Impact of Virtual Touch Quantification in Acoustic Radiation Force Impulse for Skeletal Muscle Mass Loss in Chronic Liver Diseases
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Measurement for VTQ
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. VTQ Level according to The Degree of Liver Fibrosis
3.3. VTQ Level in Patients with and without D-SMI
3.4. VTQ Level according to LC Status
3.5. ROC Analysis for the Presence of D-SMI
3.6. Relationship between VTQ and Baseline Variables
3.7. Univariate and Multivariate Analyses of Factors Contributing to The Presence of D-SMI
4. Discussion and Conclusions
Acknowledgement
Author Contributions
Conflict of interest
Abbreviations
References
- Van der Meer, A.J.; Berenguer, M. Reversion of disease manifestations after HCV eradication. J. Hepatol. 2016, 65, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Karanjia, R.N.; Crossey, M.M.; Cox, I.J.; Fye, H.K.; Njie, R.; Goldin, R.D.; Taylor-Robinson, S.D. Hepatic steatosis and fibrosis: Non-invasive assessment. World J. Gastroenterol. 2016, 22, 9880–9897. [Google Scholar] [CrossRef] [PubMed]
- Friedrich-Rust, M.; Poynard, T.; Castera, L. Critical comparison of elastography methods to assess chronic liver disease. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Westbrook, R.H.; Dusheiko, G. Natural history of hepatitis C. J. Hepatol. 2014, 61, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.L. Hepatitis C Treatment from “Response-guided” to “Resource-guided” therapy in the transition era from IFN-containing to IFN-free regimens. J. Gastroenterol. Hepatol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Kitson, M.T.; Roberts, S.K. Systematic review: Current concepts and challenges for the direct-acting antiviral era in hepatitis C cirrhosis. Aliment. Pharmacol. Ther. 2016, 43, 1276–1292. [Google Scholar] [CrossRef] [PubMed]
- Lupsor, M.; Badea, R.; Stefanescu, H.; Sparchez, Z.; Branda, H.; Serban, A.; Maniu, A. Performance of a new elastographic method (ARFI technology) compared to unidimensional transient elastography in the noninvasive assessment of chronic hepatitis C. Preliminary results. J. Gastrointestin. Liver Dis. 2009, 18, 303–310. [Google Scholar] [PubMed]
- Takahashi, H.; Ono, N.; Eguchi, Y.; Eguchi, T.; Kitajima, Y.; Kawaguchi, Y.; Nakashita, S.; Ozaki, I.; Mizuta, T.; Toda, S.; et al. Evaluation of acoustic radiation force impulse elastography for fibrosis staging of chronic liver disease: A pilot study. Liver Int. 2010, 30, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Friedrich-Rust, M.; Wunder, K.; Kriener, S.; Sotoudeh, F.; Richter, S.; Bojunga, J.; Herrmann, E.; Poynard, T.; Dietrich, C.F.; Vermehren, J.; et al. Liver fibrosis in viral hepatitis: Noninvasive assessment with acoustic radiation force impulse imaging versus transient elastography. Radiology 2009, 252, 595–604. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Iijima, H.; Tada, T.; Kumada, T.; Nishimura, T.; Nakano, C.; Kishino, K.; Shimono, Y; Yoh, K.; Takata, R.; et al. Prediction of development of hepatocellular carcinoma using a new scoring system involving virtual touch quantification in patients with chronic liver diseases. J. Gastroenterol. 2017, 52, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Friedrich-Rust, M.; Nierhoff, J.; Lupsor, M.; Sporea, I.; Fierbinteanu-Braticevici, C.; Strobel, D.; Takahashi, H.; Yoneda, M.; Suda, T.; Zeuzem, S.; et al. Performance of acoustic radiation force impulse imaging for the staging of liver fibrosis: A pooled meta-analysis. J. Viral Hepat. 2012, 19, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Bota, S.; Herkner, H.; Sporea, I.; Salzl, P.; Sirli, R.; Neghina, A.M.; Peck-Radosavljevic, M. Meta-analysis: ARFI elastography versus transient elastography for the evaluation of liver fibrosis. Liver Int. 2013, 33, 1138–1147. [Google Scholar] [CrossRef] [PubMed]
- Takuma, Y.; Morimoto, Y.; Takabatake, H.; Toshikuni, N.; Tomokuni, J.; Sahara, A.; Matsueda, K.; Yamamoto, H. Measurement of spleen stiffness with acoustic radiation force impulse imaging predicts mortality and hepatic decompensation in patients with liver cirrhosis. Clin. Gastroenterol. Hepatol. 2016. [Google Scholar] [CrossRef] [PubMed]
- Lurie, Y.; Webb, M.; Cytter-Kuint, R.; Shteingart, S.; Lederkremer, G.Z. Non-invasive diagnosis of liver fibrosis and cirrhosis. World J. Gastroenterol. 2015, 21, 11567–11583. [Google Scholar] [CrossRef] [PubMed]
- De Lucca Schiavon, L.; Narciso-Schiavon, J.L.; de Carvalho-Filho, R.J. Non-invasive diagnosis of liver fibrosis in chronic hepatitis C. World J. Gastroenterol. 2014, 20, 2854–2866. [Google Scholar] [CrossRef] [PubMed]
- Castera, L.; Forns, X.; Alberti, A. Non-invasive evaluation of liver fibrosis using transient elastography. J. Hepatol. 2008, 48, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Xin, Y.N.; Dong, Q.J.; Wang, Q.; Jiang, X.J.; Zhan, S.H.; Sun, Y.; Xuan, S.Y. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: An updated meta-analysis. Hepatology 2011, 53, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Nishijima, N.; Enomoto, H.; Sakamoto, A.; Nasu, A.; Komekado, H.; Nishimura, T.; Kita, R.; Kimura, T.; Iijima, H.; et al. Comparison of FIB-4 index and aspartate aminotransferase to platelet ratio index on carcinogenesis in chronic hepatitis B treated with entecavir. J. Cancer 2017, 8, 152–161. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.; Yang, J.; Yan, L. Comparison of diagnostic accuracy of aspartate aminotransferase to platelet ratio index and fibrosis-4 index for detecting liver fibrosis in adult patients with chronic hepatitis B virus infection: A systemic review and meta-analysis. Hepatology 2015, 61, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.R.; Berg, T.; Asselah, T.; Flisiak, R.; Fung, S.; Gordon, S.C.; Janssen, H.L.A.; Lampertico, P.; Lau, D.; Bornstein, J.D.; et al. Evaluation of APRI and FIB-4 scoring systems for non-invasive assessment of hepatic fibrosis in chronic hepatitis B patients. J. Hepatol. 2016, 64, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Houot, M.; Ngo, Y.; Munteanu, M.; Marque, S.; Poynard, T. Systematic review with meta-analysis: Direct comparisons of biomarkers for the diagnosis of fibrosis in chronic hepatitis C and B. Aliment. Pharmacol. Ther. 2016, 43, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in older people. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S. Consilience in sarcopenia of cirrhosis. J. Cachexia Sarcopenia Muscle 2012, 3, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, S.; Merli, M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J. Hepatol. 2016, 65, 1232–1244. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, M.; Gow, P.J.; Grossmann, M.; Angus, P.W. Review article: Sarcopenia in cirrhosis-aetiology, implications and potential therapeutic interventions. Aliment. Pharmacol. Ther. 2016, 43, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology guidelines for sarcopenia in liver disease: Recommendation from the working group for creation of sarcopenia assessment criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef] [PubMed]
- Carey, E.J.; Lai, J.C.; Wang, C.W.; Dasarathy, S.; Lobach, I.; Montano-Loza, A.J.; Dunn, M.A. A multi-center study to define sarcopenia in patients with end-stage liver disease. Liver Transpl. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Nishimura, K.; Ohnishi, S.; Imai, K.; Suetsugu, A.; Takai, K.; Shimizu, M.; Moriwaki, H. Sarcopenia impairs prognosis of patients with liver cirrhosis. Nutrition 2015, 31, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Durand, F.; Buyse, S.; Francoz, C.; Laouénan, C.; Bruno, O.; Belghiti, J.; Moreau, R.; Vilgrain, V.; Valla, D. Prognostic value of muscle atrophy in cirrhosis using psoas muscle thickness on computed tomography. J. Hepatol. 2014, 60, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Hanai, T.; Shiraki, M.; Watanabe, S.; Kochi, T.; Imai, K.; Suetsugu, A.; Takai, K.; Moriwaki, H.; Shimizu, M. Sarcopenia predicts minimal hepatic encephalopathy in patients with liver cirrhosis. Hepatol. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S.; Yoshizumi, T.; Kimura, K.; Okabe, H.; Harimoto, N.; Ikegami, T.; Uchiyama, H.; Shirabe, K.; Nishie, A.; Maehara, Y. Effect of sarcopenic obesity on outcomes of living-donor liver transplantation for hepatocellular carcinoma. Anticancer Res. 2016, 36, 3029–3034. [Google Scholar] [PubMed]
- Hara, N.; Iwasa, M.; Sugimoto, R.; Mifuji-Moroka, R.; Yoshikawa, K.; Terasaka, E.; Hattori, A.; Ishidome, M.; Kobayashi, Y.; Hasegawa, H.; et al. Sarcopenia and sarcopenic obesity are prognostic factors for overall survival in patients with cirrhosis. Intern. Med. 2016, 55, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Petta, S.; Ciminnisi, S.; Di Marco, V.; Cabibi, D.; Cammà, C.; Licata, A.; Marchesini, G.; Craxì, A. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver disease. Aliment. Pharmacol. Ther. 2017, 45, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Kim, S.U.; Song, K.; Park, J.Y.; Kim, D.Y.; Ahn, S.H.; Lee, B.W.; Kang, E.S.; Cha, B.S.; Han, K.H. Sarcopenia is associated with significant liver fibrosis independently of obesity and insulin resistance in nonalcoholic fatty liver disease: Nationwide surveys (KNHANES 2008–2011). Hepatology 2016, 63, 776–786. [Google Scholar] [CrossRef] [PubMed]
- Koo, B.K.; Kim, D.; Joo, S.K.; Kim, J.H.; Chang, M.S.; Kim, B.G.; Lee, K.L.; Kim, W. Sarcopenia is an independent risk factor for non-alcoholic steatohepatitis and significant fibrosis. J. Hepatol. 2017, 66, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Bedossa, P. Intraobserver and interobserver variations in liver biopsy interpretation in patients with chronic hepatitis C. Hepatology 1994, 20, 15–20. [Google Scholar]
- Charlton, M.R. Branched-chain amino acid enriched supplements as therapy for liver disease. J. Nutr. 2006, 136, 295–298. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Izumi, N.; Charlton, M.R.; Sata, M. Branched-chain amino acids as pharmacological nutrients in chronic liver disease. Hepatology 2011, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Alberino, F.; Gatta, A.; Amodio, P.; Merkel, C.; Di Pascoli, L.; Boffo, G.; Caregaro, L. Nutrition and survival in patients with liver cirrhosis. Nutrition 2001, 17, 445–450. [Google Scholar] [CrossRef]
- Suzuki, K.; Suzuki, K.; Koizumi, K.; Ichimura, H.; Oka, S.; Takada, H.; Kuwayama, H. Measurement of serum branched-chain amino acids to tyrosine ratio level is useful in a prediction of a change of serum albumin level in chronic liver disease. Hepatol. Res. 2008, 38, 267–272. [Google Scholar] [CrossRef] [PubMed]
Variables | Number or Median (Range) |
---|---|
Age (years) | 62 (18–90) |
Gender, male/female | 222/246 |
SMI (cm2/m2), male | 7.35 (4.66–11.05) |
SMI (cm2/m2), female | 5.86 (3.50–8.10) |
BMI (kg/m2) | 22.26 (13.05–41.94) |
Cause of liver disease, B/C/B and C/alcoholic/others | 47/267/4/17/133 |
AST (IU/L) | 36 (12–182) |
ALT (IU/L) | 35 (7–268) |
Serum albumin (g/dL) | 3.9 (2.6–5.1) |
Total bilirubin (mg/dL) | 0.9 (0.2–5.1) |
Prothrombin time (%) | 89.8 (43.3–133.6) |
Platelet count (×104/mm3) | 14.9 (2.1–50.4) |
Total cholesterol (mg/dL) | 167 (82–448) |
Triglyceride (mg/dL) | 91 (27–572) |
Fasting blood glucose (mg/dL) | 99 (70–298) |
Serum creatinine (mg/dL) | 0.67 (0.32–7.69) |
BTR | 5.58 (1.63–11.86) |
Serum ammonia (µg/dL) | 31 (5–137) |
C reactive protein (mg/dL) | 0.1 (0–2.4) |
VTQ (m/s) | 1.34 (0.67–4.32) |
FIB-4 index | 1.03 (0.12–2.61) |
APRI | 0.83 (0.09–7.58) |
F stage, 0/1/2/3/4/NT | 9/114/73/73/178/21 |
AUROC | Cutoff Value | Sensitivity (%) | Specificity (%) | |
---|---|---|---|---|
Age | 0.721 | 62 | 72.57 | 62.80 |
Body mass index | 0.805 | 22.78 | 85.14 | 61.77 |
AST | 0.469 | 57.0 | 78.87 | 24.91 |
ALT | 0.532 | 72.0 | 89.14 | 18.77 |
Serum albumin | 0.698 | 4.0 | 85.14 | 54.27 |
Total bilirubin | 0.535 | 0.80 | 53.4 | 54.95 |
Prothrombin time | 0.504 | 85.7 | 68.57 | 38.91 |
Platelet count | 0.579 | 17.8 | 76.00 | 41.64 |
Total cholesterol | 0.521 | 192 | 76.57 | 31.06 |
Triglyceride | 0.576 | 102 | 72.57 | 46.42 |
Fasting blood glucose | 0.466 | 127 | 12.0 | 91.13 |
Serum creatinine | 0.476 | 0.89 | 18.29 | 88.05 |
BTR | 0.563 | 5.93 | 68.57 | 47.78 |
Serum ammonia | 0.478 | 64 | 94.51 | 12.0 |
C reactive protein | 0.548 | 0 | 53.71 | 57.68 |
VTQ | 0.706 | 1.12 | 94.86 | 50.51 |
FIB-4 index | 0.635 | 0.772 | 84.57 | 37.2 |
APRI | 0.564 | 0.716 | 64.57 | 51.54 |
rs | p Value | |
---|---|---|
Age | 0.4418 | <0.0001 |
SMI, male | −0.4276 | <0.0001 |
SMI, female | −0.2384 | 0.0002 |
Body mass index | −0.0746 | 0.1071 |
AST | 0.3315 | <0.0001 |
ALT | 0.0121 | 0.7947 |
Serum albumin | −0.5538 | <0.0001 |
Total bilirubin | 0.1994 | <0.0001 |
Prothrombin time | −0.5504 | <0.0001 |
Platelet count | −0.6152 | <0.0001 |
Total cholesterol | −0.3941 | <0.0001 |
Triglyceride | −0.2075 | <0.0001 |
Fasting blood glucose | 0.0731 | 0.1140 |
Serum creatinine | 0.0679 | 0.1427 |
BTR | −0.6061 | <0.0001 |
Serum ammonia | 0.3191 | <0.0001 |
C reactive protein | 0.0559 | 0.2277 |
FIB-4 index | 0.2122 | <0.0001 |
APRI | 0.6011 | <0.0001 |
Decreased Skeletal Muscle Mass (D-SMI) (n = 175) | Non D-SMI (n = 293) | p Value | |
---|---|---|---|
Age (years) | 67 (25–90) | 58 (18–81) | <0.0001 |
Gender, male/female | 76/99 | 146/147 | 0.1823 |
Cause of liver disease | 15/113/2/6/39 | 32/154/2/11/94 | 0.0988 |
B/C/B and C/Alcohol/Others | |||
BMI (kg/m2) | 20.28 (13.05–31.14) | 23.78 (17.21–41.94) | <0.0001 |
Serum albumin (g/dL) | 3.7 (2.6–4.9) | 4.1 (2.7–5.1) | <0.0001 |
Total bilirubin (mg/dL) | 0.8 (0.3–5.1) | 0.9 (0.2–4.7) | 0.2045 |
Prothrombin time (%) | 89.4 (55.5–123) | 90.0 (43.3–133.6) | 0.8143 |
Platelet count (×104/mm3) | 13.7 (3.3–40.8) | 15.7 (2.1–50.4) | 0.0044 |
AST (IU/L) | 38 (13–125) | 35 (12–182) | 0.2571 |
ALT (IU/L) | 34 (7–268) | 36 (8–247) | 0.2449 |
Total cholesterol (mg/dL) | 166 (85–292) | 167 (82–448) | 0.3264 |
Triglyceride | 85 (27–554) | 97 (29–572) | 0.1026 |
Fasting blood glucose | 96 (70–298) | 101 (73–249) | 0.2169 |
BTR | 5.33 (1.63–11.86) | 5.83 (1.79–10.46) | 0.0219 |
Serum creatinine (mg/dL) | 0.65 (0.32–7.67) | 0.68 (0.35–6.5) | 0.3808 |
Serum ammonia | 31 (10–105) | 30 (5–137) | 0.4519 |
C reactive protein | 0 (0–2.3) | 0.1 (0–2.4) | 0.5844 |
VTQ | 1.64 (0.93–4.32) | 1.11 (0.67–4.09) | <0.0001 |
FIB-4 index | 1.15 (0.36–2.61) | 0.96 (0.12–2.60) | <0.0001 |
APRI | 0.97 (0.20–4.23) | 0.70 (0.09–7.58) | 0.0204 |
Variables | Multivariate Analysis | ||
---|---|---|---|
OR | 95% CI | p Value | |
BMI (per one kg/m2) | 1.712 | 1.523–1.925 | <0.0001 |
Age (per one year) | 0.922 | 0.895–0.953 | <0.0001 |
Platelet count (per one ×104/mm3) | 1.017 | 0.969–1.068 | 0.5003 |
Serum albumin (per one g/dL) | 4.832 | 2.148–10.872 | <0.0001 |
BTR (per one) | 1.374 | 1.107–1.704 | 0.0031 |
VTQ (per one m/s) | 0.278 | 0.167–0.462 | <0.0001 |
FIB-4 index (per one) | 0.625 | 0.384–0.955 | 0.0425 |
APRI (per one) | 0.455 | 0.189–1.095 | 0.0735 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishikawa, H.; Nishimura, T.; Enomoto, H.; Iwata, Y.; Ishii, A.; Miyamoto, Y.; Ishii, N.; Yuri, Y.; Takata, R.; Hasegawa, K.; et al. Impact of Virtual Touch Quantification in Acoustic Radiation Force Impulse for Skeletal Muscle Mass Loss in Chronic Liver Diseases. Nutrients 2017, 9, 620. https://doi.org/10.3390/nu9060620
Nishikawa H, Nishimura T, Enomoto H, Iwata Y, Ishii A, Miyamoto Y, Ishii N, Yuri Y, Takata R, Hasegawa K, et al. Impact of Virtual Touch Quantification in Acoustic Radiation Force Impulse for Skeletal Muscle Mass Loss in Chronic Liver Diseases. Nutrients. 2017; 9(6):620. https://doi.org/10.3390/nu9060620
Chicago/Turabian StyleNishikawa, Hiroki, Takashi Nishimura, Hirayuki Enomoto, Yoshinori Iwata, Akio Ishii, Yuho Miyamoto, Noriko Ishii, Yukihisa Yuri, Ryo Takata, Kunihiro Hasegawa, and et al. 2017. "Impact of Virtual Touch Quantification in Acoustic Radiation Force Impulse for Skeletal Muscle Mass Loss in Chronic Liver Diseases" Nutrients 9, no. 6: 620. https://doi.org/10.3390/nu9060620