Schistosomiasis–Microbiota Interactions: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search Strategy
2.2. Study Eligibility Criteria
2.3. Study Selection and Data Extraction
2.4. Assessment of Study Quality and Risk of Bias
2.5. Data Analysis
2.6. Publication Bias
3. Results
3.1. Study Characteristics
3.2. Schistosomiasis Interactions with the Host Microbiome
3.3. Schistosoma Species and Their Interactions with the Host Microbiome
3.4. Influence of Praziquantel Treatment on Schistosomiasis Interactions with the Host Microbiome
3.5. Influence of Gender on Schistosomiasis Interactions with the Host Microbiome
3.6. Meta-Regression Analysis for Schistosomiasis–Host Microbiome Interactions
3.7. Result of the Publication Bias Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Schistosomiasis Fact Sheet 2021. Available online: https://www.who.int/news-room/fact-sheets/details/schistosomiasis (accessed on 2 April 2024).
- McManus, D.P.; Bergquist, R.; Cai, P.; Ranasinghe, S.; Tebeje, B.M.; You, H. Schistosomiasis—From immunopathology to vaccines. In Seminars in Immunopathology; Springer: Berlin/Heidelberg, Germany, 2020; Volume 42, pp. 355–371. [Google Scholar]
- Ponzo, E.; Midiri, A.; Manno, A.; Pastorello, M.; Biondo, C.; Mancuso, G. Insights into the epidemiology, pathogenesis, and differential diagnosis of schistosomiasis. Eur. J. Microbiol. Immunol. 2024, 14, 86–96. [Google Scholar] [CrossRef] [PubMed]
- Verjee, M.A. Schistosomiasis: Still a cause of significant morbidity and mortality. Res. Rep. Trop. Med. 2019, 10, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; McManus, D.P.; Hou, N.; Cai, P. Schistosome infection and schistosome-derived products as modulators for the prevention and alleviation of immunological disorders. Front. Immunol. 2021, 12, 619776. [Google Scholar] [CrossRef] [PubMed]
- Dastoli, P.A.; da Costa, M.D.; Nicácio, J.M.; Pinho, R.S.; Ferrarini, M.A.; Cavalheiro, S. Mansonic neuroschistosomiasis in the childhood: An undiagnosed pathology? Child’s Nerv. Syst. 2023, 39, 481–489. [Google Scholar] [CrossRef]
- Mawa, P.A.; Kincaid-Smith, J.; Tukahebwa, E.M.; Webster, J.P.; Wilson, S. Schistosomiasis morbidity hotspots: Roles of the human host, the parasite and their interface in the development of severe morbidity. Front. Immunol. 2021, 12, 635869. [Google Scholar] [CrossRef]
- Schwartz, C.; Fallon, P.G. Schistosoma “eggs-iting” the host: Granuloma formation and egg excretion. Front. Immunol. 2018, 9, 416646. [Google Scholar] [CrossRef]
- Costain, A.H.; MacDonald, A.S.; Smits, H.H. Schistosome egg migration: Mechanisms, pathogenesis and host immune responses. Front. Immunol. 2018, 9, 424814. [Google Scholar] [CrossRef]
- Takaki, K.K.; Rinaldi, G.; Berriman, M.; Pagán, A.J.; Ramakrishnan, L. Schistosoma mansoni eggs modulate the timing of granuloma formation to promote transmission. Cell Host Microbe 2021, 29, 58–67. [Google Scholar] [CrossRef]
- Giorgio, S.; Gallo-Francisco, P.H.; Roque, G.A.; Flóro e Silva, M. Granulomas in parasitic diseases: The good and the bad. Parasitol. Res. 2020, 119, 3165–3180. [Google Scholar] [CrossRef]
- Ruff, W.E.; Greiling, T.M.; Kriegel, M.A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 2020, 18, 521–538. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Ren, J. Microbiota-immune interaction in the pathogenesis of gut-derived infection. Front. Immunol. 2019, 10, 452409. [Google Scholar] [CrossRef] [PubMed]
- Ogongo, P.; Nyakundi, R.K.; Chege, G.K.; Ochola, L. The road to elimination: Current state of schistosomiasis research and progress towards the end game. Front. Immunol. 2022, 13, 846108. [Google Scholar] [CrossRef] [PubMed]
- Rossi, B.; Previtali, L.; Salvi, M.; Gerami, R.; Tomasoni, L.R.; Quiros-Roldan, E. Female Genital Schistosomiasis: A Neglected among the Neglected Tropical Diseases. Microorganisms 2024, 12, 458. [Google Scholar] [CrossRef] [PubMed]
- Bustinduy, A.L.; Randriansolo, B.; Sturt, A.S.; Kayuni, S.A.; Leutscher, P.D.; Webster, B.L.; Van Lieshout, L.; Stothard, J.R.; Feldmeier, H.; Gyapong, M. An update on female and male genital schistosomiasis and a call to integrate efforts to escalate diagnosis, treatment and awareness in endemic and non-endemic settings: The time is now. Adv. Parasitol. 2022, 115, 1–44. [Google Scholar]
- Sadeghpour Heravi, F. Host-vaginal microbiota interaction: Shaping the vaginal microenvironment and bacterial vaginosis. Curr. Clin. Microbiol. Rep. 2024, 11, 177–191. [Google Scholar] [CrossRef]
- Lamberti, O.; Bozzani, F.; Kiyoshi, K.; Bustinduy, A.L. Time to bring female genital schistosomiasis out of neglect. Br. Med. Bull. 2024, 149, 45–59. [Google Scholar] [CrossRef]
- Moeller, A.H.; Sanders, J.G. Roles of the gut microbiota in the adaptive evolution of mammalian species. Philos. Trans. R. Soc. B 2020, 375, 20190597. [Google Scholar] [CrossRef]
- Hooper, L.V.; Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10, 159–169. [Google Scholar] [CrossRef]
- Thakur, A.; Mikkelsen, H.; Jungersen, G. Intracellular pathogens: Host immunity and microbial persistence strategies. J. Immunol. Res. 2019, 2019, 1356540. [Google Scholar] [CrossRef]
- Soares, M.P.; Teixeira, L.; Moita, L.F. Disease tolerance and immunity in host protection against infection. Nat. Rev. Immunol. 2017, 17, 83–96. [Google Scholar] [CrossRef]
- Floudas, A.; Aviello, G.; Schwartz, C.; Jeffery, I.B.; O’Toole, P.W.; Fallon, P.G. Schistosoma mansoni worm infection regulates the intestinal microbiota and susceptibility to colitis. Infect. Immun. 2019, 87, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Douglas, B.; Oyesola, O.; Cooper, M.M.; Posey, A.; Tait Wojno, E.; Giacomin, P.R.; Herbert, D.B. Immune system investigation using parasitic helminths. Annu. Rev. Immunol. 2021, 39, 639–665. [Google Scholar] [CrossRef] [PubMed]
- Perera, D.J.; Koger-Pease, C.; Paulini, K.; Daoudi, M.; Ndao, M. Beyond schistosomiasis: Unraveling co-infections and altered immunity. Clin. Microbiol. Rev. 2024, 37, e00098-23. [Google Scholar] [CrossRef] [PubMed]
- de Araújo, M.P.; Sato, M.O.; Sato, M.; Wm, K.M.; Coelho, L.F.; Souza, R.L.; Kawai, S.; Marques, M.J. Unbalanced relationships: Insights into the interaction between gut microbiota, geohelminths, and schistosomiasis. PeerJ 2022, 10, e13401. [Google Scholar] [CrossRef] [PubMed]
- Hong, A.; Umar, A.; Chen, H.; Yu, Z.; Huang, J. Advances in the study of the interaction between schistosome infections and the host’s intestinal microorganisms. Parasites Vectors 2024, 17, 185. [Google Scholar] [CrossRef] [PubMed]
- Schneeberger, P.H.; Coulibaly, J.T.; Panic, G.; Daubenberger, C.; Gueuning, M.; Frey, J.E.; Keiser, J. Investigations on the interplays between Schistosoma mansoni, praziquantel and the gut microbiome. Parasites Vectors 2018, 11, 1–2. [Google Scholar] [CrossRef]
- Sousa-Figueiredo, J.C.; Pleasant, J.; Day, M.; Betson, M.; Rollinson, D.; Montresor, A.; Kazibwe, F.; Kabatereine, N.B.; Stothard, J.R. Treatment of intestinal schistosomiasis in Ugandan preschool children: Best diagnosis, treatment efficacy and side-effects, and an extended praziquantel dosing pole. Int. Health 2010, 2, 103–113. [Google Scholar] [CrossRef]
- Beyhan, Y.E.; Yıldız, M.R. Microbiota and parasite relationship. Diagn. Microbiol. Infect. Dis. 2023, 106, 115954. [Google Scholar] [CrossRef]
- Yu, L.C.; Wang, J.T.; Wei, S.C.; Ni, Y.H. Host-microbial interactions and regulation of intestinal epithelial barrier function: From physiology to pathology. World J. Gastrointest. Pathophysiol. 2012, 3, 27. [Google Scholar] [CrossRef]
- Postler, T.S.; Ghosh, S. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metab. 2017, 26, 110–130. [Google Scholar] [CrossRef]
- Reid, G.; Younes, J.A.; Van der Mei, H.C.; Gloor, G.B.; Knight, R.; Busscher, H.J. Microbiota restoration: Natural and supplemented recovery of human microbial communities. Nat. Rev. Microbiol. 2011, 9, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Stevens, E.J.; Bates, K.A.; King, K.C. Host microbiota can facilitate pathogen infection. PLoS Pathog. 2021, 17, e1009514. [Google Scholar] [CrossRef]
- Hrncir, T. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 2022, 10, 578. [Google Scholar] [CrossRef]
- Saltzman, E.T.; Palacios, T.; Thomsen, M.; Vitetta, L. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease. Front. Microbiol. 2018, 9, 61. [Google Scholar] [CrossRef]
- Maggini, S.; Pierre, A.; Calder, P.C. Immune function and micronutrient requirements change over the life course. Nutrients 2018, 10, 1531. [Google Scholar] [CrossRef]
- Moreira-Filho, J.T.; Dantas, R.F.; Senger, M.R.; Silva, A.C.; Campos, D.M.; Muratov, E.; Silva-Junior, F.P.; Andrade, C.H.; Neves, B.J. Shortcuts to schistosomiasis drug discovery: The state-of-the-art. In Annual Reports in Medicinal Chemistry; Academic Press: Cambridge, MA, USA, 2019; Volume 53, pp. 139–180. [Google Scholar]
- Parums, D.V. Review articles, systematic reviews, meta-analysis, and the updated preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2021, 27, e934475. [Google Scholar] [CrossRef]
- Migliavaca, C.B.; Stein, C.; Colpani, V.; Munn, Z.; Falavigna, M. Quality assessment of prevalence studies: A systematic review. J. Clin. Epidemiol. 2020, 127, 59–68. [Google Scholar] [CrossRef]
- Topçuoğlu, M.A.; Arsava, E.M. Secondary Stroke Prevention in Patients with Patent Foramen Ovale: To Anticoagulate or Not? Fragility Index Meta-analysis of Published Randomized Controlled Studies. Turk. J. Neurol. 2023, 29, 256–261. [Google Scholar] [CrossRef]
- Nakagawa, S.; Lagisz, M.; Jennions, M.D.; Koricheva, J.; Noble, D.W.; Parker, T.H.; Sánchez-Tójar, A.; Yang, Y.; O’Dea, R.E. Methods for testing publication bias in ecological and evolutionary meta-analyses. Methods Ecol. Evol. 2022, 13, 4–21. [Google Scholar] [CrossRef]
- Kone, K.J.; Onifade, A.K.; Dada, E.O. Occurrence of urinary schistosomiasis and associated bacteria in parts of Ondo State, Nigeria. PLoS Glob. Public Health 2022, 2, e0001119. [Google Scholar] [CrossRef]
- Seynabou, L.; Awa, B.D.; Oumarou, F.D.; Moustapha, M.; Makhtar, C.; Mamadou, D.; Rokhaya, D.; Mamadou, L.D.; Roughyatou, K.; Babacar, F.; et al. Profile of bacterial and parasitic urinary infections in Saint Louis Senegal between 2000 and 2010. Afr. J. Microbiol. Res. 2016, 10, 1061–1065. [Google Scholar] [CrossRef]
- Eyong, M.E.; Ikepeme, E.E.; Ekanem, E.E. Relationship between Schistosoma haematobium infection and urinary tract infection among children in South Eastern, Nigeria. Niger. Postgrad. Med. J. 2008, 15, 65–69. [Google Scholar] [CrossRef]
- Sm, A.; Ha, H.; Ky, H.; Ta, I. Studies on Seasonal Variations in the Occurrences of Schistosoma haematobium and Bacterial Urinary Infections among School Age Children in Kano, Nigeria. IOSR J. Pharm. Biol. Sci. (IOSR-JPBS) 2015, 10, 27–33. [Google Scholar]
- Ossai, O.P.; Dankoli, R.; Nwodo, C.; Tukur, D.; Nsubuga, P.; Ogbuabor, D.; Ekwueme, O.; Abonyi, G.; Ezeanolue, E.; Nguku, P.; et al. Bacteriuria and urinary schistosomiasis in primary school children in rural communities in Enugu State, Nigeria, 2012. Pan Afr. Med. J. 2014, 18 (Suppl. S1), 15. [Google Scholar] [CrossRef]
- Dada, E.O.; Alagha, B. Urinary schistosomiasis and asymptomatic bacteriuria among individuals of Ipogun, Nigeria: Detection of predominant microorganisms and antibiotic susceptibility profile. J. Med. Health Stud. 2021, 2, 70–80. [Google Scholar]
- Hicks, R.M.; Ismail, M.M.; Walters, C.L.; Beecham, P.T.; Rabie, M.F.; El Alamy, M.A. Association of bacteriuria and urinary nitrosamine formation with Schistosoma haematobium infection in the Qalyub area of Egypt. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 519–527. [Google Scholar] [CrossRef]
- Laughlin, L.W.; Farid, Z.; Mansour, N.; Edman, D.C.; Higashi, G.I. Bacteriuria in urinary schistosomiasis in Egypt: A prevalence survey. Am. J. Trop. Med. Hyg. 1978, 27, 916–918. [Google Scholar] [CrossRef]
- Pi-Sunyer, F.X.; Gilles, H.M.; Wilson, A.M. Schistosoma haematobium infection in Nigeria: I.—Bacteriological and immunological findings in the presence of schistosomal infection. Ann. Trop. Med. Parasitol. 1965, 59, 304–311. [Google Scholar] [CrossRef]
- Du, Y.; Agnew, A.; Ye, X.P.; Robinson, P.A.; Forman, D.; Crabtree, J.E. Helicobacter pylori and Schistosoma japonicum co-infection in a Chinese population: Helminth infection alters humoral responses to H. pylori and serum pepsinogen I/II ratio. Microbes Infect. 2006, 8, 52–60. [Google Scholar] [CrossRef]
- Mbuyi-Kalonji, L.; Barbé, B.; Nkoji, G.; Madinga, J.; Roucher, C.; Linsuke, S.; Hermy, M.; Heroes, A.S.; Mattheus, W.; Polman, K.; et al. Non-typhoidal Salmonella intestinal carriage in a Schistosoma mansoni endemic community in a rural area of the Democratic Republic of Congo. PLoS Negl. Trop. Dis. 2020, 14, e0007875. [Google Scholar] [CrossRef]
- Marege, A.; Seid, M.; Boke, B.; Thomas, S.; Arage, M.; Mouze, N.; Yohanes, T.; Woldemariam, M.; Manilal, A. Prevalence of Schistosoma mansoni–Salmonella coinfection among patients in southern Ethiopia. New Microbes New Infect. 2021, 40, 100842. [Google Scholar] [CrossRef] [PubMed]
- Bishop, H.G.; Inabo, H.I.; Ella, E.E. Salmonella-Bacteraemia and Diversity of Bacterial Uropathogens in Concomitant Urinary Schistosomiasis among Children in Jaba, Kaduna State, Nigeria. Int. J. Sci. Res. Environ. Sci. 2016, 4, 0228–0239. [Google Scholar] [CrossRef]
- Oyedeji, B.R.; Idris, O.O.; Agunbiade, B.T.; Olabiyi, O.E.; Oluboyo, B.O.; Okiki, P.A. Occurrence of Significant Bacteriuria Among Schistosomiasis Positive Individuals in Ekiti State, Nigeria. ABUAD Int. J. Nat. Appl. Sci. 2022, 2, 161–166. [Google Scholar] [CrossRef]
- Gendrel, D.; Kombila, M.; Beaudoin-Leblevec, G.; Richard-Lenoble, D. Nontyphoidal salmonellal septicemia in Gabonese children infected with Schistosoma intercalatum. Clin. Infect. Dis. 1994, 18, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Gadoth, A.; Mvumbi, G.; Hoff, N.A.; Musene, K.; Mukadi, P.; Ashbaugh, H.R.; Doshi, R.H.; Javanbakht, M.; Gorbach, P.; Okitolonda-Wemakoy, E.; et al. Urogenital schistosomiasis and sexually transmitted coinfections among pregnant women in a schistosome-endemic region of the Democratic Republic of Congo. Am. J. Trop. Med. Hyg. 2019, 101, 828. [Google Scholar] [CrossRef]
- Mhimbira, F.; Hella, J.; Said, K.; Kamwela, L.; Sasamalo, M.; Maroa, T.; Chiryamkubi, M.; Mhalu, G.; Schindler, C.; Reither, K.; et al. Prevalence and clinical relevance of helminth co-infections among tuberculosis patients in urban Tanzania. PLoS Negl. Trop. Dis. 2017, 11, e0005342. [Google Scholar] [CrossRef]
- Mduluza-Jokonya, T.L.; Naicker, T.; Jokonya, L.; Midzi, H.; Vengesai, A.; Kasambala, M.; Choto, E.; Rusakaniko, S.; Sibanda, E.; Mutapi, F.; et al. Association of Schistosoma haematobium infection morbidity and severity on co-infections in pre-school age children living in a rural endemic area in Zimbabwe. BMC Public Health 2020, 20, 1570. [Google Scholar] [CrossRef]
- Bullington, B.W.; Lee, M.H.; Mlingi, J.; Paul, N.; Aristide, C.; Fontana, E.; Littmann, E.R.; Mukerebe, C.; Shigella, P.; Kashangaki, P.; et al. Cervicovaginal bacterial communities in reproductive-aged Tanzanian women with Schistosoma mansoni, Schistosoma haematobium, or without schistosome infection. ISME J. 2021, 15, 1539–1550. [Google Scholar] [CrossRef]
- AOlogunde, C.; TAkinruli, F.; OLayo-Akingbade, T. Malaria Co–Infection with Urinary Schistosomiasis, Typhoid Fever, Hepatitis B Virus, and Human Immunodeficiency (HIV) Virus among Students in Three Local Government Areas of Ekiti State, South Western Nigeria. Asian J. Res. Infect. Dis. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Hamad, M.N. Relationship between intestinal Schistosomiasis and enteric fever among Sudanese patients, New Halfa Town, Kassala State, Sudan. J. Microbiol. Exp. 2020, 8, 109–113. [Google Scholar] [CrossRef]
- Mduluza-Jokonya, T.L.; Vengesai, A.; Jokonya, L.; Thakataka, A.; Midzi, H.; Mduluza, T.; Sibanda, E.; Naicker, T. Impact of Indolent Schistosomiasis on Morbidity and Mortality from Respiratory Tract Infections in Preschool Age Children from a Schistosomiasis Endemic Area. medRxiv 2020. [Google Scholar] [CrossRef]
- Range, N.; Magnussen, P.; Mugomela, A.; Malenganisho, W.; Changalucha, J.; Temu, M.M.; Mngara, J.; Krarup, H.; Friis, H.; Andersen, Å.B. HIV and parasitic co-infections in tuberculosis patients: A cross-sectional study in Mwanza, Tanzania. Ann. Trop. Med. Parasitol. 2007, 101, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Abate, E.; Belayneh, M.; Gelaw, A.; Idh, J.; Getachew, A.; Alemu, S.; Diro, E.; Fikre, N.; Britton, S.; Elias, D.; et al. The impact of asymptomatic helminth co-infection in patients with newly diagnosed tuberculosis in north-west Ethiopia. PLoS ONE 2012, 7, e42901. [Google Scholar] [CrossRef] [PubMed]
- Mohager, M.O.; Mohager, S.O.; Kaddam, L.A. The association between shistosomiasis and enteric fever in a single Schistosoma endemic area in Sudan. Int. J. Pharm. Sci. Res. 2014, 5, 2181. [Google Scholar]
- Dennison, C.L.; de Oliveira, L.B.; Fraga, L.A.; e Lima, R.S.; Ferreira, J.A.; Clennon, J.A.; de Mondesert, L.; Stephens, J.; Magueta, E.B.; Branco, A.C.; et al. Mycobacterium leprae–helminth co-infections and vitamin D deficiency as potential risk factors for leprosy: A case–control study in south-eastern Brazil. Int. J. Infect. Dis. 2021, 105, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Owino, V.O. Prevalence and Risk Factors Associated with Urinary Schistosomiasis among Women of Reproductive Age in Nyando Sub-County, Kenya. Ph.D. Thesis, University of Nairobi, Nairobi, Kenya, 2022. Available online: http://erepository.uonbi.ac.ke/handle/11295/162432 (accessed on 22 May 2024).
- Amoo, K.J.; Amoo, O.A.; Oke, A.A.; Adegboyega, T.T. Prevalence of urinary tract infection (UTI) and concomitant urinary schistosomiasis among primary school children in Remo north local government, Ogun state, Nigeria. IOSR J. Dent. Med. Sci. 2017, 16, 68–73. [Google Scholar]
- Yohanna, J.A.; Luka, J.S.; Dakul, D.A.; Bigila, D.A.; Akut, F. Schisotosoma haematobium and Urinary Tract Infection (UTI) in Some Part of Jos, Plateau State, Nigeria. Int. J. Sci. Technoledge 2016, 4, 5. [Google Scholar]
- Yirenya-Tawiah, D.R.; Amoah, C.M.; Apea-Kubi, K.A.; Dade, M.; Lomo, G.; Mensah, D.; Akyeh, L.; Bosompem, K.M. Female genital schistosomiasis, genital tract infections and HIV co-infection in the Volta basin of Ghana. Int. J. Trop. Dis. Health 2013, 3, 94–103. [Google Scholar] [CrossRef]
- Aniekwe, O.; Jolaiya, T.; Ajayi, A.; Adeleye, I.A.; Gerhard, M.; Smith, S.I. Co-infection of Helicobacter pylori and intestinal parasites in children of selected low-income communities in Lagos State, Nigeria. Parasitol. Int. 2024, 101, 102896. [Google Scholar] [CrossRef]
- Bajinka, O.; Qi, M.; Barrow, A.; Touray, A.O.; Yang, L.; Tan, Y. Pathogenicity of Salmonella during Schistosoma-Salmonella Co-infections and the importance of the gut microbiota. Curr. Microbiol. 2022, 79, 26. [Google Scholar] [CrossRef]
- Yang, Y.J.; Sheu, B.S. Metabolic interaction of Helicobacter pylori infection and gut microbiota. Microorganisms 2016, 4, 15. [Google Scholar] [CrossRef] [PubMed]
- Lila, A.S.; Rajab, A.A.; Abdallah, M.H.; Rizvi, S.M.; Moin, A.; Khafagy, E.S.; Tabrez, S.; Hegazy, W.A. Biofilm lifestyle in recurrent urinary tract infections. Life 2023, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Lundy, S.K.; Lukacs, N.W. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front. Immunol. 2013, 4, 39. [Google Scholar] [CrossRef] [PubMed]
- Kayongo, A.; Robertson, N.M.; Siddharthan, T.; Ntayi, M.L.; Ndawula, J.C.; Sande, O.J.; Bagaya, B.S.; Kirenga, B.; Mayanja-Kizza, H.; Joloba, M.L.; et al. Airway microbiome-immune crosstalk in chronic obstructive pulmonary disease. Front. Immunol. 2023, 13, 1085551. [Google Scholar] [CrossRef]
- Azevedo, M.M.; Pina-Vaz, C.; Baltazar, F. Microbes and cancer: Friends or faux? Int. J. Mol. Sci. 2020, 21, 3115. [Google Scholar] [CrossRef]
- Acharya, S.; Da’dara, A.A.; Skelly, P.J. Schistosome immunomodulators. PLoS Pathog. 2021, 17, e1010064. [Google Scholar] [CrossRef]
- Masamba, P.; Kappo, A.P. Immunological and biochemical interplay between cytokines, oxidative stress and schistosomiasis. Int. J. Mol. Sci. 2021, 22, 7216. [Google Scholar] [CrossRef]
- Tang, C.L.; Gao, Y.R.; Wang, L.X.; Zhu, Y.W.; Pan, Q.; Zhang, R.H.; Xiong, Y. Role of regulatory T cells in Schistosoma-mediated protection against type 1 diabetes. Mol. Cell. Endocrinol. 2019, 491, 110434. [Google Scholar] [CrossRef]
- Sturt, A.S.; Webb, E.L.; Francis, S.C.; Hayes, R.J.; Bustinduy, A.L. Beyond the barrier: Female genital schistosomiasis as a potential risk factor for HIV-1 acquisition. Acta Trop. 2020, 209, 105524. [Google Scholar] [CrossRef]
- Nwachukwu, I.O.; Ukaga, C.N.; Ajero, C.M.; Nwoke, B.E.; Nwachukwu, M.I.; Obasi, C.C.; Ezenwa, C.M. Urinary Schistosomiasis and concomitant Bacteriuria among school age children in some parts of Owerri, Imo State. Int. Res. J. Adv. Eng. Sci. 2018, 3, 107–115. [Google Scholar]
- Piérard, D.; De Greve, H.; Haesebrouck, F.; Mainil, J. O157: H7 and O104: H4 Vero/Shiga toxin-producing Escherichia coli outbreaks: Respective role of cattle and humans. Vet. Res. 2012, 43, 13. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, J.M.; Greenwich, J.L.; Davis, B.M.; Bronson, R.T.; Gebhart, D.; Williams, S.R.; Martin, D.; Scholl, D.; Waldor, M.K. An Escherichia coli O157-specific engineered pyocin prevents and ameliorates infection by E. coli O157: H7 in an animal model of diarrheal disease. Antimicrob. Agents Chemother. 2011, 55, 5469–5474. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.R.; Gaastra, M.L.; Brooks, H.J. Shiga (Vero)-toxigenic’Escherichia coli’: Epidemiology, virulence and disease. N. Z. J. Med. Lab. Sci. 2018, 72, 3–10. [Google Scholar]
- Mabbott, N.A. The influence of parasite infections on host immunity to co-infection with other pathogens. Front. Immunol. 2018, 9, 411219. [Google Scholar] [CrossRef] [PubMed]
- Chique, C.; Hynds, P.; Burke, L.P.; Morris, D.; Ryan, M.P.; O’Dwyer, J. Contamination of domestic groundwater systems by verotoxigenic Escherichia coli (VTEC), 2003–2019: A global scoping review. Water Res. 2021, 188, 116496. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International consensus guidelines for the optimal use of the polymyxins: Endorsed by the American college of clinical pharmacy (ACCP), European society of clinical microbiology and infectious diseases (ESCMID), infectious diseases society of America (IDSA), international society for anti-infective pharmacology (ISAP), society of critical care medicine (SCCM), and society of infectious diseases pharmacists (SIDP). Pharmacother. J. Hum. Pharmacol. Drug Ther. 2019, 39, 10–39. [Google Scholar]
- Giuffrè, M.; Campigotto, M.; Campisciano, G.; Comar, M.; Crocè, L.S. A story of liver and gut microbes: How does the intestinal flora affect liver disease? A review of the literature. Am. J. Physiol.-Gastrointest. Liver Physiol. 2020, 318, G889–G906. [Google Scholar] [CrossRef]
- Theresa, M.; Unni, A.S.; Geevarghese, A.; Sebastian, S.K.; Pareek, S.; Krishnankutty, R.E. Foodborne Pathogens and Food-Related Microorganisms. In Sequencing Technologies in Microbial Food Safety and Quality; CRC Press: Boca Raton, FL, USA, 2021; pp. 25–108. [Google Scholar]
- Salena, B.J.; Hunt, R.H.; Sagar, M.; Padol, I.; Armstrong, D.; Moayyedi, P.; Yuan, C.; Marshall, J. The stomach and duodenum. In First Principles of Gastroenterology: The Basis of Disease and an Approach to Management; Astra Pharmaceuticals Canada, Limited/Astra Pharmaceutiques Canada Itee: Mississauga, ON, Canada, 1994. [Google Scholar]
- Terreni, M.; Taccani, M.; Pregnolato, M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
- Lai, Y.C.; Lin, A.C.; Chiang, M.K.; Dai, Y.H.; Hsu, C.C.; Lu, M.C.; Liau, C.Y.; Chen, Y.T. Genotoxic klebsiella pneumoniae in Taiwan. PLoS ONE 2014, 9, e96292. [Google Scholar] [CrossRef]
- Cortés, A.; Toledo, R.; Cantacessi, C. Classic models for new perspectives: Delving into helminth–microbiota–immune system interactions. Trends Parasitol. 2018, 34, 640–654. [Google Scholar] [CrossRef]
- Ashour, D.S.; Othman, A.A. Parasite–bacteria interrelationship. Parasitol. Res. 2020, 119, 3145–3164. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; Midiri, A.; Gerace, E.; Marra, M.; Zummo, S.; Biondo, C. Urinary tract infections: The current scenario and future prospects. Pathogens 2023, 12, 623. [Google Scholar] [CrossRef] [PubMed]
- Tamborino, F.; Cicchetti, R.; Mascitti, M.; Litterio, G.; Orsini, A.; Ferretti, S.; Basconi, M.; De Palma, A.; Ferro, M.; Marchioni, M.; et al. Pathophysiology and Main Molecular Mechanisms of Urinary Stone Formation and Recurrence. Int. J. Mol. Sci. 2024, 25, 3075. [Google Scholar] [CrossRef] [PubMed]
- Espinosa-Ortiz, E.J.; Eisner, B.H.; Lange, D.; Gerlach, R. Current insights into the mechanisms and management of infection stones. Nat. Rev. Urol. 2019, 16, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Huang, Z.; Yang, T.; Wang, G.; Li, P.; Yang, B.; Li, J. Pathogenesis of Proteus mirabilis in catheter-associated urinary tract infections. Urol. Int. 2021, 105, 354–361. [Google Scholar] [CrossRef]
- Le, T.L.; Sokolow, S.H.; Hammam, O.; Fu, C.L.; Hsieh, M. Pathogenesis of human schistosomiasis. In Human Emerging and Re-Emerging Infections: Viral and Parasitic Infections; Conscious Leadership: Draper, UT, USA, 2015; pp. 481–504. [Google Scholar] [CrossRef]
- Nguyen, L.M.; Omage, J.I.; Noble, K.; McNew, K.L.; Moore, D.J.; Aronoff, D.M.; Doster, R.S. Group B streptococcal infection of the genitourinary tract in pregnant and non-pregnant patients with diabetes mellitus: An immunocompromised host or something more? Am. J. Reprod. Immunol. 2021, 86, e13501. [Google Scholar] [CrossRef]
- Dash, S.; Duraivelan, K.; Samanta, D. Cadherin-mediated host–pathogen interactions. Cell. Microbiol. 2021, 23, e13316. [Google Scholar] [CrossRef]
- Huang, X.; Pan, T.; Yan, L.; Jin, T.; Zhang, R.; Chen, B.; Feng, J.; Duan, T.; Xiang, Y.; Zhang, M.; et al. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis. 2021, 8, 781–797. [Google Scholar] [CrossRef]
- Uwandu, C.U.; Dike-Ndudim, J.N.; Ndubueze, C.W. Epidemiological studies on urinary schistosomiasis and bacterial co-infection in some rural communities of Abia State, Nigeria. World J. Biol. Pharm. Health Sci. 2022, 10, 065–072. [Google Scholar] [CrossRef]
- Çipe, F.; Arısoy, E.S.; Correa, A.G. Immunological Responses to Infection. In Pediatric ENT Infections; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–17. [Google Scholar]
- Arsene, M.M.; Viktorovna, P.I.; Davares, A.K.; Esther, N.; Nikolaevich, S.A. Urinary tract infections: Virulence factors, resistance to antibiotics, and management of uropathogenic bacteria with medicinal plants: A review. J. Appl. Pharm. Sci. 2021, 11, 001–012. [Google Scholar]
- Foster, N.; Tang, Y.; Berchieri, A.; Geng, S.; Jiao, X.; Barrow, P. Revisiting persistent Salmonella infection and the carrier state: What do we know? Pathogens 2021, 10, 1299. [Google Scholar] [CrossRef] [PubMed]
- Jajere, S.M. A review of Salmonella enterica with particular focus on the pathogenicity and virulence factors, host specificity and antimicrobial resistance including multidrug resistance. Vet. World 2019, 12, 504. [Google Scholar] [CrossRef] [PubMed]
- Andino, A.; Hanning, I. Salmonella enterica: Survival, colonization, and virulence differences among serovars. Sci. World J. 2015, 2015, 520179. [Google Scholar] [CrossRef] [PubMed]
- Wiedemann, M.; Voehringer, D. Immunomodulation and immune escape strategies of gastrointestinal helminths and schistosomes. Front. Immunol. 2020, 11, 572865. [Google Scholar] [CrossRef]
- Schramm, G.; Suwandi, A.; Galeev, A.; Sharma, S.; Braun, J.; Claes, A.K.; Braubach, P.; Grassl, G.A. Schistosome eggs impair protective Th1/Th17 immune responses against Salmonella infection. Front. Immunol. 2018, 9, 2614. [Google Scholar] [CrossRef]
- Domenico, B.; Alice, D.P.; Lorenza, L.; La Torre, G.; Cocchiara, R.A.; Sestili, C.; Del Cimmuto, A.; La Torre, G. The impact of environmental alterations on human microbiota and infectious diseases. In Environmental Alteration Leads to Human Disease: A Planetary Health Approach; Springer International Publishing: Cham, Switzerland, 2022; pp. 209–227. [Google Scholar]
- Wu, Y.; Duffey, M.; Alex, S.E.; Suarez-Reyes, C.; Clark, E.H.; Weatherhead, J.E. The role of helminths in the development of non-communicable diseases. Front. Immunol. 2022, 13, 941977. [Google Scholar] [CrossRef]
- Schlosser-Brandenburg, J.; Midha, A.; Mugo, R.M.; Ndombi, E.M.; Gachara, G.; Njomo, D.; Rausch, S.; Hartmann, S. Infection with soil-transmitted helminths and their impact on coinfections. Front. Parasitol. 2023, 2, 1197956. [Google Scholar] [CrossRef]
- O’Ferrall, A.M.; Musaya, J.; Stothard, J.R.; Roberts, A.P. Aligning antimicrobial resistance surveillance with schistosomiasis research: An interlinked One Health approach. Trans. R. Soc. Trop. Med. Hyg. 2024, 118, 498–504. [Google Scholar] [CrossRef]
- Behringer, D.C.; Karvonen, A.; Bojko, J. Parasite avoidance behaviours in aquatic environments. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170202. [Google Scholar] [CrossRef]
- Salkeld, D.; Hopkins, S.; Hayman, D. Emerging Zoonotic and Wildlife Pathogens: Disease Ecology, Epidemiology, and Conservation; Oxford University Press: Oxford, UK, 2023. [Google Scholar]
- Kay, G.L.; Millard, A.; Sergeant, M.J.; Midzi, N.; Gwisai, R.; Mduluza, T.; Ivens, A.; Nausch, N.; Mutapi, F.; Pallen, M. Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children. PLoS Negl. Trop. Dis. 2015, 9, e0003861. [Google Scholar] [CrossRef]
- Lin, D.; Song, Q.; Liu, J.; Chen, F.; Zhang, Y.; Wu, Z.; Sun, X.; Wu, X. Potential gut microbiota features for non-invasive detection of schistosomiasis. Front. Immunol. 2022, 13, 941530. [Google Scholar]
- Haraoui, L.P.; Blaser, M.J. The Microbiome and Infectious Diseases. Clin. Infect. Dis. 2023, 77 (Suppl. S6), S441–S446. [Google Scholar] [CrossRef] [PubMed]
- Minich, J.J.; Power, C.; Melanson, M.; Knight, R.; Webber, C.; Rough, K.; Bott, N.J.; Nowak, B.; Allen, E.E. The southern bluefin tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment. Front. Microbiol. 2020, 11, 2015. [Google Scholar] [CrossRef] [PubMed]
- Doughari, H.J.; Ndakidemi, P.A.; Human, I.S.; Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: An overview. Microbes Environ. 2011, 26, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Moreland, R.B.; Choi, B.I.; Geaman, W.; Gonzalez, C.; Hochstedler-Kramer, B.R.; John, J.; Kaindl, J.; Kesav, N.; Lamichhane, J.; Lucio, L.; et al. Beyond the usual suspects: Emerging uropathogens in the microbiome age. Front. Urol. 2023, 3, 1212590. [Google Scholar] [CrossRef]
- Severgnini, M.; Morselli, S.; Camboni, T.; Ceccarani, C.; Salvo, M.; Zagonari, S.; Patuelli, G.; Pedna, M.F.; Sambri, V.; Foschi, C.; et al. Gardnerella vaginalis clades in pregnancy: New insights into the interactions with the vaginal microbiome. PLoS ONE 2022, 17, e0269590. [Google Scholar] [CrossRef]
- Gonzalez, G.A.; Porto, G.; Tecce, E.; Oghli, Y.S.; Miao, J.; O’Leary, M.; Chadid, D.P.; Vo, M.; Harrop, J. Advances in diagnosis and management of atypical spinal infections: A comprehensive review. N. Am. Spine Soc. J. (NASSJ) 2023, 16, 100282. [Google Scholar] [CrossRef]
- DellitTH, O.R.; McGowan, J.E. Harrinarine Madhosingh, MD, FACP, FIDSA. Med. Secrets E-Book Med. Secrets E-Book 2018, 59, 302. [Google Scholar]
- Dunachie, S.J.; Esmail, H.; Corrigan, R.; Dudareva, M. Infectious Disease. In Medicine for Finals and Beyond; CRC Press: Boca Raton, FL, USA, 2022; pp. 21–82. [Google Scholar]
- Ajibola, O.; Rowan, A.D.; Ogedengbe, C.O.; Mshelia, M.B.; Cabral, D.J.; Eze, A.A.; Obaro, S.; Belenky, P. Urogenital schistosomiasis is associated with signatures of microbiome dysbiosis in Nigerian adolescents. Sci. Rep. 2019, 9, 829. [Google Scholar] [CrossRef]
- Ajibola, O.; Penumutchu, S.; Gulumbe, B.; Aminu, U.; Belenky, P. Longitudinal analysis of the impacts of urogenital schistosomiasis on the gut microbiota of adolescents in Nigeria. Res. Sq. 2023. [Google Scholar]
- Lehtoranta, L.; Ala-Jaakkola, R.; Laitila, A.; Maukonen, J. Healthy vaginal microbiota and influence of probiotics across the female life span. Front. Microbiol. 2022, 13, 819958. [Google Scholar] [CrossRef] [PubMed]
- Takada, K.; Melnikov, V.G.; Kobayashi, R.; Komine-Aizawa, S.; Tsuji, N.M.; Hayakawa, S. Female reproductive tract-organ axes. Front. Immunol. 2023, 14, 1110001. [Google Scholar] [CrossRef] [PubMed]
- Sturt, A.S. The Cervicovaginal Environment and HIV Incidence in Zambian Women with Female Genital Schistosomiasis. Ph.D. Thesis, London School of Hygiene & Tropical Medicine, London, UK, 2021. [Google Scholar]
- Chee, W.J.; Chew, S.Y.; Than, L.T. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb. Cell Factories 2020, 19, 203. [Google Scholar] [CrossRef] [PubMed]
- Adebayo, A.S.; Survayanshi, M.; Bhute, S.; Agunloye, A.M.; Isokpehi, R.D.; Anumudu, C.I.; Shouche, Y.S. The microbiome in urogenital schistosomiasis and induced bladder pathologies. PLoS Negl. Trop. Dis. 2017, 11, e0005826. [Google Scholar]
- Colella, M.; Topi, S.; Palmirotta, R.; D’Agostino, D.; Charitos, I.A.; Lovero, R.; Santacroce, L. An overview of the microbiota of the human urinary tract in health and disease: Current issues and perspectives. Life 2023, 13, 1486. [Google Scholar] [CrossRef]
- Chen, X.; Lu, Y.; Chen, T.; Li, R. The female vaginal microbiome in health and bacterial vaginosis. Front. Cell. Infect. Microbiol. 2021, 11, 631972. [Google Scholar] [CrossRef]
- Rosca, A.S.; Castro, J.; Sousa, L.G.; Cerca, N. Gardnerella and vaginal health: The truth is out there. FEMS Microbiol. Rev. 2020, 44, 73–105. [Google Scholar] [CrossRef]
- Ravel, J.; Moreno, I.; Simón, C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am. J. Obstet. Gynecol. 2021, 224, 251–257. [Google Scholar] [CrossRef]
- Dabee, S.; Passmore, J.A.; Heffron, R.; Jaspan, H.B. The complex link between the female genital microbiota, genital infections, and inflammation. Infect. Immun. 2021, 89. [Google Scholar] [CrossRef]
- Christinet, V.; Lazdins-Helds, J.K.; Stothard, J.R.; Reinhard-Rupp, J. Female genital schistosomiasis (FGS): From case reports to a call for concerted action against this neglected gynaecological disease. Int. J. Parasitol. 2016, 46, 395–404. [Google Scholar] [CrossRef]
- Sadeghi-Bojd, S.; Naghshizadian, R.; Mazaheri, M.; Ghane Sharbaf, F.; Assadi, F. Efficacy of probiotic prophylaxis after the first febrile urinary tract infection in children with normal urinary tracts. J. Pediatr. Infect. Dis. Soc. 2020, 9, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, V.; Choi, H.W. The urinary microbiome: Role in bladder cancer and treatment. Diagnostics 2022, 12, 2068. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Asare, K.K.; Afful, P.; Abotsi, G.K.; Adu-Gyamfi, C.O.; Benyem, G.; Katawa, G.; Arndts, K.; Ritter, M. Schistosomiasis Endemicity and its Role in Sexually Transmitted Infections-A Systematic Review and Meta-analysis. Front. Parasitol. 2024, 3, 1451149. [Google Scholar] [CrossRef]
- da Paz, V.R.; Figueiredo-Vanzan, D.; dos Santos Pyrrho, A. Interaction and involvement of cellular adhesion molecules in the pathogenesis of Schistosomiasis mansoni. Immunol. Lett. 2019, 206, 11–18. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, L.; Liang, Y.; Lu, L. Pathology and molecular mechanisms of Schistosoma japonicum-associated liver fibrosis. Front. Cell. Infect. Microbiol. 2022, 12, 1035765. [Google Scholar] [CrossRef]
- Partida-Rodríguez, O.; Serrano-Vázquez, A.; Nieves-Ramírez, M.E.; Moran, P.; Rojas, L.; Portillo, T.; González, E.; Hernández, E.; Finlay, B.B.; Ximenez, C. Human intestinal microbiota: Interaction between parasites and the host immune response. Arch. Med. Res. 2017, 48, 690–700. [Google Scholar] [CrossRef]
- Stark, K.A.; Rinaldi, G.; Cortés, A.; Costain, A.; MacDonald, A.S.; Cantacessi, C. The role of the host gut microbiome in the pathophysiology of schistosomiasis. Parasite Immunol. 2023, 45, e12970. [Google Scholar] [CrossRef]
- Stark, K.A.; Rinaldi, G.; Costain, A.; Clare, S.; Tolley, C.; Almeida, A.; McCarthy, C.; Harcourt, K.; Brandt, C.; Lawley, T.D.; et al. Gut microbiota and immune profiling of microbiota-humanised versus wildtype mouse models of hepatointestinal schistosomiasis. Anim. Microbiome 2024, 6, 36. [Google Scholar] [CrossRef]
- Martin, I.; Kaisar, M.M.; Wiria, A.E.; Hamid, F.; Djuardi, Y.; Sartono, E.; Rosa, B.A.; Mitreva, M.; Supali, T.; Houwing-Duistermaat, J.J.; et al. The effect of gut microbiome composition on human immune responses: An exploration of interference by helminth infections. Front. Genet. 2019, 10, 1028. [Google Scholar] [CrossRef]
- Cortés, A.; Martin, J.; Rosa, B.A.; Stark, K.A.; Clare, S.; McCarthy, C.; Harcourt, K.; Brandt, C.; Tolley, C.; Lawley, T.D.; et al. The gut microbial metabolic capacity of microbiome-humanized vs. wild type rodents reveals a likely dual role of intestinal bacteria in hepato-intestinal schistosomiasis. PLoS Negl. Trop. Dis. 2022, 16, e0010878. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, M.S.; Zaghloul, T.M.; Bishr, M.K.; Baumann, B.C. Urinary schistosomiasis and the associated bladder cancer: Update. J. Egypt. Natl. Cancer Inst. 2020, 32, 44. [Google Scholar] [CrossRef] [PubMed]
- Grondin, J.A.; Jamal, A.; Mowna, S.; Seto, T.; Khan, W.I. Interaction between Intestinal Parasites and the Gut Microbiota: Implications for the Intestinal Immune Response and Host Defence. Pathogens 2024, 13, 608. [Google Scholar] [CrossRef] [PubMed]
- Lacorcia, M.; Prazeres da Costa, C.U. Maternal Schistosomiasis: Immunomodulatory effects with lasting impact on allergy and vaccine responses. Front. Immunol. 2018, 9, 2960. [Google Scholar] [CrossRef]
- Whiteside, S.A.; Razvi, H.; Dave, S.; Reid, G.; Burton, J.P. The microbiome of the urinary tract—A role beyond infection. Nat. Rev. Urol. 2015, 12, 81–90. [Google Scholar] [CrossRef]
Schistosoma Species | Type of Bacteria Present | Country | Number of Participants | Males | Females | Methodology | Samples Used for Bacteria Isolation | Samples Used for Schistosoma Identification | Reference |
---|---|---|---|---|---|---|---|---|---|
S. haematobium | Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus Staphylococcus saprophyticus Serratia, and Proteus | Nigeria | 509 | 263 | 246 | Microscopy, bacteria culture and Gram staining | Urine | Urine | [43] |
S. haematobium | Escherichia coli, Klebsiella spp., Pseudomonas spp., Moraxella spp., and Streptococcus | Senegal | 17,107 | Not stated | Not stated | Microscopy, bacteria culture, Gram staining, biochemical tests and antimicrobial susceptibility testing | Urine | Urine | [44] |
S. haematobium | Escherichia coli and Klebsiella spp. | Nigeria | 443 | Not stated | Not stated | Urine microscopy and bacteria culture | Urine | Urine | [45] |
S. haematobium | Not stated | Nigeria | 960 | 306 | 654 | Sample culture, Gram staining and biochemical tests, urinalysis | Urine | Urine | [46] |
S. haematobium | Escherichia coli, Staphylococcus aureus, and Klebsiella species | Nigeria | 842 | 416 | 426 | Urine filtration and microscopy, urinalysis, urine culture | Urine | Urine | [47] |
S. haematobium | Klebsiella pneumonia, Proteus vulgaris, Escherichia coli, Yersinia enterocolitica, Staphylococcus aureus, Enterobacter aerogenes, Salmonella enterica, and Pseudomonas aeruginosa | Nigeria | 109 | 35 | 74 | Urine sedimentation and microscopy, urine culture, antimicrobial susceptibility testing | Urine | Urine | [48] |
S. haematobium | Staphylococcus aureus, hemolytic Staphylococcus albus, Proteus mirabilis, Klebsiella, Escherichia coli, Streptococcus faecelis, S. viridiens, S. haemolyticus, various strains of staphylococci and Pseudomonas aeruginosa. | Egypt | 82 | Not stated | Not stated | Urine filtration and microscopy, urine analysis, Urine culture, Gram staining, and biochemical tests. | Urine | Urine | [49] |
S. haematobium | Escherichia coli, Klebsiella species, and Proteus species. | Egypt | 390 | 167 | 223 | Urine culture, biochemical tests | Urine | Urine | [50] |
S. haematobium | Escherichia sp., Klebsiella sp., Staphylococcus sp., and Salmonella typhi | Nigeria | 656 | 370 | 286 | Sedimentation and microscopy, urine culture, intradermal tests, flocculation tests and fluorescent antibody tests | Urine | Urine | [51] |
S. japonicum | H. pylori | China | 150 | 79 | 71 | Kato Katz and microscopy, ELISA, | Blood | Stool | [52] |
S. mansoni | Salmonella sp. | Democratic Republic of Congo | 1108 | 504 | 554 | Kato Katz and microscopy, stool and blood cultures, biochemical tests and antibiotic susceptibility testing | Stool | Stool | [53] |
S. mansoni | Salmonella sp. | Ethiopia | 271 | 165 | 106 | Wet mount and stool concentration (formalin–ether concentration technique), Widal test, stool culture and biochemical tests and antimicrobial susceptibility test | Stool | Stool | [54] |
S. haematobium | Citrobacter spp., E. coli, Klebsiella spp., Acinetobacter spp., Providencia spp., Pseudomonas, Serratia | Nigeria | 505 | 254 | 251 | Sedimentation and microscopy, urine culture, biochemical tests | Urine and blood | Urine | [55] |
S. haematobium | Salmonella enterica, serovar Paratyphi, Citrobacter freundii, Enterobacter aerogenes, Morganella morgani, Vibrio mirabilis, Escherichia coli, Neisseria species, Streptococcus pneumoniae, Corynebacterium xerosis, Bacillus cereus, Kurthia gibsoni, Enterococcus faecalis, Staphylococcus aureus, Streptococcus mitis and Staphylococcus saprophyticus. | Nigeria | 244 | Not stated | Not stated | Sedimentation and microscopy, urinalysis, urine culture, biochemical tests, PCR, antibiotic susceptibility test | Urine | Urine | [56] |
S. intercalatum | Salmonella spp. | Gabon | 125 | 68 | 57 | ELISA, Blood culture, antimicrobial susceptibility test, Rectal biopsy | Blood | Rectal biopsy | [57] |
S. haematobium | Chlamydia trachomatis and Neisseria gonorrhoeae | Democratic Republic of Congo | 367 | 0 | 367 | Urine filtration and microscopy, nucleic acid amplification test (NAAT), | Vaginal swab | Urine | [58] |
S. haematobium and S. mansoni | Mycobacterium tuberculosis | Tanzania | 972 | 585 | 387 | Baermann, FLOTAC, Kato–Katz, point-of-care circulating cathodic antigen urine cassette test, urine filtration, bacterial culture, AFB sputum smear using Ziehl–Nielsen methods and d Gene Xpert MTB/RIF | Sputum | Blood, stool and urine | [59] |
S. haematobium | Upper Respiratory Tract Infection (No specific bacteria stated) | Zimbabwe | 415 | Not stated | Not stated | Hematuria check, clinical examination, Maglumi 4000 chemiluminescence immunoassay analyzer (CLIA) and urine filtration. | Not stated | Stool and urine | [60] |
S. haematobium and S. mansoni | Lactobacillus, Gardnerella, Megasphaera, and Sneathia, Peptostreptococcus anaerobius, Prevotella timonesis | Tanzania | 134 | 0 | 134 | Microscopy and CAA, PCR and sequencing | Cervical swab | Stool and urine | [61] |
S. haematobium | No Salmonella sp. isolated | Nigeria | 306 | 118 | 188 | Solid Rapid diagnostic test kit, urine sedimentation and microscopy | Blood (Serology) | Urine | [62] |
S. mansoni | S. paratyphi B and S. typhi | Sudan | 75 | 29 | 46 | Kato–Katz, stool culture, gram staining, biochemical tests and Widal test | Stool | Stool | [63] |
S. haematobium | Upper Respiratory Tract Infection (No specific bacteria stated) | Zimbabwe | 235 | 129 | 108 | Clinical examination, hematuria examination using Uristix reagent strips, urine filtration method, and microscopy | Not stated | Urine | [64] |
S. haematobium and S. mansoni | Mycobacterium tuberculosis | Tanzania | 655 | 386 | 269 | Sputum culture and microscopy, Kato–Katz, membrane filtration and microscopy. | Sputum | Stool and urine | [65] |
S. mansoni | Mycobacterium tuberculosis | Ethiopia | 295 | 181 | 114 | Sputum smear and microscopy, Kato–Katz technique, ELISA | Sputum | Stool | [66] |
S. haematobium and S. mansoni | Salmonella spp. | Saudi Arabia | 288 | Not stated | Not stated | Clinical examination, Kato thick smear technique, centrifugation and microscopy, urine and stool culture, Gram staining and biochemical tests | Stool and urine | Stool and urine | [67] |
S. mansoni | Mycobacterium leprae | Brazil | 256 | 123 | 133 | Kato–Katz and Hoffman–Pons–Janer methods | Skin slit | Blood and stool | [68] |
S. haematobium and S. mansoni | Not stated | Kenya | 345 | 0 | 345 | Urine centrifugation and microscopy, Kato–Katz technique | Stool and urine | Stool and urine | [69] |
S. haematobium | Staphylococcus aureus, Proteus species, Klebsiella species, Escherichia coli, Pseudomonas aeruginosa, Streptococcus species | Nigeria | 280 | 120 | 160 | Urinalysis, urine microscopy, urine culture, biochemical tests and Gram staining | Urine | Urine | [70] |
S. haematobium | Escherichia coli, Staphylococcus aureus, Klebsiella species | Nigeria | 1024 | 352 | 672 | Urine culture, biochemical tests | Urine | Urine | [71] |
S. haematobium | Bacterial vaginosis (No specific bacteria stated) | Ghana | 385 | Not stated | Not stated | Compressed biopsy technique | Vaginal swab and blood | Cervical biopsy | [72] |
S. mansoni | H. pylori | Nigeria | 151 | Not stated | Not stated | Stool antigen test and conventional PCR assay, formol-ether concentration and nested PCR assay | Stool | Stool | [73] |
Treatment | Specific Bacteria Species | Bacteria Found in Both Categories |
---|---|---|
Praziquantel | H. pylori [52], Acinetobacter spp. [55], Providencia spp. [55], Chlamydia [58], Lactobacillus [61], Gardnerella [61], Megasphaera [61], Sneathia [61], Peptostreptococcus [61], and Prevotella [61]. | Salmonella [48,51,53,54,56,57,63,67], Citrobacter spp. [55,56], Escherichia coli [43,44,45,47,48,49,50,51,55,56,70,71], Klebsiella spp. [43,44,45,47,48,49,50,51,55,70,71], Pseudomonas [43,44,48,49,55,70], Serratia [43,55], Neisseria [56,58], Mycobacterium [59,65,66,68]. |
No praziquantel | Enterococcus [43,56], Staphylococcus [43,44,47,48,49,51,56,70,71], Proteus [43,48,49,50,70], Moraxella spp. [44], Streptococcus [44,49,56,70], Yersinia [48], Enterobacter [48,56], Morganella [56], Vibrio [56], Corynebacterium [56], Bacillus [56], Kurthia [56]. | |
Gender | ||
Male only | Staphylococcus species [49], Proteus species. [49,50], Klebsiella [49,50], Escherichia coli [49,50], Streptococcus species [49], and Pseudomonas [49]. | Enterococcus [43], Escherichia [43,45,47,48,51,55,70,71], Klebsiella [43,45,47,48,51,55,70,71], Pseudomonas [43,48,55,70], Staphylococcus [43,47,48,51,70,71], Serratia [43,55], Proteus [43,48,70], Yersinia [48], Salmonella [48,51,53,54,57,63], H. pylori [52], Citrobacter [55], Acinetobacter [55], Providencia [55], Mycobacterium [59,65,66,68], Streptococcus [70], Enterobacter [48] |
Female only | Chlamydia [58], Neisseria [58], Lactobacillus [61], Gardnerella [61], Megasphaera [61], Sneathia [61], Peptostreptococcus [61], and Prevotella [61]. | |
Not Stated | Salmonella [56,67], Citrobacter [56], Enterobacter [44,56], Morganella [56], Vibrio [56], Escherichia coli [44,56], Neisseria species [56], Streptococcus [44,56], Corynebacterium [56], Bacillus [56], Kurthia [56], Enterococcus [56], Staphylococcus [44,56], Klebsiella species [44], Pseudomonas spp. [44], and Moraxella spp. [44]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afful, P.; Abotsi, G.K.; Adu-Gyamfi, C.O.; Benyem, G.; Katawa, G.; Kyei, S.; Arndts, K.; Ritter, M.; Asare, K.K. Schistosomiasis–Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens 2024, 13, 906. https://doi.org/10.3390/pathogens13100906
Afful P, Abotsi GK, Adu-Gyamfi CO, Benyem G, Katawa G, Kyei S, Arndts K, Ritter M, Asare KK. Schistosomiasis–Microbiota Interactions: A Systematic Review and Meta-Analysis. Pathogens. 2024; 13(10):906. https://doi.org/10.3390/pathogens13100906
Chicago/Turabian StyleAfful, Philip, Godwin Kwami Abotsi, Czarina Owusua Adu-Gyamfi, George Benyem, Gnatoulma Katawa, Samuel Kyei, Kathrin Arndts, Manuel Ritter, and Kwame Kumi Asare. 2024. "Schistosomiasis–Microbiota Interactions: A Systematic Review and Meta-Analysis" Pathogens 13, no. 10: 906. https://doi.org/10.3390/pathogens13100906