev. Clin. Oncol. 2016, 13, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.A.; Otsuka, A.; Kabashima, K. Anti-PD-1 and Anti-CTLA-4 Therapies in Cancer: Mechanisms of Action, Efficacy, and Limitations. Front. Oncol. 2018, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Doroshow, D.B.; Bhalla, S.; Beasley, M.B.; Sholl, L.M.; Kerr, K.M.; Gnjatic, S.; Wistuba, I.I.; Rimm, D.L.; Tsao, M.S.; Hirsch, F.R. PD-L1 as a biomarker of response to immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2021, 18, 345–362. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhang, L.; Yu, J.; Zhang, Y.; Pang, X.; Ma, C.; Shen, M.; Ruan, S.; Wasan, H.S.; Qiu, S. Clinical efficacy and safety of anti-PD-1/PD-L1 inhibitors for the treatment of advanced or metastatic cancer: A systematic review and meta-analysis. Sci. Rep. 2020, 10, 2083. [Google Scholar] [CrossRef] [PubMed]
- Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance Mechanisms of Anti-PD1/PDL1 Therapy in Solid Tumors. Front. Cell Dev. Biol. 2020, 8, 672. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Letendre, P.; Monga, V.; Milhem, M.; Zakharia, Y. Ipilimumab: From preclinical development to future clinical perspectives in melanoma. Future Oncol. 2017, 13, 625–636. [Google Scholar] [CrossRef] [PubMed]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Graziani, G.; Tentori, L.; Navarra, P. Ipilimumab: A novel immunostimulatory monoclonal antibody for the treatment of cancer. Pharmacol. Res. 2012, 65, 9–22. [Google Scholar] [CrossRef]
- Zang, X. 2018 Nobel Prize in medicine awarded to cancer immunotherapy: Immune checkpoint blockade—A personal account. Genes Dis. 2018, 5, 302–303. [Google Scholar] [CrossRef]
- Arina, A.; Gutiontov, S.I.; Weichselbaum, R.R. Radiotherapy and Immunotherapy for Cancer: From “Systemic” to “Multisite”. Clin. Cancer Res. 2020, 26, 2777–2782. [Google Scholar] [CrossRef]
- Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science 2015, 348, 56–61. [Google Scholar] [CrossRef]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.D.; Cabral, H.; Stylianopoulos, T.; Jain, R.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol. 2020, 17, 251–266. [Google Scholar] [CrossRef]
- Hu, Z.I.; McArthur, H.L.; Ho, A.Y. The Abscopal Effect of Radiation Therapy: What Is It and How Can We Use It in Breast Cancer? Curr. Breast Cancer Rep. 2017, 9, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Beaino, W.; Fecek, R.J.; Fabian, K.P.L.; Laymon, C.M.; Kurland, B.F.; Storkus, W.J.; Anderson, C.J. Combined VLA-4–Targeted Radionuclide Therapy and Immunotherapy in a Mouse Model of Melanoma. J. Nucl. Med. 2018, 59, 1843–1849. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhao, L.; Fu, K.; Lin, Q.; Wen, X.; Jacobson, O.; Sun, L.; Wu, H.; Zhang, X.; Guo, Z.; et al. Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics 2019, 9, 7948–7960. [Google Scholar] [CrossRef]
- Kim, C.; Liu, S.V.; Subramaniam, D.S.; Torres, T.; Loda, M.; Esposito, G.; Giaccone, G. Phase I study of the (177)Lu-DOTA(0)-Tyr(3)-Octreotate (lutathera) in combination with nivolumab in patients with neuroendocrine tumors of the lung. J. ImmunoTherapy Cancer 2020, 8, e000980. [Google Scholar] [CrossRef]
- Rouanet, J.; Benboubker, V.; Akil, H.; Hennino, A.; Auzeloux, P.; Besse, S.; Pereira, B.; Delorme, S.; Mansard, S.; D’Incan, M.; et al. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol. Immunother. 2020, 69, 2075–2088. [Google Scholar] [CrossRef]
- Czernin, J.; Current, K.; Mona, C.E.; Nyiranshuti, L.; Hikmat, F.; Radu, C.G.; Lückerath, K. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. J. Nucl. Med. 2021, 62, 228–231. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.B.; Hernandez, R.; Carlson, P.; Grudzinski, J.; Bates, A.M.; Jagodinsky, J.C.; Erbe, A.; Marsh, I.R.; Arthur, I.; Aluicio-Sarduy, E.; et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci. Transl. Med. 2021, 13, eabb3631. [Google Scholar] [CrossRef] [PubMed]
- Vito, A.; Rathmann, S.; Mercanti, N.; El-Sayes, N.; Mossman, K.; Valliant, J. Combined Radionuclide Therapy and Immunotherapy for Treatment of Triple Negative Breast Cancer. Int. J. Mol. Sci. 2021, 22, 4843. [Google Scholar] [CrossRef] [PubMed]
- Digklia, A.; Boughdad, S.; Homicsko, K.; Dromain, C.; Trimech, M.; Dolcan, A.; Peters, S.; Prior, J.; Schaefer, N. First communication on the efficacy of combined 177Lutetium-PSMA with immunotherapy outside prostate cancer. J. ImmunoTherapy Cancer 2022, 10, e005383. [Google Scholar] [CrossRef] [PubMed]
- Chabner, B.A.; Roberts, T.G. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Biller, L.H.; Schrag, D. Diagnosis and Treatment of Metastatic Colorectal Cancer. JAMA 2021, 325, 669–685. [Google Scholar] [CrossRef] [PubMed]
- Shien, T.; Iwata, H. Adjuvant and neoadjuvant therapy for breast cancer. Jpn. J. Clin. Oncol. 2020, 50, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Fisusi, F.A.; Akala, E.O. Drug Combinations in Breast Cancer Therapy. Pharm. Nanotechnol. 2019, 7, 3–23. [Google Scholar] [CrossRef]
- Baxevanos, P.; Mountzios, G. Novel chemotherapy regimens for advanced lung cancer: Have we reached a plateau? Ann. Transl. Med. 2018, 6, 139. [Google Scholar] [CrossRef]
- Kumar, L.; Harish, P.; Malik, P.S.; Khurana, S. Chemotherapy and targeted therapy in the management of cervical cancer. Curr. Probl. Cancer 2018, 42, 120–128. [Google Scholar] [CrossRef]
- Nader, R.; El Amm, J.; Aragon-Ching, J.B. Role of chemotherapy in prostate cancer. Asian J. Androl. 2018, 20, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of Advanced Prostate Cancer. Annu. Rev. Med. 2019, 70, 479–499. [Google Scholar] [CrossRef] [PubMed]
- De Nunzio, C.; Presicce, F.; Giacinti, S.; Bassanelli, M.; Tubaro, A. Castration-resistance prostate cancer: What is in the pipeline? Minerva Urol. Nephrol. 2018, 70, 22–41. [Google Scholar] [CrossRef] [PubMed]
- Prota, A.E.; Lucena-Agell, D.; Ma, Y.; Estevez-Gallego, J.; Li, S.; Bargsten, K.; Josa-Prado, F.; Altmann, K.H.; Gaillard, N.; Kamimura, S.; et al. Structural insight into the stabilization of microtubules by taxanes. eLife 2023, 12, e84791. [Google Scholar] [CrossRef] [PubMed]
- Pienta, K.J. Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Semin. Oncol. 2001, 28, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef] [PubMed]
- Scribano, C.M.; Wan, J.; Esbona, K.; Tucker, J.B.; Lasek, A.; Zhou, A.S.; Zasadil, L.M.; Molini, R.; Fitzgerald, J.; Lager, A.M.; et al. Chromosomal instability sensitizes patient breast tumors to multipolar divisions induced by paclitaxel. Sci. Transl. Med. 2021, 13, eabd4811. [Google Scholar] [CrossRef] [PubMed]
- Komlodi-Pasztor, E.; Sackett, D.; Wilkerson, J.; Fojo, T. Mitosis is not a key target of microtubule agents in patient tumors. Nat. Rev. Clin. Oncol. 2011, 8, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Werahera, P.N.; Glode, L.M.; La Rosa, F.G.; Lucia, M.S.; Crawford, E.D.; Easterday, K.; Sullivan, H.T.; Sidhu, R.S.; Genova, E.; Hedlund, T. Proliferative Tumor Doubling Times of Prostatic Carcinoma. Prostate Cancer 2011, 2011, 301850. [Google Scholar] [CrossRef]
- Poruchynsky, M.S.; Komlodi-Pasztor, E.; Trostel, S.; Wilkerson, J.; Regairaz, M.; Pommier, Y.; Zhang, X.; Kumar Maity, T.; Robey, R.; Burotto, M.; et al. Microtubule-targeting agents augment the toxicity of DNA-damaging agents by disrupting intracellular trafficking of DNA repair proteins. Proc. Natl. Acad. Sci. USA 2015, 112, 1571–1576. [Google Scholar] [CrossRef]
- Gjyrezi, A.; Xie, F.; Voznesensky, O.; Khanna, P.; Calagua, C.; Bai, Y.; Kung, J.; Wu, J.; Corey, E.; Montgomery, B.; et al. Taxane resistance in prostate cancer is mediated by decreased drug-target engagement. J. Clin. Investig. 2020, 130, 3287–3298. [Google Scholar] [CrossRef] [PubMed]
- Darshan, M.S.; Loftus, M.S.; Thadani-Mulero, M.; Levy, B.P.; Escuin, D.; Zhou, X.K.; Gjyrezi, A.; Chanel-Vos, C.; Shen, R.; Tagawa, S.T.; et al. Taxane-Induced Blockade to Nuclear Accumulation of the Androgen Receptor Predicts Clinical Responses in Metastatic Prostate Cancer. Cancer Res. 2011, 71, 6019–6029. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Rong, Z.; Liu, C.; Qin, X.; Zhang, X.; Chen, Q. DNA damage promotes microtubule dynamics through a DNA-PK-AKT axis for enhanced repair. J. Cell Biol. 2021, 220, e201911025. [Google Scholar] [CrossRef] [PubMed]
- Ruiz de Porras, V.; Wang, X.C.; Palomero, L.; Marin-Aguilera, M.; Solé-Blanch, C.; Indacochea, A.; Jimenez, N.; Bystrup, S.; Bakht, M.; Conteduca, V.; et al. Taxane-induced Attenuation of the CXCR2/BCL-2 Axis Sensitizes Prostate Cancer to Platinum-based Treatment. Eur. Urol. 2021, 79, 722–733. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, L.; Ge, Y.; Sun, H.; Zhu, J.; Dou, Q.; Jia, R. Cabazitaxel suppresses the proliferation and promotes the apoptosis and radiosensitivity of castration-resistant prostate cancer cells by inhibiting PI3K/AKT pathway. Am. J. Transl. Res. 2022, 14, 166–181. [Google Scholar] [PubMed]
- Kale, J.; Osterlund, E.J.; Andrews, D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2017, 25, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Fraguas-Sánchez, A.I.; Lozza, I.; Torres-Suárez, A.I. Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers 2022, 14, 1198. [Google Scholar] [CrossRef] [PubMed]
- Rajappa, S.; Joshi, A.; Doval, D.C.; Batra, U.; Rajendranath, R.; Deo, A.; Biswas, G.; Bajpai, P.; Tilak, T.V.S.; Kane, S.; et al. [Experts’ Opinion] Novel formulations of docetaxel, paclitaxel and doxorubicin in the management of metastatic breast cancer. Oncol. Lett. 2018, 16, 3757–3769. [Google Scholar] [CrossRef] [PubMed]
- De Leo, S.; Trevisan, M.; Fugazzola, L. Recent advances in the management of anaplastic thyroid cancer. Thyroid Res. 2020, 13, 17. [Google Scholar] [CrossRef]
- Jurczyk, M.; Kasperczyk, J.; Wrześniok, D.; Beberok, A.; Jelonek, K. Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines 2022, 10, 1187. [Google Scholar] [CrossRef]
- Le, P.N.; Huynh, C.K.; Tran, N.Q. Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater. Sci. Eng. C 2018, 92, 1016–1030. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, T.; Jiang, C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm. Sin. B 2018, 8, 34–50. [Google Scholar] [CrossRef] [PubMed]
- Atrafi, F.; van Eerden, R.A.G.; van Hylckama Vlieg, M.A.M.; Oomen-de Hoop, E.; de Bruijn, P.; Lolkema, M.P.; Moelker, A.; Rijcken, C.J.; Hanssen, R.; Sparreboom, A.; et al. Intratumoral Comparison of Nanoparticle Entrapped Docetaxel (CPC634) with Conventional Docetaxel in Patients with Solid Tumors. Clin. Cancer Res. 2020, 26, 3537–3545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.L.; Russell, P.J.; Knittel, T.; Milross, C. Paclitaxel enhanced radiation sensitization for the suppression of human prostate cancer tumor growth via a p53 independent pathway. Prostate 2007, 67, 1630–1640. [Google Scholar] [CrossRef] [PubMed]
- Miyanaga, S.; Ninomiya, I.; Tsukada, T.; Okamoto, K.; Harada, S.; Nakanuma, S.; Sakai, S.; Makino, I.; Kinoshita, J.; Hayashi, H.; et al. Concentration-dependent radiosensitizing effect of docetaxel in esophageal squamous cell carcinoma cells. Int. J. Oncol. 2016, 48, 517–524. [Google Scholar] [CrossRef] [PubMed]
- Autio, K.A.; Dreicer, R.; Anderson, J.; Garcia, J.A.; Alva, A.; Hart, L.L.; Milowsky, M.I.; Posadas, E.M.; Ryan, C.J.; Graf, R.P.; et al. Safety and Efficacy of BIND-014, a Docetaxel Nanoparticle Targeting Prostate-Specific Membrane Antigen for Patients With Metastatic Castration-Resistant Prostate Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 1344–1351. [Google Scholar] [CrossRef]
- Yoneshima, Y.; Morita, S.; Ando, M.; Nakamura, A.; Iwasawa, S.; Yoshioka, H.; Goto, Y.; Takeshita, M.; Harada, T.; Hirano, K.; et al. Phase 3 Trial Comparing Nanoparticle Albumin-Bound Paclitaxel With Docetaxel for Previously Treated Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1523–1532. [Google Scholar] [CrossRef]
- Schmid, P.; Adams, S.; Rugo, H.S.; Schneeweiss, A.; Barrios, C.H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-A.; Wright, G.S.; et al. Atezolizumab and Nab-Paclitaxel in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2018, 379, 2108–2121. [Google Scholar] [CrossRef]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Şenler, F.Ç.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Maharaj, M.; Heslop, L.; Govender, T.; Korowlay, N.; Singh, A.; Choudhary, P.; Sathekge, M. The Outcome and Safety of Re-challenge Lutetium-177 PSMA ((177)Lu-PSMA) Therapy with Low-Dose Docetaxel as a Radiosensitizer-a Promising Combination in Metastatic Castrate-Resistant Prostate Cancer (mCRPC): A Case Report. Nucl. Med. Mol. Imaging 2021, 55, 136–140. [Google Scholar] [CrossRef]
- Batra, J.S.; Niaz, M.J.; Whang, Y.E.; Sheikh, A.; Thomas, C.; Christos, P.; Vallabhajosula, S.; Jhanwar, Y.S.; Molina, A.M.; Nanus, D.M.; et al. Phase I trial of docetaxel plus lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 ((177)Lu-J591) for metastatic castration-resistant prostate cancer. Urol. Oncol. 2020, 38, 848.e9–848.e16. [Google Scholar] [CrossRef]
- Kostos, L.K.; Buteau, J.P.; Kong, G.; Yeung, T.; Iulio, J.D.; Fahey, M.T.; Fettke, H.; Furic, L.; Hofman, M.S.; Azad, A. LuCAB: A phase I/II trial evaluating cabazitaxel in combination with [177Lu]Lu-PSMA-617 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2023, 41 (Suppl. S6), TPS278. [Google Scholar] [CrossRef]
- Dale, R.G.; Jones, B. The clinical radiobiology of brachytherapy. Br. J. Radiol. 1998, 71, 465–483. [Google Scholar] [CrossRef] [PubMed]
- Annede, P.; Cosset, J.-M.; Van Limbergen, E.; Deutsch, E.; Haie-Meder, C.; Chargari, C. Radiobiology: Foundation and New Insights in Modeling Brachytherapy Effects. Semin. Radiat. Oncol. 2020, 30, 4–15. [Google Scholar] [CrossRef]
- Fonseca, G.P.; Johansen, J.G.; Smith, R.L.; Beaulieu, L.; Beddar, S.; Kertzscher, G.; Verhaegen, F.; Tanderup, K. In vivo dosimetry in brachytherapy: Requirements and future directions for research, development, and clinical practice. Phys. Imaging Radiat. Oncol. 2020, 16, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Tamihardja, J.; Weick, S.; Lutyj, P.; Zimmermann, M.; Bratengeier, K.; Flentje, M.; Polat, B. Comparing Iridium-192 with Cobalt-60 sources in high-dose-rate brachytherapy boost for localized prostate cancer. Acta Oncol. 2022, 61, 714–719. [Google Scholar] [CrossRef]
- Bachand, J.; Schroeder, S.R.; Desai, N.B.; Folkert, M.R. Prostate brachytherapy procedural training: Incorporation of related procedures in resident training and competency assessment. J. Contemp. Brachytherapy 2019, 11, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Koukourakis, G.; Kelekis, N.; Armonis, V.; Kouloulias, V. Brachytherapy for Prostate Cancer: A Systematic Review. Adv. Urol. 2009, 2009, 327945. [Google Scholar] [CrossRef]
- Palvai, S.; Harrison, M.; Thomas, S.S.; Hayden, K.; Green, J.; Anderson, O.; Romero, L.; Lodge, R.; Burns, P.; Ahmed, I. Timing of High-Dose Rate Brachytherapy With External Beam Radiotherapy in Intermediate and High-Risk Localized Prostate CAncer (THEPCA) Patients and Its Effects on Toxicity and Quality of Life: Protocol of a Randomized Feasibility Trial. JMIR Res. Protoc. 2015, 4, e4462. [Google Scholar] [CrossRef]
- Mori, K.; Sasaki, H.; Tsutsumi, Y.; Sato, S.; Takiguchi, Y.; Saito, S.; Nishi, E.; Ishii, G.; Yamamoto, T.; Koike, Y.; et al. Trimodal therapy with high-dose-rate brachytherapy and hypofractionated external beam radiation combined with long-term androgen deprivation for unfavorable-risk prostate cancer. Strahlenther. Und Onkol. 2021, 197, 976–985. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Saito, S.; Yorozu, A.; Kojima, S.; Kikuchi, T.; Higashide, S.; Aoki, M.; Koga, H.; Satoh, T.; Ohashi, T.; et al. Nationwide Japanese Prostate Cancer Outcome Study of Permanent Iodine-125 Seed Implantation (J-POPS): First analysis on survival. Int. J. Clin. Oncol. 2018, 23, 1148–1159. [Google Scholar] [CrossRef] [PubMed]
- Morris, W.J.; Tyldesley, S.; Rodda, S.; Halperin, R.; Pai, H.; McKenzie, M.; Duncan, G.; Morton, G.; Hamm, J.; Murray, N. Androgen Suppression Combined with Elective Nodal and Dose Escalated Radiation Therapy (the ASCENDE-RT Trial): An Analysis of Survival Endpoints for a Randomized Trial Comparing a Low-Dose-Rate Brachytherapy Boost to a Dose-Escalated External Beam Boost for High- and Intermediate-risk Prostate Cancer. Int. J. Radiat. Biol. 2017, 98, 275–285. [Google Scholar] [CrossRef]
- Oshikane, T.; Kaidu, M.; Abe, E.; Ohta, A.; Saito, H.; Nakano, T.; Honda, M.; Tanabe, S.; Utsunomiya, S.; Sasamoto, R.; et al. A comparative study of high-dose-rate brachytherapy boost combined with external beam radiation therapy versus external beam radiation therapy alone for high-risk prostate cancer. J. Radiat. Res. 2021, 62, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Arazi, L. Diffusing alpha-emitters radiation therapy: Approximate modeling of the macroscopic alpha particle dose of a point source. Phys. Med. Biol. 2020, 65, 015015. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Winter, R.C.; Amghar, M.; Wacker, A.S.; Bakos, G.; Taş, H.; Roscher, M.; Kelly, J.M.; Benešová-Schäfer, M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals 2024, 17, 1031. https://doi.org/10.3390/ph17081031
Winter RC, Amghar M, Wacker AS, Bakos G, Taş H, Roscher M, Kelly JM, Benešová-Schäfer M. Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy. Pharmaceuticals. 2024; 17(8):1031. https://doi.org/10.3390/ph17081031
Chicago/Turabian StyleWinter, Ruth Christine, Mariam Amghar, Anja S. Wacker, Gábor Bakos, Harun Taş, Mareike Roscher, James M. Kelly, and Martina Benešová-Schäfer. 2024. "Future Treatment Strategies for Cancer Patients Combining Targeted Alpha Therapy with Pillars of Cancer Treatment: External Beam Radiation Therapy, Checkpoint Inhibition Immunotherapy, Cytostatic Chemotherapy, and Brachytherapy" Pharmaceuticals 17, no. 8: 1031. https://doi.org/10.3390/ph17081031