Randomized Controlled Trial of DHA Supplementation during Pregnancy: Child Adiposity Outcomes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment and Enrollment
2.2. Ethics
2.3. Study Participants
2.4. Clinical Visits with the Offspring (Children)
2.5. Anthropometrics
2.6. Dietary Assessment
2.7. Data Analysis
3. Results
3.1. Baseline Characteristics
3.2. Birth Outcomes
3.3. Offspring Anthropometrics at Two and Four Years of Age
3.4. Dietary Intake Assessment
3.5. Developmental Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Barker, D.J.; Gluckman, P.D.; Godfrey, K.M.; Harding, J.E.; Owens, J.A.; Robinson, J.S. Fetal nutrition and cardiovascular disease in adult life. Lancet 1993, 341, 938–941. [Google Scholar] [CrossRef]
- Boney, C.M.; Verma, A.; Tucker, R.; Vohr, B.R. Metabolic syndrome in childhood: Association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 2005, 115, e290–e296. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.A.; Baym, C.L.; Monti, J.M.; Raine, L.B.; Drollette, E.S.; Scudder, M.R.; Moore, R.D.; Kramer, A.F.; Hillman, C.H.; Cohen, N.J. Central adiposity is negatively associated with hippocampal-dependent relational memory among overweight and obese children. J. Pediatr. 2015, 166, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Meldrum, S.J.; D’Vaz, N.; Simmer, K.; Dunstan, J.A.; Hird, K.; Prescott, S.L. Effects of high-dose fish oil supplementation during early infancy on neurodevelopment and language: A randomised controlled trial. Br. J. Nutr. 2012, 108, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, K.W.; Cheatham, C.L. Omega-6 to omega-3 fatty acid ratio and higher-order cognitive functions in 7- to 9-y-olds: A cross-sectional study. Am. J. Clin. Nutr. 2013, 98, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.K.; Valentine, C.J.; Keim, S.A. DHA supplementation: Current implications in pregnancy and childhood. Pharmacol. Res. 2013, 70, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Todorčević, M.; Hodson, L. The effect of marine derived n-3 fatty acids on adipose tissue metabolism and function. J. Clin. Med. 2016, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Bonafini, S.; Antoniazzi, F.; Maffeis, C.; Minuz, P.; Fava, C. Beneficial effects of ω-3 PUFA in children on cardiovascular risk factors during childhood and adolescence. Prostaglandins Other Lipid Mediat. 2015, 120, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Korotkova, M.; Gabrielsson, B.G.; Holmäng, A.; Larsson, B.-M.; Hanson, L.A.; Strandvik, B. Gender-related long-term effects in adult rats by perinatal dietary ratio of n-6/n-3 fatty acids. AJP Regul. Integr. Comp. Physiol. 2004, 288, R575–R579. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Gomez-Pinilla, F. “Metabolic syndrome” in the brain: Deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. J. Physiol. 2012, 590, 2485–2499. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Ghebremeskel, K.; Lowy, C.; Thomas, B.; Crawford, M.A. Adverse effect of obesity on red cell membrane arachidonic and docosahexaenoic acids in gestational diabetes. Diabetologia 2004, 47, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-P.; Levy, E.; Fraser, W.D.; Julien, P.; Delvin, E.; Montoudis, A.; Spahis, S.; Garofalo, C.; Nuyt, A.M.; Luo, Z.-C. Circulating docosahexaenoic acid levels are associated with fetal insulin sensitivity. PLoS ONE 2014, 9, e85054. [Google Scholar] [CrossRef] [PubMed]
- Donahue, S.M.A.; Rifas-Shiman, S.L.; Gold, D.R.; Jouni, Z.E.; Gillman, M.W.; Oken, E. Prenatal fatty acid status and child adiposity at age 3 y: Results from a US pregnancy cohort. Am. J. Clin. Nutr. 2011, 93, 780–788. [Google Scholar] [CrossRef] [PubMed]
- Moon, R.J.; Harvey, N.C.; Robinson, S.M.; Ntani, G.; Davies, J.H.; Inskip, H.M.; Godfrey, K.M.; Dennison, E.M.; Calder, P.C.; Cooper, C. SWS Study Group Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J. Clin. Endocrinol. Metab. 2013, 98, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Muhlhausler, B.S.; Yelland, L.N.; McDermott, R.; Tapsell, L.; McPhee, A.; Gibson, R.A.; Makrides, M. DHA supplementation during pregnancy does not reduce BMI or body fat mass in children: Follow-up of the DHA to Optimize Mother Infant Outcome randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 1489–1496. [Google Scholar] [CrossRef] [PubMed]
- Hunsberger, M.; O’Malley, J.; Block, T.; Norris, J.C. Relative validation of Block Kids Food Screener for dietary assessment in children and adolescents. Matern. Child Nutr. 2015, 11, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Onis, M. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. Suppl. 2006, 450, 76–85. [Google Scholar]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and development. Vital Health Stat. 2002, 11, 1–190. [Google Scholar]
- Gonzalez-Casanova, I.; Stein, A.D.; Hao, W.; Garcia-Feregrino, R.; Barraza-Villarreal, A.; Romieu, I.; Rivera, J.A.; Martorell, R.; Ramakrishnan, U. Prenatal supplementation with docosahexaenoic acid has no effect on growth through 60 months of age. J. Nutr. 2015, 145, 1330–1334. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, R.L.; Bergmann, K.E.; Richter, R.; Haschke-Becher, E.; Henrich, W.; Dudenhausen, J.W. Does docosahexaenoic acid (DHA) status in pregnancy have any impact on postnatal growth? Six-year follow-up of a prospective randomized double-blind monocenter study on low-dose DHA supplements. J. Perinat. Med. 2012, 40, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Lucia Bergmann, R.; Bergmann, K.E.; Haschke-Becher, E.; Richter, R.; Dudenhausen, J.W.; Barclay, D.; Haschke, F. Does maternal docosahexaenoic acid supplementation during pregnancy and lactation lower BMI in late infancy? J. Perinat. Med. 2007, 35, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Vidakovic, A.J.; Gishti, O.; Voortman, T.; Felix, J.F.; Williams, M.A.; Hofman, A.; Demmelmair, H.; Koletzko, B.; Tiemeier, H.; Jaddoe, V.W.; et al. Maternal plasma PUFA concentrations during pregnancy and childhood adiposity: The Generation R Study. Am. J. Clin. Nutr. 2016, 103, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-S.; Barraza-Villarreal, A.; Hernandez-Vargas, H.; Sly, P.D.; Biessy, C.; Ramakrishnan, U.; Romieu, I.; Herceg, Z. Modulation of DNA methylation states and infant immune system by dietary supplementation with -3 PUFA during pregnancy in an intervention study. Am. J. Clin. Nutr. 2013, 98, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Van Dijk, S.J.; Zhou, J.; Peters, T.J.; Buckley, M.; Sutcliffe, B.; Oytam, Y.; Gibson, R.A.; McPhee, A.; Yelland, L.N.; Makrides, M.; et al. Effect of prenatal DHA supplementation on the infant epigenome: Results from a randomized controlled trial. Clin. Epigenet. 2016, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.; Lauritzen, L.; Brasholt, M.; Buhl, T.; Bisgaard, H. Polyunsaturated fatty acid content of mother’s milk is associated with childhood body composition. Pediatr. Res. 2012, 72, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Helland, I.B.; Smith, L.; Blomén, B.; Saarem, K.; Saugstad, O.D.; Drevon, C.A. Effect of supplementing pregnant and lactating mothers with n-3 very-long-chain fatty acids on children’s IQ and body mass index at 7 years of age. Pediatrics 2008, 122, e472–e479. [Google Scholar] [CrossRef] [PubMed]
- Patro-Gołąb, B.; Zalewski, B.M.; Kołodziej, M.; Kouwenhoven, S.; Poston, L.; Godfrey, K.M.; Koletzko, B.; van Goudoever, J.B.; Szajewska, H. Nutritional interventions or exposures in infants and children aged up to 3 years and their effects on subsequent risk of overweight, obesity and body fat: A systematic review of systematic reviews. Obes. Rev. 2016, 17, 1245–1257. [Google Scholar] [CrossRef] [PubMed]
- Makrides, M.; Gibson, R.A.; McPhee, A.J.; Yelland, L.; Quinlivan, J.; Ryan, P. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: A randomized controlled trial. JAMA 2010, 304, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Li, Q.; Chu, J.; Zeng, W.; Yang, M.; Zhu, S. Effect of n-3 PUFA supplementation on cognitive function throughout the life span from infancy to old age: A systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2014, 100, 1422–1436. [Google Scholar] [CrossRef] [PubMed]
Characteristic | DHA Supplement (n = 34) | Placebo (n = 29) | p-Value |
---|---|---|---|
Maternal age, mean (SD) | 29.4 (5.1) | 29.1 (5.3) | 0.82 |
Pre-pregnancy BMI, mean (SD) | 33.9 (4.2) | 34.8 (3.5) | 0.33 |
Inclusion diagnosis, % (n) | 0.45 | ||
Obese | 55.9 (19) | 65.5 (19) | |
Gestational diabetes | 44.1 (15) | 34.5 (10) | |
Enrollment gestational age, weeks, mean (SD) | 26.5 (0.8) | 26.6 (0.9) | 0.61 |
Enrollment BMI, mean (SD) | 35.5 (4.2) | 35.7 (3.6) | 0.80 |
Maternal ethnicity, % Hispanic (n) | 94.1 (32) | 89.7 (26) | 0.33 |
Educational status, % (n) | 0.44 | ||
<9th grade | 54.5 (18) | 39.3 (11) | |
Some high school | 9.1 (3) | 7.1 (2) | |
High school diploma | 24.2 (8) | 25.0 (7) | |
Some college or above | 12.1 (4) | 28.6 (8) | |
Insurance, % (n) | 0.48 | ||
None | 14.7 (5) | 13.8 (4) | |
Public | 17.6 (6) | 31.0 (9) | |
Private | 67.6 (23) | 55.2 (16) | |
RBC DHA% at 26 weeks, mean (SD) | 5.8 (2.1) | 6.0 (2.2) | 0.79 |
RBC DHA% at 36 weeks, mean (SD) | 9.7 (2.6) | 6.2 (2.2) | <0.001 |
RBC AA% at 26 weeks, mean (SD) | 21.0 (4.6) | 20.5 (4.8) | 0.68 |
RBC AA% at 36 weeks, mean (SD) | 20.0 (2.3) | 21.6 (2.6) | 0.01 |
Characteristic | DHA (n = 34) | Placebo (n = 29) | p-Value |
---|---|---|---|
Child gender, % female (n) | 44.1 (15) | 37.9 (11) | 0.80 |
Gestational age, weeks, mean (SD) | 39.3 (1.1) | 39.4 (1.2) | 0.54 |
Birth weight, g, mean (SD) | 3502 (433) | 3484 (411) | 0.86 |
Birth weight z-score, mean (SD) | 0.84 (1.01) | 0.65 (0.76) | 0.39 |
Length, cm, mean (SD) | 51.5 (1.7) | 50.9 (1.9) | 0.23 |
Length z-score, mean (SD) | 1.50 (1.08) | 1.04 (0.94) | 0.08 |
Head circumference, cm, mean (SD) | 34.6 (1.3) | 34.7 (0.96) | 0.92 |
Head circumference z-score, mean (SD) | 0.71 (1.08) | 0.63 (0.92) | 0.77 |
Weight-for-length z-score, mean (SD) | −0.59 (0.92) | −0.31 (0.97) | 0.25 |
Ponderal index, mean (SD) | 2.56 (0.21) | 2.62 (0.23) | 0.27 |
Outcome Measure | DHA | Placebo | Group p-Value | Time p-Value | Group × Time p-Value |
---|---|---|---|---|---|
Adiposity measure | 0.97 | <0.001 | 0.60 | ||
Birth weight for length z-score | −0.60 (0.16) | −0.31 (0.18) | |||
2-year old BMI z-score | 0.48 (0.39) | 0.55 (0.32) | |||
4-year old BMI z-score | 1.24 (0.42) | 0.92 (0.47) | |||
Weight | 0.40 | 0.16 | 0.97 | ||
Birth z-score | 0.84 (0.16) | 0.65 (0.17) | |||
2-year old z-score | 0.64 (0.32) | 0.36 (0.28) | |||
4-year old z-score | 1.15 (0.35) | 0.85 (0.38) | |||
Height | 0.37 | <0.001 | 0.58 | ||
Birth z-score | 1.50 (0.18) | 1.04 (0.20) | |||
2-year old z-score | 0.06 (0.38) | 0.01 (0.23) | |||
4-year old z-score | 0.50 (0.23) | 0.31 (0.24) | |||
Models for 2 and 4 years | |||||
BMI z-score | 0.85 | 0.08 | 0.57 | ||
2-year old BMI z-score | 0.57 (0.39) | 0.64 (0.34) | |||
4-year old BMI z-score | 1.30 (0.44) | 1.03 (0.47) | |||
Arm Circumference | 0.84 | 0.51 | 0.69 | ||
2-year old z-score | 1.54 (0.37) | 1.54 (0.35) | |||
4-year old z-score | 1.46 (0.55) | 1.20 (0.59) | |||
Arm Skinfold | 0.48 | 0.57 | 0.21 | ||
2-year old z-score | 1.41 (0.58) | 1.57 (0.48) | |||
4-year old z-score | 2.19 (0.39) | 1.28 (0.43) |
Outcome Measure | DHA vs. Placebo Group | Time | Breastfeeding Duration | RBC DHA at 36 Weeks | DHA vs. Placebo × RBC DHA |
---|---|---|---|---|---|
BMI z-score | −1.35 (1.48), 0.38 | −0.34 (0.29), 0.26 | −0.17 (0.03), <0.001 | −0.47 (0.11), 0.002 | 0.29 (0.16), 0.10 |
Arm circumference z-score | −1.58 (1.16), 0.19 | 0.42 (0.36), 0.27 | −0.19 (0.02), <0.001 | −0.44 (0.10), <0.001 | 0.29 (0.13), 0.05 |
Arm skinfold z-score | −1.11 (1.49), 0.47 | −0.12 (0.41), 0.77 | −0.18 (0.04), <0.001 | −0.41 (0.12), 0.006 | 0.25 (0.17), 0.16 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foster, B.A.; Escaname, E.; Powell, T.L.; Larsen, B.; Siddiqui, S.K.; Menchaca, J.; Aquino, C.; Ramamurthy, R.; Hale, D.E. Randomized Controlled Trial of DHA Supplementation during Pregnancy: Child Adiposity Outcomes. Nutrients 2017, 9, 566. https://doi.org/10.3390/nu9060566
Foster BA, Escaname E, Powell TL, Larsen B, Siddiqui SK, Menchaca J, Aquino C, Ramamurthy R, Hale DE. Randomized Controlled Trial of DHA Supplementation during Pregnancy: Child Adiposity Outcomes. Nutrients. 2017; 9(6):566. https://doi.org/10.3390/nu9060566
Chicago/Turabian StyleFoster, Byron A., Elia Escaname, Theresa L. Powell, Benjamin Larsen, Sartaj K. Siddiqui, John Menchaca, Christian Aquino, Rajam Ramamurthy, and Daniel E. Hale. 2017. "Randomized Controlled Trial of DHA Supplementation during Pregnancy: Child Adiposity Outcomes" Nutrients 9, no. 6: 566. https://doi.org/10.3390/nu9060566