Identifying New Areas of Endemicity and Risk Factors for Rickettsia conorii subsp. conorii Infection: Serosurvey in Rural Areas of Romania
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Collection of Blood Samples
2.3. Detection of Antibodies against Rickettsia conorii
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Portillo, A.; Santibáñez, S.; García-Álvarez, L.; Palomar, A.M.; Oteo, J.A. Rickettsioses in Europe. Microbes Infect. 2015, 17, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Guillemi, E.C.; Tomassone, L.; Farber, M.D. Tick-borne rickettsiales: Molecular tools for the study of an emergent group of pathogens. J. Microbiol. Methods 2015, 119, 87–97. [Google Scholar] [CrossRef]
- Adem, P.V. Emerging and re-emerging rickettsial infections. Semin. Diagn. Pathol. 2019, 36, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Sun, Y.Q.; Chen, J.J.; Teng, A.-Y.; Wang, T.; Li, H.; Hay, S.I.; Fang, L.-Q.; Yang, Y.; Liu, W. Mapping the global distribution of spotted fever group rickettsiae: A systematic review with modelling analysis. Lancet Digit. Health 2023, 5, e5–e15. [Google Scholar] [CrossRef]
- Ivan, T.; Matei, I.A.; Novac, C.Ș.; Kalmár, Z.; Borșan, S.-D.; Panait, L.-C.; Gherman, C.M.; Ionică, A.M.; Papuc, I.; Mihalca, A.D. Spotted Fever Group Rickettsia spp. Diversity in Ticks and the First Report of Rickettsia hoogstraalii in Romania. Vet. Sci. 2022, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Borşan, S.D.; Ionică, A.M.; Galon, C.; Toma-Naic, A.; Peştean, C.; Sándor, A.D.; Moutailler, S.; Mihalca, A.D. High Diversity, Prevalence, and Co-infection Rates of Tick-Borne Pathogens in Ticks and Wildlife Hosts in an Urban Area in Romania. Front. Microbiol. 2021, 12, 645002. [Google Scholar] [CrossRef]
- Nicholson, W.L.; Sonenshine, D.E.; Noden, B.H.; Brown, R.N. Chapter 27—Ticks (Ixodida). In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 603–672. ISBN 9780128140437. [Google Scholar] [CrossRef]
- van Eekeren, L.E.; de Vries, S.G.; Wagenaar, J.F.P.; Spijker, R.; Grobusch, M.P.; Goorhuis, A. Under-diagnosis of rickettsial disease in clinical practice: A systematic review. Travel. Med. Infect. Dis. 2018, 26, 7–15. [Google Scholar] [CrossRef]
- Spernovasilis, N.; Markaki, I.; Papadakis, M.; Mazonakis, N.; Ierodiakonou, D. Mediterranean Spotted Fever: Current Knowledge and Recent Advances. Trop. Med. Infect. Dis. 2021, 6, 172. [Google Scholar] [CrossRef]
- Andersson, M.O.; Tolf, C.; Tamba, P.; Stefanache, M.; Radbea, G.; Frangoulidis, D.; Tomaso, H.; Waldenström, J.; Dobler, G.; Chitimia-Dobler, L. Molecular survey of neglected bacterial pathogens reveals an abundant diversity of species and genotypes in ticks collected from animal hosts across Romania. Parasites Vectors 2018, 11, 144. [Google Scholar] [CrossRef]
- Cambrea, S.C.; Badiu, D.; Ionescu, C.; Penciu, R.; Pazara, L.; Mihai, C.M.; Cambrea, M.A.; Mihai, L. Boutonneuse Fever in Southeastern Romania. Microorganisms 2023, 11, 2734. [Google Scholar] [CrossRef]
- Ionita, M.; Silaghi, C.; Mitrea, I.L.; Edouard, S.; Parola, P.; Pfister, K. Molecular detection of Rickettsia conorii and other zoonotic spotted fever group rickettsiae in ticks, Romania. Ticks Tick Borne Dis. 2016, 7, 150–153. [Google Scholar] [CrossRef]
- Serban, R. Boutonneuse fever in Romania between 2000–2008. Bull. Transilv. Univ. Bras. Ser. VI Med. Sci. 2012, 54, 63–70. [Google Scholar]
- Romanian National Center for Surveillance and Control of Transmittable Diseases—Surveillance System for MSF (Centrul National de Supraveghere si Control a Bolilor Transmisibile—Sistemul de Supraveghere al Febrei butonoase Mediteraneene). Available online: https://www.cnscbt.ro/index.php/analiza-date-supraveghere/febra-butonoasa/967-analiza-febrei-butonoase-in-sudul-romainiei-in-anul-2017/file (accessed on 30 July 2024).
- Romanian National Methodology of Surveillance of Boutonneuse Fever. Available online: https://cnscbt.ro/index.php/metodologii/febra-buronoasa (accessed on 25 August 2024).
- Manufacturer’s Instructions. Available online: https://www.vircell.com/producto/rickettsia-conorii-elisa (accessed on 18 January 2024).
- Parola, P.; Paddock, C.D.; Raoult, D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clin. Microbiol. Rev. 2005, 18, 719–756. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Peña, A. Climate, niche, ticks, and models: What they are and how we should interpret them. Parasitol. Res. 2008, 103 (Suppl. S1), S87–S95. [Google Scholar] [CrossRef]
- Serban, R.; Radu, I.; Codita, I. Rickettsia conorii specific Ig G antibodies: A seroepidemiologic survey in Constanta and Tulcea counties and Bucharest, Romania, 2009. Rev. Romana Med. Lab. 2013, 21, 431–436. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Brunner, J.L. Climate change and Ixodes tick-borne diseases of humans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140051. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, G.; Beetch, J.E.; Heller, J.G.; Naqvi, O.H.; Kuhn, K.G. Assessing the Influence of Climate Change and Environmental Factors on the Top Tick-Borne Diseases in the United States: A Systematic Review. Microorganisms 2023, 12, 50. [Google Scholar] [CrossRef]
- Semenza, J.C.; Suk, J.E. Vector-borne diseases and climate change: A European perspective. FEMS Microbiol. Lett. 2018, 365, fnx244. [Google Scholar] [CrossRef]
- Gilbert, L. The Impacts of Climate Change on Ticks and Tick-Borne Disease Risk. Annu. Rev. Entomol. 2021, 66, 373–388. [Google Scholar] [CrossRef]
- Ogden, N.H.; Lindsay, L.R. Effects of Climate and Climate Change on Vectors and Vector-Borne Diseases: Ticks Are Different. Trends Parasitol. 2016, 32, 646–656. [Google Scholar] [CrossRef]
- de Sousa, R.; Luz, T.; Parreira, P.; Santos-Silva, M.; Bacellar, F. Boutonneuse fever and climate variability. Ann. N. Y. Acad. Sci. 2006, 1078, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Annual Climate Characterization for Romania in 2023: An Analysis of Temperature and Precipitation Patterns. Available online: https://www.meteoromania.ro/clim/caracterizare-anuala/cc_2023.html (accessed on 25 August 2024).
- Raileanu, C.; Moutailler, S.; Porea, D.; Oslobanu, L.; Anita, D.; Anita, A.; Vayssier-Taussat, M.; Savuta, G. Molecular Evidence of Rickettsia spp., Anaplasma phagocytophilum, and “Candidatus Neoehrlichia mikurensis” in Ticks from Natural and Urban Habitats in Eastern Romania. Vector Borne Zoonotic Dis. 2018, 18, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Andersson, M.O.; Marga, G.; Banu, T.; Dobler, G.; Chitimia-Dobler, L. Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania. Parasitol. Res. 2018, 117, 1591–1597. [Google Scholar] [CrossRef]
- Matei, I.A.; Kalmár, Z.; Lupşe, M.; D’amico, G.; Ionică, A.M.; Dumitrache, M.O.; Gherman, C.M.; Mihalca, A.D. The risk of exposure to rickettsial infections and human granulocytic anaplasmosis associated with Ixodes ricinus tick bites in humans in Romania: A multiannual study. Ticks Tick Borne Dis. 2017, 8, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Sándor, A.D.; Kalmár, Z.; Matei, I.; Ionică, A.M.; Mărcuţan, I.D. Urban Breeding Corvids as Disseminators of Ticks and Emerging Tick-Borne Pathogens. Vector Borne Zoonotic Dis. 2017, 17, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Matei, I.A.; Corduneanu, A.; Sándor, A.D.; Ionică, A.M.; Panait, L.; Kalmár, Z.; Ivan, T.; Papuc, I.; Bouari, C.; Fit, N. Rickettsia spp. in bats of Romania: High prevalence of Rickettsia monacensis in two insectivorous bat species. Parasites Vectors 2021, 14, 107, Erratum in Parasites Vectors 2021, 14, 187. [Google Scholar] [CrossRef] [PubMed]
- Mărcuţan, I.D.; Kalmár, Z.; Ionică, A.M.; D’Amico, G.; Mihalca, A.D.; Vasile, C. Spotted fever group rickettsiae in ticks of migratory birds in Romania. Parasit Vectors 2016, 9, 294. [Google Scholar] [CrossRef]
- Ortuño, A.; Pons, I.; Nogueras, M.M.; Castellà, J.; Segura, F. The dog as an epidemiological marker of Rickettsia conorii infection. Clin. Microbiol. Infect. 2009, 15 (Suppl. S2), 241–242. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.L.; Killmaster, L.F.; Zemtsova, G.E. Domestic dogs (Canis familiaris) as reservoir hosts for Rickettsia conorii. Vector Borne Zoonotic Dis. 2012, 12, 28–33. [Google Scholar] [CrossRef]
- Guccione, C.; Colomba, C.; Iaria, C.; Cascio, A. Rickettsiales in the WHO European Region: An update from a One Health perspective. Parasites Vectors 2023, 16, 41. [Google Scholar] [CrossRef]
Study Population and Counties, N (%) | Alba N = 93 (20.3) | Hunedoara N = 107 (23.3) | Neamt N = 93 (20.3) | Sibiu N = 70 (15.4) | Suceava N = 96 (20.9) | Total N = 459 (95% CI) |
---|---|---|---|---|---|---|
Male sex, N (%) | 33 (35.5) | 26 (24.3) | 19 (20.4) | 20 (28.6) | 32 (33.3) | 130 (28.3) (24.2–32.7) |
Female sex, N (%) | 60 (64.5) | 81 (75.7) | 74 (79.6) | 50 (71.4) | 64 (66.7) | 329 (71.7) (67.3–75.8) |
Median age (years) (IQR) | 59 (50–66) | 59 (51–69) | 70 (59–75.5) | 54.5 (48–68) | 58 (48–67.75) | 60 (50–71) |
Profession at risk 1, N (%) | 15 (16.1) | 7 (6.5) | 42 (45.2) | 2 (2.9) | 29 (30.2) | 95 (20.7) (17.1–24.7) |
Domestic animals in household 2, N (%) | 79 (84.9) | 85 (79.4) | 65 (69.9) | 31 (44.3) | 92 (95.8) | 352 (76.7) (72.5–80.5) |
Contact with dogs, N (%) | 42 (45.2) | 43 (40.2) | 39 (41.9) | 18(25.7) | 82 (85.4) | 224 (48.8) (44.1–53.5) |
Contact with livestock, N (%) | 53 (57) | 25 (23.4) | 34 (36.6) | 6 (8.6) | 41 (42.7) | 159 (34.6) (30.3–39.2) |
Tick infestation of their household animals, N (%) | 43 (46.2) | 35 (32.7) | 20 (21.5) | 8 (11.4) | 38 (39.6) | 144 (31.4) (27.2–35.8) |
Mushroom collector, N (%) | 32 (34.4) | 26 (24.3) | 16 (17.2) | 0 | 59 (61.5) | 133 (29) (24.9–33.4) |
Tick bite history, N (%) | 49 (52.7) | 40 (37.4) | 25 (26.9) | 13 (18.6) | 11(11.5) | 138 (30.1) (25.9–34.5) |
ELISA R. conorii positive samples, N (%) (95% CI) | 10 (10.8) (5.3–18.9) | 24 (22.4) (14.9–31.5) | 9 (9.7) (4.5–17.6) | 5 (7.1) (2.4–15.9) | 16 (16.7) (9.8–25.6) | 64 (13.9) (10.9–17.5) |
Study Population and Counties, N (%) | Positive Samples N = 64 | Negative Samples N = 395 | Total Samples N = 459 | OR (95% CI) | p-Value |
---|---|---|---|---|---|
Male sex, N (%) | 22 (34.4) | 108 (27.3) | 130 (28.3) | 1.25 (0.86–1.82) | 0.2 |
Female sex, N (%) | 42 (65.6) | 287 (72.7) | 329 (71.7) | 0.9 (0.74–1.1) | 0.2 |
Median age (IQR) (years) | 68 (54.2–76) | 59 (49–69) | 60 (50–71) | - | - |
Age > 65, N (%) | 35 (54.7) | 150 (38) | 185 (40.3) | 1.97 (1.16–3.36) | 0.01 |
Profession at risk 1, N (%) | 16 (25) | 79 (20) | 95 (20.7) | 1.25 (0.78–1.99) | 0.3 |
Domestic animals in household 2, N (%) | 53 (82.8) | 299 (75.7) | 352 (76.7) | 1.09 (0.96–1.23) | 0.2 |
Contact with dogs, N (%) | 24 (37.5) | 200 (50.6) | 224 (48.8) | 0.74 (0.53–1.03) | 0.05 |
Contact with livestock, N (%) | 27 (42.2) | 132 (33.4) | 159 (34.6) | 1.26 (0.91–1.73) | 0.1 |
Tick infestation of their household animals, N (%) | 17 (26.6) | 127 (32.2) | 144 (31.4) | 0.82 (0.53–1.27) | 0.3 |
Tick bite history, N (%) | 23 (35.9) | 115 (29.1) | 138 (30.1) | 1.23 (0.86–1.77) | 0.2 |
Mushroom collector, N (%) | 22 (34.4) | 111 (28.1) | 133 (29) | 1.22 (0.84–1.77) | 0.3 |
History of recreational activities in nature, N (%) | 1 (1.6) | 9 (2.3) | 10 (2.2) | 0.68 (0.08–5.32) | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheran, C.A.; Panciu, A.M.; Riciu, C.D.; Nedelcu, I.M.; Iacob, D.G.; Hristea, A. Identifying New Areas of Endemicity and Risk Factors for Rickettsia conorii subsp. conorii Infection: Serosurvey in Rural Areas of Romania. Pathogens 2024, 13, 783. https://doi.org/10.3390/pathogens13090783
Cheran CA, Panciu AM, Riciu CD, Nedelcu IM, Iacob DG, Hristea A. Identifying New Areas of Endemicity and Risk Factors for Rickettsia conorii subsp. conorii Infection: Serosurvey in Rural Areas of Romania. Pathogens. 2024; 13(9):783. https://doi.org/10.3390/pathogens13090783
Chicago/Turabian StyleCheran, Cristina Alexandra, Andreea Madalina Panciu, Claudia Doina Riciu, Iulia Maria Nedelcu, Diana Gabriela Iacob, and Adriana Hristea. 2024. "Identifying New Areas of Endemicity and Risk Factors for Rickettsia conorii subsp. conorii Infection: Serosurvey in Rural Areas of Romania" Pathogens 13, no. 9: 783. https://doi.org/10.3390/pathogens13090783