Lack of Association between Serum Vitamin B6, Vitamin B12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Publication Search
2.2. Inclusion Criteria
- (1)
- The investigation involved random sampling or cluster sampling;
- (2)
- Two or more comparison groups (glaucoma and control groups) were included;
- (3)
- Healthy subjects were recruited for the control group;
- (4)
- A laboratory assessment of serum or plasma vitamin levels (vitamin B6/vitamin B12/vitamin D) was conducted;
- (5)
- The study was published in English;
- (6)
- The full text of the article was accessible; and
- (7)
- The subjects were human.
2.3. Study Selection and Data Extraction
2.4. Quality Assessment
- (1)
- Was the study design clearly described?
- (2)
- Were the diagnostic criteria and clinical examinations comprehensive and standardized?
- (3)
- Were the participant selection procedures reported clearly?
- (4)
- Was the participant enrollment duration provided?
- (5)
- Were the age and sex of eligible participants clearly described?
- (6)
- Were the serum vitamin B6/B12/D measurement methods clearly reported?
2.5. Statistical Analysis
3. Results
3.1. Search Results and Study Characteristics
- (1)
- The POAG group: Three studies considered vitamin B6 (109 cases and 115 controls), six considered vitamin B12 (222 cases and 249 controls), and three considered vitamin D (513 cases and 5629 controls);
- (2)
- The NTG group: Two studies considered vitamin B6 (90 cases and 82 controls), four considered vitamin B12 (123 cases and 176 controls), and 0 considered vitamin D; and
- (3)
- The EXG group: Three studies considered vitamin B6 (144 cases and 146 controls), six considered B12 (228 cases and 240 controls), and one considered vitamin D (70 cases and 70 controls).
3.2. Meta-Analysis of the Association of Vitamin B6 with POAG and EXG
3.3. Meta-Analysis of the Association of Vitamin B12 with POAG, NTG, and EXG
3.4. Meta-Analysis of the Association between Vitamin D and POAG
3.5. Analysis of Publication Bias
3.6. Sensitivity Analysis
4. Discussion
4.1. Vitamin B6 in POAG and EXG
4.2. Vitamin B12 in POAG, NTG, and EXG
4.3. Vitamin D in POAG
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Quigley, H.A. Glaucoma. Lancet Lond. Engl. 2011, 377, 1367–1377. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Y.; Vithana, E.N.; Jia, L.; Zuo, X.; Wong, T.Y.; Chen, L.J.; Zhu, X.; Tam, P.O.S.; Gong, B.; et al. Common variants near ABCA1 and in PMM2 are associated with primary open-angle glaucoma. Nat. Genet. 2014, 46, 1115–1119. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.E.; Kim, M.J.; Park, K.H.; Jeoung, J.W.; Kim, S.H.; Kim, C.Y.; Kang, S.W. Epidemiologic Survey Committee of the Korean Ophthalmological Society Prevalence, Awareness, and Risk Factors of Primary Open-Angle Glaucoma: Korea National Health and Nutrition Examination Survey 2008–2011. Ophthalmology 2016, 123, 532–541. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Harder, J.M.; Foxworth, N.E.; Cochran, K.E.; Philip, V.M.; Porciatti, V.; Smithies, O.; John, S.W.M. Vitamin B3 modulates mitochondrial vulnerability and prevents glaucoma in aged mice. Science 2017, 355, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Turgut, B.; Kaya, M.; Arslan, S.; Demir, T.; Güler, M.; Kaya, M.K. Levels of circulating homocysteine, vitamin B6, vitamin B12, and folate in different types of open-angle glaucoma. Clin. Interv. Aging 2010, 5, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Roedl, J.B.; Bleich, S.; Schlötzer-Schrehardt, U.; von Ahsen, N.; Kornhuber, J.; Naumann, G.O.H.; Kruse, F.E.; Jünemann, A.G.M. Increased homocysteine levels in tear fluid of patients with primary open-angle glaucoma. Ophthalmic Res. 2008, 40, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Roedl, J.B.; Bleich, S.; Reulbach, U.; von Ahsen, N.; Schlötzer-Schrehardt, U.; Rejdak, R.; Naumann, G.O.H.; Kruse, F.E.; Kornhuber, J.; Jünemann, A.G.M. Homocysteine levels in aqueous humor and plasma of patients with primary open-angle glaucoma. J. Neural Transm. 2007, 114, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Rössler, C.W.; Baleanu, D.; Reulbach, U.; Lewczuk, P.; Bleich, S.; Kruse, F.E.; Kornhuber, J.; Schlötzer-Schrehardt, U.; Juenemann, A.G.M. Plasma homocysteine levels in patients with normal tension glaucoma. J. Glaucoma 2010, 19, 576–580. [Google Scholar] [CrossRef] [PubMed]
- López-Riquelme, N.; Villalba, C.; Tormo, C.; Belmonte, A.; Fernandez, C.; Torralba, G.; Hernández, F. Endothelin-1 levels and biomarkers of oxidative stress in glaucoma patients. Int. Ophthalmol. 2015, 35, 527–532. [Google Scholar] [CrossRef] [PubMed]
- Tranchina, L.; Centofanti, M.; Oddone, F.; Tanga, L.; Roberti, G.; Liberatoscioli, L.; Cortese, C.; Manni, G. Levels of plasma homocysteine in pseudoexfoliation glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Cumurcu, T.; Sahin, S.; Aydin, E. Serum homocysteine, vitamin B12 and folic acid levels in different types of glaucoma. BMC Ophthalmol. 2006, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Yao, Q.; Ma, W.; Liu, H.; Ji, J.; Li, X. Associations of vitamin D deficiency and vitamin D receptor (Cdx-2, Fok I, Bsm I and Taq I) polymorphisms with the risk of primary open-angle glaucoma. BMC Ophthalmol. 2016, 16, 116. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, A.; Milea, D.; Gohier, P.; Jallet, G.; Leruez, S.; Baskaran, M.; Aung, T.; Annweiler, C. Serum vitamin D status is associated with the presence but not the severity of primary open angle glaucoma. Maturitas 2015, 81, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, K.; Stojanovska, L.; Apostolopoulos, V. The Effects of Vitamin B in Depression. Curr. Med. Chem. 2016, 23, 4317–4337. [Google Scholar] [CrossRef] [PubMed]
- Berridge, M.J. Vitamin D and Depression: Cellular and Regulatory Mechanisms. Pharmacol. Rev. 2017, 69, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.-W.; Cheng, S.-W.; Ma, X.-Y.; Cai, J.-P.; Li, Y.; Wei, R.-L. The prevalence of primary glaucoma in mainland China: A systematic review and meta-analysis. J. Glaucoma 2013, 22, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Weng, Y.; Guo, X.; Feng, L.; Xia, H.; Jiang, Z.; Lou, J. The Association Between Serum Vitamin D Levels and Age-Related Macular Degeneration: A Systematic Meta-Analytic Review. Investig. Ophthalmol. Vis. Sci. 2016, 57, 2168–2177. [Google Scholar] [CrossRef] [PubMed]
- Yoo, T.K.; Oh, E.; Hong, S. Is vitamin D status associated with open-angle glaucoma? A cross-sectional study from South Korea. Public Health Nutr. 2014, 17, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Puustjärvi, T.; Blomster, H.; Kontkanen, M.; Punnonen, K.; Teräsvirta, M. Plasma and aqueous humour levels of homocysteine in exfoliation syndrome. Graefes Arch. Clin. Exp. Ophthalmol. 2004, 242, 749–754. [Google Scholar] [CrossRef] [PubMed]
- Türkcü, F.M.; Köz, O.G.; Yarangümeli, A.; Oner, V.; Kural, G. Plasma homocysteine, folic acid, and vitamin B12 levels in patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and normotensive glaucoma. Med. Kaunas Lith. 2013, 49, 214–218. [Google Scholar]
- Roedl, J.B.; Bleich, S.; Reulbach, U.; Rejdak, R.; Naumann, G.O.H.; Kruse, F.E.; Schlötzer-Schrehardt, U.; Kornhuber, J.; Jünemann, A.G.M. Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma. J. Neural Transm. 2007, 114, 571–575. [Google Scholar] [CrossRef] [PubMed]
- Balion, C.; Griffith, L.E.; Strifler, L.; Henderson, M.; Patterson, C.; Heckman, G.; Llewellyn, D.J.; Raina, P. Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology 2012, 79, 1397–1405. [Google Scholar] [CrossRef] [PubMed]
- Salari, M.; Janghorbani, M.; Etemadifar, M.; Dehghani, A.; Razmjoo, H.; Naderian, G. Effects of vitamin D on retinal nerve fiber layer in vitamin D deficient patients with optic neuritis: Preliminary findings of a randomized, placebo-controlled trial. J. Res. Med. Sci. 2015, 20, 372–378. [Google Scholar] [PubMed]
- Kutuzova, G.D.; Gabelt, B.T.; Kiland, J.A.; Hennes-Beann, E.A.; Kaufman, P.L.; DeLuca, H.F. 1α,25-Dihydroxyvitamin D(3) and its analog, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D(3) (2MD), suppress intraocular pressure in non-human primates. Arch. Biochem. Biophys. 2012, 518, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.R.; Biagioni, F.; Carrizzo, A.; Lorusso, M.; Spadaro, A.; Micelli Ferrari, T.; Vecchione, C.; Zurria, M.; Marrazzo, G.; Mascio, G.; et al. Effects of vitamin B12 on the corneal nerve regeneration in rats. Exp. Eye Res. 2014, 120, 109–117. [Google Scholar] [CrossRef] [PubMed]
First Author | Year | Country | Glaucoma Group | Control Group | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No. | Age | Vitamin B6 ng/mL | Vitamin B12 pg/mL | Vitamin D ng/mL | No. | Age | Vitamin B6 ng/mL | Vitamin B12 pg/mL | Vitamin D ng/mL | |||
POAG | ||||||||||||
Lv et al. [13] | 2016 | China | 73 | 61.03 ± 2.75 | 26.37 ± 5.83 | 71 | 60.14 ± 3.03 | 30.43 ± 3.91 | ||||
López-Riquelme et al. [10] | 2015 | Spain | 48 | 50.0 ± 9.4 | 404.2 ± 198.2 | 75 | 43.7 ± 12.4 | 425.7 ± 137.7 | ||||
Roedl et al. [8] | 2007 | Germany | 39 | 69.3 ± 8.4 | 12.64 ± 6.50 | 461.7 ± 228.9 | 39 | 70.5 ± 10.7 | 13.46 ± 9.00 | 478.7 ± 266.3 | ||
Roedl et al. [7] | 2008 | Germany | 36 | 67.3 ± 8.2 | 12.50 ± 7.15 | 438 ± 243 | 36 | 68.5 ± 9.8 | 13.12 ± 7.61 | 425 ± 194 | ||
Yoo et al. [19] | 2014 | Korea | 290 | 63.3 ± 10.7 | 18.1 ± 6.5 | 5394 | 60.4 ± 10.1 | 18.7 ± 6.6 | ||||
Goncalves et al. [14] | 2015 | France | 150 | 73.0 ± 7.9 | 21.05 ± 12.61 | 164 | 75.1 ± 8.5 | 24.24 ± 14.48 | ||||
Cumurcu et al. [12] | 2006 | Turkey | 25 | 56.76 ± 12.58 | 232.84 ± 67.55 | 19 | 55.63 ± 4.04 | 261.84 ± 126.22 | ||||
Tranchina et al. [11] | 2011 | Italy | 40 | 68.71 ± 8.65 | 444.9 ± 167.17 | 40 | 69.23 ± 7.21 | 397.15 ± 118.68 | ||||
Turgut et al. [6] | 2010 | Turkey | 34 | 58 ± 7.5 | 30.22 ± 12.15 | 368.24 ± 262.65 | 40 | 62 ± 8.1 | 20.09 ± 5.54 | 345.55 ± 201.75 | ||
NTG | ||||||||||||
López-Riquelme et al. [10] | 2015 | Spain | 15 | 45.3 ± 12.1 | 471.7 ± 177.6 | 75 | 43.7 ± 12.4 | 425.7 ± 137.7 | ||||
Cumurcu et al. [12] | 2006 | Turkey | 18 | 57.77 ± 7.27 | 262.33 ± 85.94 | 19 | 55.63 ± 4.04 | 261.84 ± 126.22 | ||||
Rössler et al. [9] | 2010 | Germany | 42 | 65.5 ± 12.1 | 14.45 ± 12.89 | 387.73 ± 282.04 | 42 | 63.1 ± 11.5 | 13.57 ± 10.41 | 423.27 ± 188.85 | ||
Turgut et al. [6] | 2010 | Turkey | 48 | 56 ± 6.8 | 30.50 ± 11.29 | 344.46 ± 247.84 | 40 | 62 ± 8.1 | 20.09 ± 5.54 | 345.55 ± 201.75 | ||
EXG | ||||||||||||
Puustjrvi et al. [20] | 2004 | Finland | 36 | 77.4 ± 6.0 | 33.3 ± 20.1 | 313 ± 106 | 36 | 77.2 ± 5.4 | 37.9 ± 28.2 | 308 ± 95 | ||
Roedl et al. [22] | 2007 | Germany | 70 | 70.3 ± 8.2 | 10.29 ± 5.73 | 323 ± 129 | 18.1 ± 6.5 | 70 | 68.4 ± 11.6 | 12.54 ± 6.40 | 413 ± 170 | 18.7 ± 6.6 |
Cumurcu et al. [12] | 2006 | Turkey | 24 | 61.66 ± 10.05 | 209.37 ± 104.44 | 19 | 55.63 ± 4.04 | 261.84 ± 126.22 | ||||
Turkcu et al. [21] | 2013 | Turkey | 24 | 67.0 ± 6.9 | 232.2 ± 104.8 | 35 | 69.6 ± 6.5 | 372.8 ± 138.8 | ||||
Tranchina et al. [11] | 2011 | Italy | 36 | 69.58 ± 5.92 | 434.55 ± 141.46 | 40 | 69.23 ± 7.21 | 397.15 ± 118.68 | ||||
Turgut et al. [6] | 2010 | Turkey | 38 | 63 ± 6.3 | 22.81 ± 11.71 | 277.16 ± 139.08 | 40 | 62 ± 8.1 | 20.09 ± 5.54 | 345.55 ± 201.75 |
Components of the Quality Score | |||||||
---|---|---|---|---|---|---|---|
First Author | (1) | (2) | (3) | (4) | (5) | (6) | Total |
Lv et al. [13] | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
López-Riquelme et al. [10] | 1 | 1 | 1 | 0 | 1 | 1 | 5 |
Roedl et al. [8] | 1 | 0 | 0 | 1 | 1 | 1 | 4 |
Roedl et al. [7] | 1 | 0 | 1 | 1 | 1 | 1 | 5 |
Yoo et al. [19] | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
Goncalves et al. [14] | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
Cumurcu et al. [12] | 1 | 1 | 0 | 1 | 1 | 1 | 5 |
Tranchina et al. [11] | 1 | 0 | 1 | 1 | 1 | 1 | 5 |
Turgut et al. [6] | 1 | 1 | 0 | 0 | 1 | 1 | 4 |
Rossler et al. [9] | 1 | 1 | 1 | 0 | 1 | 1 | 5 |
Roedl et al. [22] | 1 | 1 | 0 | 0 | 1 | 1 | 4 |
Turkcu et al. [21] | 1 | 1 | 1 | 0 | 1 | 1 | 5 |
Puustjrvi et al. [20] | 1 | 1 | 1 | 1 | 1 | 1 | 6 |
Study Omitted | Point | 95% CI | p-Value |
---|---|---|---|
POAG (vitamin B6) | |||
Roedl et al., 2007 [8] | 4.683 | −5.851–15.216 | 0.384 |
Roedl et al., 2008 [7] | 4.590 | −6.140–15.320 | 0.402 |
Turgut et al., 2010 [6] | 1.244 | −3.155–1.720 | 0.564 |
EXG (vitamin B6) | |||
Puustjrvi et al., 2004 [20] | −0.130 | −0.397–0.138 | 0.341 |
Roedl et al., 2007 [22] | 0.065 | −0.257–0.386 | 0.693 |
Turgut et al., 2010 [6] | −0.308 | −0.579–0.037 | 0.026 * |
POAG (vitamin B12) | |||
López-Riquelme et al., 2015 [10] | 0.056 | −0.155–0.267 | 0.602 |
Roedl et al., 2007 [8] | 0.024 | −0.176–0.224 | 0.811 |
Roedl et al., 2008 [7] | −0.001 | −0.199–0.198 | 0.995 |
Cumurcu et al., 2006 [12] | 0.040 | −0.151–0.232 | 0.682 |
Tranchina et al., 2011 [11] | −0.057 | −0.258–0.143 | 0.575 |
Turgut et al., 2010 [6] | −0.008 | −0.207–0.191 | 0.936 |
NTG (vitamin B12) | |||
López-Riquelme et al., 2015 [10] | −0.061 | −0.333–0.211 | 0.661 |
Cumurcu et al., 2006 [12] | 0.013 | −0.250–0.277 | 0.921 |
Rossler et al., 2010 [9] | 0.089 | −0.208–0.387 | 0.556 |
Turgut et al., 2010 [6] | 0.021 | −0.280–0.321 | 0.892 |
EXG (vitamin B12) | |||
Puustjrvi et al., 2004 [20] | −62.354 | −121.997–2.711 | 0.040 Δ |
Roedl et al., 2007 [22] | −41.399 | −102.731–19.333 | 0.186 |
Cumurcu et al., 2006 [12] | −49.770 | −112.833–13.294 | 0.122 |
Turkcu et al., 2013 [21] | −32.109 | −81.451–17.234 | 0.202 |
Tranchina et al., 2011 [11] | −67.396 | −118.976–15.815 | 0.010 Δ |
Turgut et al., 2010 [6] | −46.934 | −108.324–14.455 | 0.134 |
POAG (vitamin D) | |||
Lv et al., 2016 [13] | −1.468 | −3.865–0.928 | 0.230 |
Yoo et al., 2014 [19] | −3.864 | −5.295–2.433 | <0.0001 Ω |
Goncalves et al., 2015 [14] | −2.253 | −5.641–1.134 | 0.192 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Li, D.; Shao, M.; Cao, W.; Sun, X. Lack of Association between Serum Vitamin B6, Vitamin B12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 636. https://doi.org/10.3390/nu9060636
Li S, Li D, Shao M, Cao W, Sun X. Lack of Association between Serum Vitamin B6, Vitamin B12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis. Nutrients. 2017; 9(6):636. https://doi.org/10.3390/nu9060636
Chicago/Turabian StyleLi, Shengjie, Danhui Li, Mingxi Shao, Wenjun Cao, and Xinghuai Sun. 2017. "Lack of Association between Serum Vitamin B6, Vitamin B12, and Vitamin D Levels with Different Types of Glaucoma: A Systematic Review and Meta-Analysis" Nutrients 9, no. 6: 636. https://doi.org/10.3390/nu9060636