Chemopreventive Activity of Vitamin E in Breast Cancer: A Focus on γ- and δ-Tocopherol
Abstract
:1. Tocopherols
2. Subtypes of Breast Cancer
2.1. Estrogen Receptor (ER) Positive
2.2. Human Epidermal Growth Factor Receptor 2 (HER2)
2.3. Basal-Like
3. Cellular Events and Molecular Targets in Breast Cancer
3.1. Estrogen Receptor (ER)
3.2. Peroxisome Proliferator Activated Receptor γ (PPARγ)
Tocopherol | Cell type/Cancer model | Result | References |
---|---|---|---|
γ-Tocopherol | Colon cancer cells (SW 480) | ↑ PPARγ mRNA and protein level | [27] |
γ-Tocopherol | Keratinocytes cells (NCTC 2544) | ↑ PPARγ mRNA levels | [82] |
γ-TmT, γ-Tocopherol, δ-Tocopherol | Breast cancer cells (MCF-7 and T47D) | ↑ PPARγ transactivation | [7] |
γ-TmT | NMU-induced mammary tumors in female Sprague-Dawley rats | ↑ PPARγ mRNA and protein level | [7] |
γ-TmT | Estrogen-induced mammary hyperplasia in female ACI rats | ↑ PPARγ mRNA and protein level | [76] |
3.3. Nuclear Factor (Erythroid-Derived 2)-Like 2 (Nrf2)
Tocopherol | Cell type/Cancer model | Result | References |
---|---|---|---|
α-Tocopherol | Human retinal pigment epithelial cells (ARPE-19) | ↑ Nrf2 protein levels, ↑ glutamate cysteine ligase, NQO1, HO-1, GST, SOD | [90] |
γ-TmT | Prostate carcinogenesis in TRAMP male mice | ↑ Nrf2 protein levels, ↑ GSTm1, UGT1A1, HO-1, catalase, SOD, glutathione peroxidase, | [43] |
γ-TmT | Estrogen-induced mammary hyperplasia in female ACI rats | ↑ Nrf2 protein levels | [92] |
3.4. Cell Proliferation and Apoptosis
Tocopherol | Cell type/Cancer model | Result | References |
---|---|---|---|
γ-Tocopherol | Prostate cancer cells (LNCaP and PC-3) and lung cancer cells (A549) | ↓ Proliferation | [101] |
γ-Tocopherol and combination of γ-Tocopherol and δ-Tocopherol | Prostate cancer cells (LNCaP) | ↑ Apoptosis | [101] |
γ-Tocopherol | Colon cancer cells (SW480, HCT-15, HCT-116, HT-29) | ↓ Proliferation, ↑ Apoptosis | [100] |
γ-Tocopherol | Prostate cancer cells (LNCaP) | ↓ Proliferation, ↑ Apoptosis | [101] |
δ-Tocopherol | Breast cancer cells (MCF-7 and MDA-MB-435) | ↑ Apoptosis | [102] |
γ-Tocopherol | Breast cancer cells (MCF-7 and MDA-MB-435) and murine 66cl-4 | ↓ Proliferation, ↑ Apoptosis | [103] |
γ-Tocopherol | Bresat cancer MDA-MB-231 xenograft in nu/nu mice | ↑ Apoptosis | [22] |
γ-Tocopherol, δ-Tocopherol | Lung cancer H1299 xenograft in nu/nu mice | ↑ Apoptosis | [42] |
γ-TmT | NMU-induced mammary tumors in female Sprague-Dawley rats | ↓ Proliferation | [104] |
γ-TmT | NMU-induced mammary tumors in female Sprague-Dawley rats | ↑ Apoptosis | [7] |
γ-Tocopherol, δ-Tocopherol, γ-TmT | NMU-induced mammary tumors in female Sprague-Dawley rats | ↑ Apoptosis | [105] |
γ-TmT | Estrogen-induced mammary hyperplasia in female ACI rats | ↓ Proliferation, ↑ Apoptosis | [76] |
3.5. Cyclooxygenase-2 (COX-2) and Anti-Inflammatory Activities
Tocopherol | Cell type/Cancer model | Result | References |
---|---|---|---|
γ-Tocopherol | Carrageenan-induced inflammation in Wistar male rats | ↓ RNS, ↓ PGE2, ↓ LTB4, ↓ TNF-α | [29] |
γ-Tocopherol | Macrophages (RAW264.7) and human epithelial cells (A549) | ↓ COX-2, ↓ PGE2 | [28] |
γ-Tocopherol | Zymosan-induced acute peritonitis in male Fischer 344 rats | ↓ RNS | [30] |
γ-Tocopherol | Human plasma | ↓ RNS, ↓ peroxynitrite | [31] |
γ-Tocopherol, δ-Tocopherol | Human epithelial cells (A549) | ↓ COX-2 | [111] |
γ-TmT | Estrogen-induced mammary hyperplasia in female ACI rats | ↓ COX-2, ↓ PGE2, ↓ 8-isoprostane | [76] |
4. Studies on Tocopherols and Human Cancers
4.1. Case-Control and Cohort Studies
Study | Population | Year | Case/Control a | Intake or blood levels | Relative risk (95% CI) for highest vs. lowest level | Conclusion |
---|---|---|---|---|---|---|
[124] | Canada | 1989-1993 | 223/85 | Serum or adipose tissue levels of α-T: levels were not specified | Serum α-T: 0.85 (0.45-1.59) | No association |
Adipose tissue α-T:1.34 (0.73-2.47) | ||||||
[125] | US | 1976-1998 | 969/969 | Serum α-T or γ-T: levels were not specified | Serum α-T: 0.79 (0.57-1.08) | No association |
Serum γ-T: 0.96 (0.71-1.30) | ||||||
[126] | US | 1975-1994 | 244/244 (1974 Study) | Serum α-T: 0.91-1.40 mg/dL; 0.99-1.65 mg/dL | Serum α-T: 0.94 (0.52-1.73); 0.67 (0.28-1.62) | No association |
115/115 (1989 Study) | Serum γ-T: 0.15-0.32 mg/dL; 0.13-0.34 mg/dL | Serum γ-T: 0.70 (0.40-1.23); 0.80 (0.33-1.93) | ||||
[127] | US | 1975-1993 | 64/64 | Serum α-T: 1.31 mg/dL | α-T: 0.46 (0.23-0.64) | No association |
Serum γ-T: 0.25 mg/dL | γ-T: 0.53 (0.32-0.69) | |||||
[113] | India | Pre-M: 28/23 | Serum α-T: 38 vs. 25 μmol/L | Serum α-T: P < 0.05 | Risk reduction | |
Post-M: 29/19 | Serum γ-T: 30 vs. 25 μmol/L | Serum γ-T: p < 0.02 | ||||
[129] | US | 27/28 | Serum α-T: ≤20.5 ~ ≥35 μmol/L | Serum α-T: 0.76 (0.10-5.75) | No association | |
Serum γ-T: ≤2.12~ ≥7.573 μmol/L | Serum γ-T:0.31 (0.04-1.93) | |||||
[130] | Greek | Pre-M: 270/505 | Vit E: <5.2 ~ ≥8.6 IU/day | Pre-M: 0.50 (0.25-1.02) | No association | |
Post-M: 550/1041 | Post-M: 0.85 (0.53-1.36) | |||||
[114] | Finish | Pre-M: 119/324 | Vit E: ≤7 ~ >13 mg/day | 0.5 (0.2-1.0) | Risk reduction | |
[115] | Uruguay | 400/405 | Vit E: 4.7 ~ 9.7 mg/day | 0.4 (0.26-0.62) | Risk reduction | |
[131] | Italian | Pre-M: 989/841 | Vit E: <8.5 ~ 11.7 mg/day | Pre-M: 1.27 (0.9-1.78) | No association | |
Post-M: 1577/1745 | Post-M: 1.16 (0.92-1.46) | |||||
[132] | US | 1977-1989 | 105/203 | Serum α-T: ≤21.6 ~ ≥31.3 μmol/L | 1.2 (0.5-2.8) | No association |
[116] | Italy | Pre-M: 988/843 | Vit E: levels were not specified | Pre-M: 0.8 (0.7-1.0) | Risk reduction | |
Post-M: 1572/1742 | Post-M: 0.75 (0.6-0.9) | |||||
[117] | US | 297/311 | α-T: <6 ~ ≥11 mg/day | 0.55 (0.34-0.88) | Risk reduction | |
[112] | US | Pre-M without family history: 224/251 | α-T: ≤6.3 ~ >10.4 IU/day | 0.5 (0.2-1.0) | Risk reduction | |
[118] | US | Post-M: 313/349 | Vit E: 11 vs. 5.4 mg/day (median) | 0.4 (0.2-0.9) | Risk reduction | |
[119] | Malaysia | 57/139 | Vit E: 6.1 vs. 6.9 mg/day (mean) | 2.12 (1.00-4.21) | Risk reduction | |
[128] | South Korea | 2004-2006 | 362/362 | Vit E: 10.6 vs. 11.2 mg/day | 0.66 (0.41-1.08) | No association |
[120] | Switzerland | 1993-1999 | 289/442 | Vit E: 9.4-18.1 mg/day | 0.49 (0.35-0.71) | Risk reduction |
[121] | Italy | 1991-1994 | 2569/2588 | Vit E: 7.21-13.43 mg/day | 0.75 (0.6-0.9) | Risk reduction |
[123] | Germany | 1998-1999 | 310/353 | Vit E: 7.1-12.7 mg/day | 1.08 (0.58-2.03) | No association |
[122] | China | 1996-1998 and 2002-2004 | 3454/3474 | Vit E: levels not specified | Low supplemental Vit E: 0.7 (0.5-1.0) | Risk reduction |
High supplemental Vit E: 1.2 (0.9-1.6) | ||||||
[133] | US | 1999-2004 | 1498/1559 (Non-Hispanic white) 763/877 (Hispanic) | α-T: 108-224 mg/day | α-T: 0.87 (0.73-1.03) | No association |
β-T: 0.3-0.4 mg/day | β-T: 1.10 (0.89-1.36) | |||||
γ-T: 15.9-19.4 mg/day | γ-T: 1.13 (0.89-1.44) | |||||
δ-T: 2.94-3.59 mg/day | δ-T: 1.10 (0.89-1.35) | |||||
[134] | Denmark | 1993-1997 | 418/394 | Dietary Vit E: | Dietary Vit E: 1.13 (0.61-2.10) | No association |
4.30-14.8 mg/day | Supplemental Vit E: 1.00 (0.96-1.03) | |||||
Supplemental Vit E: 0.94-78.23 mg/day | ||||||
[135] | South Korea | 1999-2000 | 224/250 | Dietary Vit E: 6.26-12.71 mg/day | Dietary Vit E: 0.71 (0.39-1.27) | No association |
Study | Population | Year | Case/Control a | Intake or blood levels | Relative risk (95% CI) for highest vs. lowest level | Conclusion |
---|---|---|---|---|---|---|
[136] | Canada | 1982-1987 | 519/1182 | α-T: <3 vs. >7 mg/day | α-T: 1.05 (0.65-1.70) | No association |
[137] | Sweden | 1987-1990 | 1271/59036 | Vit E: 9.3 vs. 3.8 mg/day (median) | 0.83 (0.6-1.14) | No association |
[138] | Pre-M: 784/53938 | Vit E: 10 vs. 5 IU/day (median) | 0.81 (0.64-1.02) | No association | ||
[139] | Netherlands | Post-M: 650/62573 | Vit E: 19.8 vs. 6.9 mg/day (median) | 1.25 (0.85-1.85) | No association | |
[140] | Finland | 88/4697 | Vit E: levels were not specified | 1.08 | No association | |
[141] | US | 1986 | 570/21782 | Vit E: 10 vs. 5 mg/day | 0.81 (0.64-1.02) | No association |
[142] | US | 1976-1982 | 1439/89494 | Dietary Vit E: <3.9 ~ ≥24.1 IU/day | Dietary Vit E: 0.90 (0.77-1.06) | No association |
Supplemental Vit E: 600 vs. 0 IU/day | Supplemental Vit E: 1.01 (0.69-0.49) | |||||
[143] | Canada | 325/628 | Vit E: ~18 IU/day (median) | 1.32 (0.85-2.05) | No association | |
[144] | US | 1980-1987 | Post-M: 344/18586 | Vit E: <4.3 ~ ≥9.3 mg/day | 0.86 (0.61-1.21) | No association |
[145] | Europe | 1992-2000 | 7502/334493 | Vit E: 5.4-19.5 mg/day | 0.92 (0.77-1.11) | No association |
[146] | US | 1993-1998 | 2879/81926 | Dietary Vit E: 6.2-9.4 mg/day | Dietary Vit E: 1.03 (0.91-1.17) | No association |
Supplemental Vit E: 0-424 mg/day | Supplemental Vit E: 1.01 (0.90-1.14) | |||||
[147] | US | 1991-1999 | Pre-M: 714/90655 | Vit E: 7-59 mg/day | Vit E: 1.13 (0.89-1.43) | No association |
Dietary Vit E: 6-10 mg/day | Dietary Vit E: 1.17 (0.92-1.50) |
4.2. Intervention Studies
5. Conclusion
Acknowledgments
Conflict of Interest
References
- Taylor, P.R.; Qiao, Y.L.; Abnet, C.C.; Dawsey, S.M.; Yang, C.S.; Gunter, E.W.; Wang, W.; Blot, W.J.; Dong, Z.W.; Mark, S.D. Prospective study of serum vitamin E levels and esophageal and gastric cancers. J. Natl. Cancer Inst. 2003, 95, 1414–1416. [Google Scholar]
- Constantinou, C.; Papas, A.; Constantinou, A.I. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 2008, 123, 739–752. [Google Scholar]
- Brigelius-Flohe, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 1145–1155. [Google Scholar]
- McLaughlin, P.J.; Weihrauch, J.L. Vitamin E content of foods. J. Am. Diet. Assoc. 1979, 75, 647–665. [Google Scholar]
- Traber, M.G. Vitamin E regulatory mechanisms. Annu. Rev. Nutr. 2007, 27, 347–362. [Google Scholar]
- Aggarwal, B.B.; Sundaram, C.; Prasad, S.; Kannappan, R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem. Pharmacol. 2010, 80, 1613–1631. [Google Scholar]
- Lee, H.J.; Ju, J.; Paul, S.; So, J.Y.; DeCastro, A.; Smolarek, A.; Lee, M.J.; Yang, C.S.; Newmark, H.L.; Suh, N. Mixed tocopherols prevent mammary tumorigenesis by inhibiting estrogen action and activating PPAR-gamma. Clin. Cancer Res. 2009, 15, 4242–4249. [Google Scholar]
- Ju, J.; Hao, X.; Lee, M.J.; Lambert, J.D.; Lu, G.; Xiao, H.; Newmark, H.L.; Yang, C.S. A gamma-tocopherol-rich mixture of tocopherols inhibits colon inflammation and carcinogenesis in azoxymethane and dextran sulfate sodium-treated mice. Cancer Prev. Res. (Phila.) 2009, 2, 143–152. [Google Scholar] [PubMed]
- Sen, C.K.; Khanna, S.; Roy, S. Tocotrienols in health and disease: The other half of the natural vitamin E family. Mol. Aspects Med. 2007, 28, 692–728. [Google Scholar]
- Tan, B. Tocotrienols: The New Vitamin E. Spacedoc.com, 2010. Available online: http://www.spacedoc.com/tocotrienols (accessed on 15 October 2011).
- Boscoboinik, D.; Szewczyk, A.; Azzi, A. Alpha-tocopherol (vitamin E) regulates vascular smooth muscle cell proliferation and protein kinase C activity. Arch. Biochem. Biophys. 1991, 286, 264–269. [Google Scholar]
- Boscoboinik, D.; Szewczyk, A.; Hensey, C.; Azzi, A. Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J. Biol. Chem. 1991, 266, 6188–6194. [Google Scholar] [PubMed]
- Murphy, D.J.; Mavis, R.D. Membrane transfer of alpha-tocopherol. Influence of soluble alpha-tocopherol-binding factors from the liver, lung, heart, and brain of the rat. J. Biol. Chem. 1981, 256, 10464–10468. [Google Scholar] [PubMed]
- Sontag, T.J.; Parker, R.S. Cytochrome P450 omega-hydroxylase pathway of tocopherol catabolism. Novel mechanism of regulation of vitamin E status. J. Biol. Chem. 2002, 277, 25290–25296. [Google Scholar] [PubMed]
- Hosomi, A.; Arita, M.; Sato, Y.; Kiyose, C.; Ueda, T.; Igarashi, O.; Arai, H.; Inoue, K. Affinity for alpha-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett. 1997, 409, 105–108. [Google Scholar]
- Zimmer, S.; Stocker, A.; Sarbolouki, M.N.; Spycher, S.E.; Sassoon, J.; Azzi, A. A novel human tocopherol-associated protein: Cloning, in vitro expression, and characterization. J. Biol. Chem. 2000, 275, 25672–25680. [Google Scholar] [PubMed]
- Dutta-Roy, A.K.; Gordon, M.J.; Leishman, D.J.; Paterson, B.J.; Duthie, G.G.; James, W.P. Purification and partial characterisation of an alpha-tocopherol-binding protein from rabbit heart cytosol. Mol. Cell Biochem. 1993, 123, 139–144. [Google Scholar]
- Gordon, M.J.; Campbell, F.M.; Dutta-Roy, A.K. alpha-Tocopherol-binding protein in the cytosol of the human placenta. Biochem. Soc. Trans. 1996, 24, 202S. [Google Scholar]
- Gordon, M.J.; Campbell, F.M.; Duthie, G.G.; Dutta-Roy, A.K. Characterization of a novel alpha-tocopherol-binding protein from bovine heart cytosol. Arch. Biochem. Biophys. 1995, 318, 140–146. [Google Scholar]
- Birringer, M.; Pfluger, P.; Kluth, D.; Landes, N.; Brigelius-Flohe, R. Identities and differences in the metabolism of tocotrienols and tocopherols in HepG2 cells. J. Nutr. 2002, 132, 3113–3118. [Google Scholar]
- Huang, H.Y.; Appel, L.J. Supplementation of diets with alpha-tocopherol reduces serum concentrations of gamma- and delta-tocopherol in humans. J. Nutr. 2003, 133, 3137–3140. [Google Scholar]
- Yu, W.; Jia, L.; Park, S.K.; Li, J.; Gopalan, A.; Simmons-Menchaca, M.; Sanders, B.G.; Kline, K. Anticancer actions of natural and synthetic vitamin E forms: RRR-alpha-tocopherol blocks the anticancer actions of gamma-tocopherol. Mol. Nutr. Food Res. 2009, 53, 1573–1581. [Google Scholar]
- Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attentio. Am. J. Clin. Nutr. 2001, 74, 714–722. [Google Scholar]
- Dietrich, M.; Traber, M.G.; Jacques, P.F.; Cross, C.E.; Hu, Y.; Block, G. Does gamma-tocopherol play a role in the primary prevention of heart disease and cancer? A review. J. Am. Coll. Nutr. 2006, 25, 292–299. [Google Scholar]
- Gysin, R.; Azzi, A.; Visarius, T. Gamma-tocopherol inhibits human cancer cell cycle progression and cell proliferation by down-regulation of cyclins. FASEB J. 2002, 16, 1952–1954. [Google Scholar]
- Jiang, Q.; Wong, J.; Fyrst, H.; Saba, J.D.; Ames, B.N. gamma-Tocopherol or combinations of vitamin E forms induce cell death in human prostate cancer cells by interrupting sphingolipid synthesis. Proc. Natl. Acad. Sci. USA 2004, 101, 17825–17830. [Google Scholar]
- Campbell, S.E.; Stone, W.L.; Whaley, S.G.; Qui, M.; Krishnan, K. Gamma (gamma) tocopherol upregulates peroxisome proliferator activated receptor (PPAR) gamma (gamma) expression in SW 480 human colon cancer cell lines. BMC Cancer 2003, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Elson-Schwab, I.; Courtemanche, C.; Ames, B.N. Gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cell. Proc. Natl. Acad. Sci. USA 2000, 97, 11494–11499. [Google Scholar]
- Jiang, Q.; Ames, B.N. Gamma-tocopherol, but not alpha-tocopherol, decreases proinflammatory eicosanoids and inflammation damage in rat. FASEB J. 2003, 17, 816–822. [Google Scholar]
- Jiang, Q.; Lykkesfeldt, J.; Shigenaga, M.K.; Shigeno, E.T.; Christen, S.; Ames, B.N. Gamma-tocopherol supplementation inhibits protein nitration and ascorbate oxidation in rats with inflammation. Free Radic. Biol. Med. 2002, 33, 1534–1542. [Google Scholar]
- Christen, S.; Woodall, A.A.; Shigenaga, M.K.; Southwell-Keely, P.T.; Duncan, M.W.; Ames, B.N. Gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: Physiological implications. Proc. Natl. Acad. Sci. USA 1997, 94, 3217–3222. [Google Scholar]
- Cooney, R.V.; Franke, A.A.; Harwood, P.J.; Hatch-Pigott, V.; Custer, L.J.; Mordan, L.J. Gamma-tocopherol detoxification of nitrogen dioxide: Superiority to alpha-tocopherol. Proc. Natl. Acad. Sci. USA 1993, 90, 1771–1775. [Google Scholar]
- Kamal-Eldin, A.; Appelqvist, L.A. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 1996, 31, 671–701. [Google Scholar]
- Cillard, J.; Cillard, P. Prooxidant effect of alpha-tocopherol on essential fatty acids in aqueous media. Ann. Nutr. Aliment. 1980, 34, 579–591. [Google Scholar]
- Burton, G.W.; Traber, M.G. Vitamin E: Antioxidant activity, biokinetics, and bioavailability. Annu. Rev. Nutr. 1990, 10, 357–382. [Google Scholar] [PubMed]
- Burton, G.W.; Ingold, K.U. Vitamin E as an in vitro and in vivo antioxidant. Ann. N. Y. Acad. Sci. 1989, 570, 7–22. [Google Scholar] [PubMed]
- Lee, I.M.; Cook, N.R.; Gaziano, J.M.; Gordon, D.; Ridker, P.M.; Manson, J.E.; Hennekens, C.H.; Buring, J.E. Vitamin E in the primary prevention of cardiovascular disease and cancer: The Women’s Health Study: A randomized controlled trial. J. Am. Med. Assoc. 2005, 294, 56–65. [Google Scholar]
- Hensley, K.; Benaksas, E.J.; Bolli, R.; Comp, P.; Grammas, P.; Hamdheydari, L.; Mou, S.; Pye, Q.N.; Stoddard, M.F.; Wallis, G.; et al. New perspectives on vitamin E: Gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic. Biol. Med. 2004, 36, 1–15. [Google Scholar] [PubMed]
- Kline, K.; Lawson, K.A.; Yu, W.; Sanders, B.G. Vitamin E and breast cancer prevention: Current status and future potential. J. Mammary Gland Biol. Neoplasia 2003, 8, 91–102. [Google Scholar]
- Bairati, I.; Meyer, F.; Gelinas, M.; Fortin, A.; Nabid, A.; Brochet, F.; Mercier, J.P.; Tetu, B.; Harel, F.; Masse, B.; et al. A randomized trial of antioxidant vitamins to prevent second primary cancers in head and neck cancer patients. J. Natl. Cancer Inst. 2005, 97, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Brigelius-Flohe, R.; Kelly, F.J.; Salonen, J.T.; Neuzil, J.; Zingg, J.M.; Azzi, A. The European perspective on vitamin E: Current knowledge and future research. Am. J. Clin. Nutr. 2002, 76, 703–716. [Google Scholar]
- Li, G.X.; Lee, M.J.; Liu, A.B.; Yang, Z.; Lin, Y.; Shih, W.J.; Yang, C.S. delta-tocopherol is more active than alpha- or gamma-tocopherol in inhibiting lung tumorigenesis in vivo. Cancer Prev. Res. (Phila.) 2011, 4, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Barve, A.; Khor, T.O.; Nair, S.; Reuhl, K.; Suh, N.; Reddy, B.; Newmark, H.; Kong, A.N. Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int. J. Cancer 2009, 124, 1693–1699. [Google Scholar]
- American Cancer Society. Learn about Cancer-Breast Cancer, 2011. Available online: http://www.cancer.org/Cancer/BreastCancer/DetailedGuide/breast-cancer-key-statistics (accessed on 25 May 2011).
- Blows, F.M.; Driver, K.E.; Schmidt, M.K.; Broeks, A.; van Leeuwen, F.E.; Wesseling, J.; Cheang, M.C.; Gelmon, K.; Nielsen, T.O.; Blomqvist, C.; et al. Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: A collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med. 2010, 7, e1000279. [Google Scholar] [PubMed]
- Sorlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 2003, 100, 8418–8423. [Google Scholar]
- Russo, J.; Hasan Lareef, M.; Balogh, G.; Guo, S.; Russo, I.H. Estrogen and its metabolites are carcinogenic agents in human breast epithelial cells. J. Steroid Biochem. Mol. Biol. 2003, 87, 1–25. [Google Scholar]
- Mense, S.M.; Remotti, F.; Bhan, A.; Singh, B.; El-Tamer, M.; Hei, T.K.; Bhat, H.K. Estrogen-induced breast cancer: Alterations in breast morphology and oxidative stress as a function of estrogen exposure. Toxicol. Appl. Pharmacol. 2008, 232, 78–85. [Google Scholar]
- Singh, B.; Mense, S.M.; Remotti, F.; Liu, X.; Bhat, H.K. Antioxidant butylated hydroxyanisole inhibits estrogen-induced breast carcinogenesis in female ACI rats. J. Biochem. Mol. Toxicol. 2009, 23, 202–211. [Google Scholar]
- Yager, J.D.; Davidson, N.E. Estrogen carcinogenesis in breast cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar]
- Gaikwad, N.W.; Rogan, E.G.; Cavalieri, E.L. Evidence from ESI-MS for NQO1-catalyzed reduction of estrogen ortho-quinones. Free Radic. Biol. Med. 2007, 43, 1289–1298. [Google Scholar]
- Sumi, D.; Numasawa, Y.; Endo, A.; Iwamoto, N.; Kumagai, Y. Catechol estrogens mediated activation of Nrf2 through covalent modification of its quinone metabolite to Keap1. J. Toxicol. Sci. 2009, 34, 627–635. [Google Scholar]
- Rogan, E.G.; Badawi, A.F.; Devanesan, P.D.; Meza, J.L.; Edney, J.A.; West, W.W.; Higginbotham, S.M.; Cavalieri, E.L. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: Potential biomarkers of susceptibility to cancer. Carcinogenesis 2003, 24, 697–702. [Google Scholar]
- Owens, M.A.; Horten, B.C.; da Silva, M.M. HER2 amplification ratios by fluorescence in situ hybridization and correlation with immunohistochemistry in a cohort of 6556 breast cancer tissues. Clin. Breast Cancer 2004, 5, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Baselga, J.; Swain, S.M. Novel anticancer targets: Revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer 2009, 9, 463–475. [Google Scholar]
- Franklin, M.C.; Carey, K.D.; Vajdos, F.F.; Leahy, D.J.; de Vos, A.M.; Sliwkowski, M.X. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell 2004, 5, 317–328. [Google Scholar]
- Lewis Phillips, G.D.; Li, G.; Dugger, D.L.; Crocker, L.M.; Parsons, K.L.; Mai, E.; Blattler, W.A.; Lambert, J.M.; Chari, R.V.; Lutz, R.J.; et al. Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res. 2008, 68, 9280–9290. [Google Scholar] [PubMed]
- Spector, N.L.; Xia, W.; Burris, H., III; Hurwitz, H.; Dees, E.C.; Dowlati, A.; O’Neil, B.; Overmoyer, B.; Marcom, P.K.; Blackwell, K.L.; et al. Study of the biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases, on tumor growth and survival pathways in patients with advanced malignancies. J. Clin. Oncol. 2005, 23, 2502–2512. [Google Scholar] [PubMed]
- Citri, A.; Alroy, I.; Lavi, S.; Rubin, C.; Xu, W.; Grammatikakis, N.; Patterson, C.; Neckers, L.; Fry, D.W.; Yarden, Y. Drug-induced ubiquitylation and degradation of ErbB receptor tyrosine kinases: Implications for cancer therapy. EMBO J. 2002, 21, 2407–2417. [Google Scholar]
- Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer 2005, 5, 341–354. [Google Scholar]
- Olayioye, M.A.; Neve, R.M.; Lane, H.A.; Hynes, N.E. The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO J. 2000, 19, 3159–3167. [Google Scholar]
- Burgess, A.W.; Cho, H.S.; Eigenbrot, C.; Ferguson, K.M.; Garrett, T.P.; Leahy, D.J.; Lemmon, M.A.; Sliwkowski, M.X.; Ward, C.W.; Yokoyama, S. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 2003, 12, 541–552. [Google Scholar]
- Tzahar, E.; Waterman, H.; Chen, X.; Levkowitz, G.; Karunagaran, D.; Lavi, S.; Ratzkin, B.J.; Yarden, Y. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor. Mol. Cell Biol. 1996, 16, 5276–5287. [Google Scholar]
- Pinkas-Kramarski, R.; Soussan, L.; Waterman, H.; Levkowitz, G.; Alroy, I.; Klapper, L.; Lavi, S.; Seger, R.; Ratzkin, B.J.; Sela, M.; Yarden, Y. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions. EMBO J. 1996, 15, 2452–2467. [Google Scholar]
- 65. Holbro, T.; Beerli, R.R.; Maurer, F.; Koziczak, M.; Barbas, C.F., III; Hynes, N.E. The ErbB2/ErbB3 heterodimer functions as an oncogenic unit: ErbB2 requires ErbB3 to drive breast tumor cell proliferation. Proc. Natl. Acad. Sci. USA 2003, 100, 8933-8938.
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar]
- Hellyer, N.J.; Cheng, K.; Koland, J.G. ErbB3 (HER3) interaction with the p85 regulatory subunit of phosphoinositide 3-kinase. Biochem. J. 1998, 333, 757–763. [Google Scholar]
- Brenton, J.D.; Carey, L.A.; Ahmed, A.A.; Caldas, C. Molecular classification and molecular forecasting of breast cancer: Ready for clinical application? J. Clin. Oncol. 2005, 23, 7350–7360. [Google Scholar] [PubMed]
- Peppercorn, J.; Perou, C.M.; Carey, L.A. Molecular subtypes in breast cancer evaluation and management: Divide and conquer. Cancer Invest. 2008, 26, 1–10. [Google Scholar]
- Carey, L.A.; Perou, C.M.; Livasy, C.A.; Dressler, L.G.; Cowan, D.; Conway, K.; Karaca, G.; Troester, M.A.; Tse, C.K.; Edmiston, S.; et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. J. Am. Med. Assoc. 2006, 295, 2492–2502. [Google Scholar]
- Kline, K.; Lawson, K.A.; Yu, W.; Sanders, B.G. Vitamin E and cancer. Vitam. Horm. 2007, 76, 435–461. [Google Scholar]
- Stone, W.L.; Krishnan, K.; Campbell, S.E.; Qui, M.; Whaley, S.G.; Yang, H. Tocopherols and the treatment of colon cancer. Ann. N. Y. Acad. Sci. 2004, 1031, 223–233. [Google Scholar]
- Chamras, H.; Barsky, S.H.; Ardashian, A.; Navasartian, D.; Heber, D.; Glaspy, J.A. Novel interactions of vitamin E and estrogen in breast cancer. Nutr. Cancer 2005, 52, 43–48. [Google Scholar]
- Rice, S.; Whitehead, S.A. Phytoestrogens oestrogen synthesis and breast cancer. J. Steroid Biochem. Mol. Biol. 2008, 108, 186–195. [Google Scholar]
- Comitato, R.; Nesaretnam, K.; Leoni, G.; Ambra, R.; Canali, R.; Bolli, A.; Marino, M.; Virgili, F. A novel mechanism of natural vitamin E tocotrienol activity: Involvement of ERbeta signal transduction. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E427–E437. [Google Scholar]
- Smolarek, A.K.; So, J.Y.; Thomas, P.E.; Lee, H.J.; Paul, S.; Dombrowski, A.; Wang, C.X.; Kong, A.N.T.; Reuhl, K.; Lee, M.J.; et al. Dietary Mixed Tocopherols Inhibit Cell Proliferation in Mammary Hyperplasia, Suppress the Expression of Inflammatory Markers, and Upregulate PPARy. In Proceedings of the 102nd Annual Meeting of the American Association for Cancer ResearchOrlando, FL, USA, 2-6 April 2011.
- Desvergne, B.; Wahli, W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism. Endocr. Rev. 1999, 20, 649–688. [Google Scholar]
- Michalik, L.; Desvergne, B.; Wahli, W. Peroxisome-proliferator-activated receptors and cancers: Complex stories. Nat. Rev. Cancer 2004, 4, 61–70. [Google Scholar]
- Mansure, J.J.; Nassim, R.; Kassouf, W. Peroxisome proliferator-activated receptor gamma in bladder cancer: A promising therapeutic target. Cancer Biol. Ther. 2009, 8, 6–15. [Google Scholar]
- Jarrar, M.H.; Baranova, A. PPARgamma activation by thiazolidinediones (TZDs) may modulate breast carcinoma outcome: The importance of interplay with TGFbeta signalling. J. Cell Mol. Med. 2007, 11, 71–87. [Google Scholar]
- Campbell, S.E.; Musich, P.R.; Whaley, S.G.; Stimmel, J.B.; Leesnitzer, L.M.; Dessus-Babus, S.; Duffourc, M.; Stone, W.; Newman, R.A.; Yang, P.; et al. Gamma tocopherol upregulates the expression of 15-S-HETE and induces growth arrest through a PPAR gamma-dependent mechanism in PC-3 human prostate cancer cells. Nutr. Cancer 2009, 61, 649–662. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, M.C.; Bassi, A.M.; Patrone, V.; Villacorta, L.; Azzi, A.; Zingg, J.M. Increased expression of transglutaminase-1 and PPARgamma after vitamin E treatment in human keratinocytes. Arch. Biochem. Biophys. 2006, 447, 97–106. [Google Scholar]
- Bonofiglio, D.; Gabriele, S.; Aquila, S.; Catalano, S.; Gentile, M.; Middea, E.; Giordano, F.; Ando, S. Estrogen receptor alpha binds to peroxisome proliferator-activated receptor response element and negatively interferes with peroxisome proliferator-activated receptor gamma signaling in breast cancer cells. Clin. Cancer Res. 2005, 11, 6139–6147. [Google Scholar]
- Saw, C.L.; Wu, Q.; Kong, A.N. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin. Med. 2010, 5, 37. [Google Scholar] [CrossRef] [PubMed]
- Surh, Y.J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar]
- Frohlich, D.A.; McCabe, M.T.; Arnold, R.S.; Day, M.L. The role of Nrf2 in increased reactive oxygen species and DNA damage in prostate tumorigenesis. Oncogene 2008, 27, 4353–4362. [Google Scholar]
- Kwak, M.K.; Kensler, T.W. Targeting NRF2 signaling for cancer chemoprevention. Toxicol. Appl. Pharmacol. 2010, 244, 66–76. [Google Scholar]
- Khor, T.O.; Yu, S.; Kong, A.N. Dietary cancer chemopreventive agents-Targeting inflammation and Nrf2 signaling pathway. Planta Med. 2008, 74, 1540–1547. [Google Scholar]
- Chen, C.; Kong, A.N. Dietary cancer-chemopreventive compounds: From signaling and gene expression to pharmacological effects. Trends Pharmacol. Sci. 2005, 26, 318–326. [Google Scholar]
- Feng, Z.; Liu, Z.; Li, X.; Jia, H.; Sun, L.; Tian, C.; Jia, L.; Liu, J. alpha-Tocopherol is an effective Phase II enzyme inducer: Protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J. Nutr. Biochem 2010, 21, 1222–1231. [Google Scholar]
- Yu, S.; Khor, T.O.; Cheung, K.L.; Li, W.; Wu, T.Y.; Huang, Y.; Foster, B.A.; Kan, Y.W.; Kong, A.N. Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS One 2010, 5, e0008579. [Google Scholar]
- Smolarek, A.K.; So, J.Y.; Thomas, P.E.; Lee, H.J.; Paul, S.; Dombrowski, A.; Wang, C.X.; Saw, C.L.-L.; Khor, T.O.; Kong, A.N.T.; et al. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. 2011. Unpublished work. [Google Scholar]
- Kerr, J.F. History of the events leading to the formulation of the apoptosis concept. Toxicology 2002, 181-182, 471–474. [Google Scholar] [CrossRef] [PubMed]
- Kerr, J.F.; Wyllie, A.H.; Currie, A.R. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 1972, 26, 239–257. [Google Scholar]
- Hacker, G. The morphology of apoptosis. Cell Tissue Res. 2000, 301, 5–17. [Google Scholar]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar]
- Igney, F.H.; Krammer, P.H. Death and anti-death: Tumour resistance to apoptosis. Nat. Rev. Cancer 2002, 2, 277–288. [Google Scholar]
- Cohen, G.M. Caspases: The executioners of apoptosis. Biochem. J. 1997, 326, 1–16. [Google Scholar]
- Rai, N.K.; Tripathi, K.; Sharma, D.; Shukla, V.K. Apoptosis: A basic physiologic process in wound healing. Int. J. Low. Extrem. Wounds 2005, 4, 138–144. [Google Scholar]
- Campbell, S.E.; Stone, W.L.; Lee, S.; Whaley, S.; Yang, H.; Qui, M.; Goforth, P.; Sherman, D.; McHaffie, D.; Krishnan, K. Comparative effects of RRR-alpha- and RRR-gamma-tocopherol on proliferation and apoptosis in human colon cancer cell lines. BMC Cancer 2006, 6, 13. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Wong, J.; Ames, B.N. Gamma-tocopherol induces apoptosis in androgen-responsive LNCaP prostate cancer cells via caspase-dependent and independent mechanisms. Ann. N. Y. Acad. Sci. 2004, 1031, 399–400. [Google Scholar]
- Yu, W.; Simmons-Menchaca, M.; Gapor, A.; Sanders, B.G.; Kline, K. Induction of apoptosis in human breast cancer cells by tocopherols and tocotrienols. Nutr. Cancer 1999, 33, 26–32. [Google Scholar]
- Yu, W.; Jia, L.; Wang, P.; Lawson, K.A.; Simmons-Menchaca, M.; Park, S.K.; Sun, L.; Sanders, B.G.; Kline, K. In vitro and in vivo evaluation of anticancer actions of natural and synthetic vitamin E forms. Mol. Nutr. Food Res. 2008, 52, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Suh, N.; Paul, S.; Lee, H.J.; Ji, Y.; Lee, M.J.; Yang, C.S.; Reddy, B.S.; Newmark, H.L. Mixed tocopherols inhibit N-methyl-N-nitrosourea-induced mammary tumor growth in rats. Nutr. Cancer 2007, 59, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Smolarek, A.K.; So, J.Y.; Kong, A.N.; Reuhl, K.; Lin, Y.; Shih, W.J.; Lee, M.J.; Yang, C.S.; Suh, N. Dietary administration of gamma- and delta-tocopherol inhibits mammary carcinogenesis. In Proceedings of Society of Toxicology’s 51st Annual Meeting & ToxExpo, San Francisco, CA, USA, 11-15 March 2012.
- Herschman, H.R. Prostaglandin synthase 2. Biochim. Biophys. Acta 1996, 1299, 125–140. [Google Scholar]
- Howe, L.R.; Subbaramaiah, K.; Brown, A.M.; Dannenberg, A.J. Cyclooxygenase-2: A target for the prevention and treatment of breast cancer. Endocr. Relat. Cancer 2001, 8, 97–114. [Google Scholar]
- Ristimaki, A.; Sivula, A.; Lundin, J.; Lundin, M.; Salminen, T.; Haglund, C.; Joensuu, H.; Isola, J. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002, 62, 632–635. [Google Scholar]
- Howe, L.R.; Subbaramaiah, K.; Patel, J.; Masferrer, J.L.; Deora, A.; Hudis, C.; Thaler, H.T.; Muller, W.J.; Du, B.; Brown, A.M.; et al. Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res. 2002, 62, 5405–5407. [Google Scholar] [PubMed]
- Wagner, K.H.; Kamal-Eldin, A.; Elmadfa, I. Gamma-tocopherol-An underestimated vitamin? Ann. Nutr. Metab. 2004, 48, 169–188. [Google Scholar]
- Jiang, Q.; Yin, X.; Lill, M.A.; Danielson, M.L.; Freiser, H.; Huang, J. Long-chain carboxychromanols, metabolites of vitamin E, are potent inhibitors of cyclooxygenase. Proc. Natl. Acad. Sci. USA 2008, 105, 20464–20469. [Google Scholar]
- Ambrosone, C.B.; Marshall, J.R.; Vena, J.E.; Laughlin, R.; Graham, S.; Nemoto, T.; Freudenheim, J.L. Interaction of family history of breast cancer and dietary antioxidants with breast cancer risk (New York, United States). Cancer Causes Control 1995, 6, 407–415. [Google Scholar]
- Ray, G.; Husain, S.A. Role of lipids, lipoproteins and vitamins in women with breast cancer. Clin. Biochem. 2001, 34, 71–76. [Google Scholar]
- Mannisto, S.; Pietinen, P.; Virtanen, M.; Kataja, V.; Uusitupa, M. Diet and the risk of breast cancer in a case-control study: Does the threat of disease have an influence on recall bias? J. Clin. Epidemiol. 1999, 52, 429–439. [Google Scholar]
- Ronco, A.; De Stefani, E.; Boffetta, P.; Deneo-Pellegrini, H.; Mendilaharsu, M.; Leborgne, F. Vegetables, fruits, and related nutrients and risk of breast cancer: A case-control study in Urugua. Nutr. Cancer 1999, 35, 111–119. [Google Scholar]
- Braga, C.; La Vecchia, C.; Negri, E.; Franceschi, S.; Parpinel, M. Intake of selected foods and nutrients and breast cancer risk: An age- and menopause-specific analysis. Nutr. Cancer 1997, 28, 258–263. [Google Scholar]
- Freudenheim, J.L.; Marshall, J.R.; Vena, J.E.; Laughlin, R.; Brasure, J.R.; Swanson, M.K.; Nemoto, T.; Graham, S. Premenopausal breast cancer risk and intake of vegetables, fruits, and related nutrient. J. Natl. Cancer Inst. 1996, 88, 340–348. [Google Scholar]
- London, S.J.; Stein, E.A.; Henderson, I.C.; Stampfer, M.J.; Wood, W.C.; Remine, S.; Dmochowski, J.R.; Robert, N.J.; Willett, W.C. Carotenoids, retinol, and vitamin E and risk of proliferative benign breast disease and breast cance. Cancer Causes Control 1992, 3, 503–512. [Google Scholar]
- Sharhar, S.; Normah, H.; Fatimah, A.; Fadilah, R.N.; Rohi, G.A.; Amin, I.; Cham, B.G.; Rizal, R.M.; Fairulnizal, M.N. Antioxidant intake and status, and oxidative stress in relation to breast cancer risk: A case-control study. Asian Pac. J. Cancer Prev. 2008, 9, 343–349. [Google Scholar]
- Levi, F.; Pasche, C.; Lucchini, F.; La Vecchia, C. Dietary intake of selected micronutrients and breast-cancer risk. Int. J. Cancer 2001, 91, 260–263. [Google Scholar]
- Negri, E.; La Vecchia, C.; Franceschi, S.; D’Avanzo, B.; Talamini, R.; Parpinel, M.; Ferraroni, M.; Filiberti, R.; Montella, M.; Falcini, F.; Conti, E.; Decarli, A. Intake of selected micronutrients and the risk of breast cancer. Int. J. Cancer 1996, 65, 140–144. [Google Scholar]
- Dorjgochoo, T.; Shrubsole, M.J.; Shu, X.O.; Lu, W.; Ruan, Z.; Zheng, Y.; Cai, H.; Dai, Q.; Gu, K.; Gao, Y.T.; et al. Vitamin supplement use and risk for breast cancer: The Shanghai Breast Cancer Study. Breast Cancer Res. Treat. 2008, 111, 269–278. [Google Scholar] [PubMed]
- Adzersen, K.H.; Jess, P.; Freivogel, K.W.; Gerhard, I.; Bastert, G. Raw and cooked vegetables, fruits, selected micronutrients, and breast cancer risk: A case-control study in Germa. Nutr. Cancer 2003, 46, 131–137. [Google Scholar]
- Zaroukian, S.; Pineault, R.; Gandini, S.; Lacroix, A.; Ghadirian, P. Correlation between nutritional biomarkers and breast cancer: A case-control study. Breast 2005, 14, 209–223. [Google Scholar]
- Tamimi, R.M.; Hankinson, S.E.; Campos, H.; Spiegelman, D.; Zhang, S.; Colditz, G.A.; Willett, W.C.; Hunter, D.J. Plasma carotenoids, retinol, and tocopherols and risk of breast cance. Am. J. Epidemiol. 2005, 161, 153–160. [Google Scholar]
- Sato, R.; Helzlsouer, K.J.; Alberg, A.J.; Hoffman, S.C.; Norkus, E.P.; Comstock, G.W. Prospective study of carotenoids, tocopherols, and retinoid concentrations and the risk of breast cance. Cancer Epidemiol. Biomark. Prev. 2002, 11, 451–457. [Google Scholar]
- Comstock, G.W.; Burke, A.E.; Hoffman, S.C.; Norkus, E.P.; Gross, M.; Helzlsouer, K.J. The repeatability of serum carotenoid, retinoid, and tocopherol concentrations in specimens of blood collected 15 years apar. Cancer Epidemiol. Biomark. Prev. 2001, 10, 65–68. [Google Scholar]
- Yang, Y.J.; Hwang, S.H.; Kim, H.J.; Nam, S.J.; Kong, G.; Kim, M.K. Dietary intake of nitrate relative to antioxidant vitamin in relation to breast cancer risk: A case-control study. Nutr. Cancer 2010, 62, 555–566. [Google Scholar]
- Simon, M.S.; Djuric, Z.; Dunn, B.; Stephens, D.; Lababidi, S.; Heilbrun, L.K. An evaluation of plasma antioxidant levels and the risk of breast cancer: A pilot case control study. Breast J. 2000, 6, 388–395. [Google Scholar]
- Bohlke, K.; Spiegelman, D.; Trichopoulou, A.; Katsouyanni, K.; Trichopoulos, D. Vitamins A, C and E and the risk of breast cancer: Results from a case-control study in Greece. Br. J. Cancer 1999, 79, 23–29. [Google Scholar]
- Mezzetti, M.; La Vecchia, C.; Decarli, A.; Boyle, P.; Talamini, R.; Franceschi, S. Population attributable risk for breast cancer: Diet, nutrition, and physical exercis. J. Natl. Cancer Inst. 1998, 90, 389–394. [Google Scholar]
- Dorgan, J.F.; Sowell, A.; Swanson, C.A.; Potischman, N.; Miller, R.; Schussler, N.; Stephenson, H.E., Jr. Relationships of serum carotenoids, retinol, alpha-tocopherol, and selenium with breast cancer risk: Results from a prospective study in Columbia, Missouri (United Sta. Cancer Causes Control 1998, 9, 89–97. [Google Scholar]
- Wang, C.; Baumgartner, R.N.; Yang, D.; Slattery, M.L.; Murtaugh, M.A.; Byers, T.; Hines, L.M.; Giuliano, A.R.; Baumgartner, K.B. No evidence of association between breast cancer risk and dietary carotenoids, retinols, vitamin C and tocopherols in Southwestern Hispanic and non-Hispanic White wome. Breast Cancer Res. Treat 2009, 114, 137–145. [Google Scholar]
- Nissen, S.B.; Tjonneland, A.; Stripp, C.; Olsen, A.; Christensen, J.; Overvad, K.; Dragsted, L.O.; Thomsen, B. Intake of vitamins A, C, and E from diet and supplements and breast cancer in postmenopausal wome. Cancer Causes Control 2003, 14, 695–704. [Google Scholar]
- Do, M.H.; Lee, S.S.; Jung, P.J.; Lee, M.H. Intake of dietary fat and vitamin in relation to breast cancer risk in Korean women: A case-control study. J. Korean Med. Sci. 2003, 18, 534–540. [Google Scholar]
- Rohan, T.E.; Howe, G.R.; Friedenreich, C.M.; Jain, M.; Miller, A.B. Dietary fiber, vitamins A, C, and E, and risk of breast cancer: A cohort st. Cancer Causes Control 1993, 4, 29–37. [Google Scholar]
- Michels, K.B.; Holmberg, L.; Bergkvist, L.; Ljung, H.; Bruce, A.; Wolk, A. Dietary antioxidant vitamins, retinol, and breast cancer incidence in a cohort of Swedish wome. Int. J. Cancer 2001, 91, 563–567. [Google Scholar]
- Zhang, S.; Hunter, D.J.; Forman, M.R.; Rosner, B.A.; Speizer, F.E.; Colditz, G.A.; Manson, J.E.; Hankinson, S.E.; Willett, W.C. Dietary carotenoids and vitamins A, C, and E and risk of breast cance. J. Natl. Cancer Inst. 1999, 91, 547–556. [Google Scholar]
- Verhoeven, D.T.; Assen, N.; Goldbohm, R.A.; Dorant, E.; van’t Veer, P.; Sturmans, F.; Hermus, R.J.; van den Brandt, P.A. Vitamins C and E, retinol, beta-carotene and dietary fibre in relation to breast cancer risk: A prospective cohort stud. Br. J. Cancer 1997, 75, 149–155. [Google Scholar]
- Jarvinen, R.; Knekt, P.; Seppanen, R.; Teppo, L. Diet and breast cancer risk in a cohort of Finnish women. Cancer Lett. 1997, 114, 251–253. [Google Scholar]
- Kushi, L.H.; Fee, R.M.; Sellers, T.A.; Zheng, W.; Folsom, A.R. Intake of vitamins A, C, and E and postmenopausal breast cancer. The Iowa Women’s Health Study. Am. J. Epidemiol. 1996, 144, 165–174. [Google Scholar] [PubMed]
- Hunter, D.J.; Manson, J.E.; Colditz, G.A.; Stampfer, M.J.; Rosner, B.; Hennekens, C.H.; Speizer, F.E.; Willett, W.C. A prospective study of the intake of vitamins C, E, and A and the risk of breast cance. N. Engl. J. Med. 1993, 329, 234–240. [Google Scholar]
- Friedenreich, C.M.; Howe, G.R.; Miller, A.B. Recall bias in the association of micronutrient intake and breast cancer. J. Clin. Epidemiol. 1993, 46, 1009–1017. [Google Scholar]
- Graham, S.; Zielezny, M.; Marshall, J.; Priore, R.; Freudenheim, J.; Brasure, J.; Haughey, B.; Nasca, P.; Zdeb, M. Diet in the epidemiology of postmenopausal breast cancer in the New York State Cohort. Am. J. Epidemiol. 1992, 136, 1327–1337. [Google Scholar]
- Nagel, G.; Linseisen, J.; van Gils, C.H.; Peeters, P.H.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Romieu, I.; Tjonneland, A.; Olsen, A.; Roswall, N.; et al. Dietary beta-carotene, vitamin C and E intake and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Breast Cancer Res. Treat. 2010, 119, 753–765. [Google Scholar] [PubMed]
- Cui, Y.; Shikany, J.M.; Liu, S.; Shagufta, Y.; Rohan, T.E. Selected antioxidants and risk of hormone receptor-defined invasive breast cancers among postmenopausal women in the Women’s Health Initiative Observational Study. Am. J. Clin. Nutr. 2008, 87, 1009–1018. [Google Scholar]
- Cho, E.; Spiegelman, D.; Hunter, D.J.; Chen, W.Y.; Zhang, S.M.; Colditz, G.A.; Willett, W.C. Premenopausal intakes of vitamins A, C, and E, folate, and carotenoids, and risk of breast ca. Cancer Epidemiol. Biomark. Prev. 2003, 12, 713–720. [Google Scholar]
- Nechuta, S.; Lu, W.; Chen, Z.; Zheng, Y.; Gu, K.; Cai, H.; Zheng, W.; Shu, X.O. Vitamin supplement use during breast cancer treatment and survival: A prospective cohort study. Cancer Epidemiol. Biomark. Prev. 2011, 20, 262–271. [Google Scholar]
- Schwenke, D.C. Does lack of tocopherols and tocotrienols put women at increased risk of breast cancer? J. Nutr. Biochem 2002, 13, 2–20. [Google Scholar]
- Kimmick, G.G.; Bell, R.A.; Bostick, R.M. Vitamin E and breast cancer: A review. Nutr. Cancer 1997, 27, 109–117. [Google Scholar]
- Fulan, H.; Changxing, J.; Baina, W.Y.; Wencui, Z.; Chunqing, L.; Fan, W.; Dandan, L.; Dianjun, S.; Tong, W.; Da, P.; et al. Retinol, vitamins A, C, and E and breast cancer risk: A meta-analysis and meta-regression. Cancer Causes Control 2011, 22, 1383–1396. [Google Scholar] [CrossRef] [PubMed]
- The alpha-tocopherol, beta-carotene lung cancer prevention study: Design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group. Ann. Epidemiol. 1994, 4, 1–10. [CrossRef] [PubMed]
- Albanes, D.; Malila, N.; Taylor, P.R.; Huttunen, J.K.; Virtamo, J.; Edwards, B.K.; Rautalahti, M.; Hartman, A.M.; Barrett, M.J.; Pietinen, P.; et al. Effects of supplemental alpha-tocopherol and beta-carotene on colorectal cancer: Results from a controlled trial (Finland). Cancer Causes Control 2000, 11, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Heinonen, O.P.; Albanes, D.; Virtamo, J.; Taylor, P.R.; Huttunen, J.K.; Hartman, A.M.; Haapakoski, J.; Malila, N.; Rautalahti, M.; Ripatti, S.; et al. Prostate cancer and supplementation with alpha-tocopherol and beta-carotene: Incidence and mortality in a controlled trial. J. Natl. Cancer Inst. 1998, 90, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Gaziano, J.M.; Glynn, R.J.; Christen, W.G.; Kurth, T.; Belanger, C.; MacFadyen, J.; Bubes, V.; Manson, J.E.; Sesso, H.D.; Buring, J.E. Vitamins E and C in the prevention of prostate and total cancer in men: The Physicians’ Health Study II randomized controlled trial. J. Am. Med. Assoc. 2009, 301, 52–62. [Google Scholar]
- Lippman, S.M.; Klein, E.A.; Goodman, P.J.; Lucia, M.S.; Thompson, I.M.; Ford, L.G.; Parnes, H.L.; Minasian, L.M.; Gaziano, J.M.; Hartline, J.A.; et al. Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). J. Am. Med. Assoc. 2009, 301, 39–51. [Google Scholar]
- Lonn, E.; Bosch, J.; Yusuf, S.; Sheridan, P.; Pogue, J.; Arnold, J.M.; Ross, C.; Arnold, A.; Sleight, P.; Probstfield, J.; et al. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. J. Am. Med. Assoc. 2005, 293, 1338–1347. [Google Scholar]
- Lin, J.; Cook, N.R.; Albert, C.; Zaharris, E.; Gaziano, J.M.; Van Denburgh, M.; Buring, J.E.; Manson, J.E. Vitamins C and E and beta carotene supplementation and cancer risk: A randomized controlled trial. J. Natl. Cancer Inst. 2009, 101, 14–23. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Smolarek, A.K.; Suh, N. Chemopreventive Activity of Vitamin E in Breast Cancer: A Focus on γ- and δ-Tocopherol. Nutrients 2011, 3, 962-986. https://doi.org/10.3390/nu3110962
Smolarek AK, Suh N. Chemopreventive Activity of Vitamin E in Breast Cancer: A Focus on γ- and δ-Tocopherol. Nutrients. 2011; 3(11):962-986. https://doi.org/10.3390/nu3110962
Chicago/Turabian StyleSmolarek, Amanda K., and Nanjoo Suh. 2011. "Chemopreventive Activity of Vitamin E in Breast Cancer: A Focus on γ- and δ-Tocopherol" Nutrients 3, no. 11: 962-986. https://doi.org/10.3390/nu3110962
APA StyleSmolarek, A. K., & Suh, N. (2011). Chemopreventive Activity of Vitamin E in Breast Cancer: A Focus on γ- and δ-Tocopherol. Nutrients, 3(11), 962-986. https://doi.org/10.3390/nu3110962