Association of Maternal Dietary Habits and Infant MTHFR Gene Polymorphisms with Ventricular Septal Defect in Offspring: A Case–Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Variables
2.3. Selection of MTHFR SNPs and Genotyping
2.4. Statistical Analyses
3. Results
3.1. Participants’ Baseline Characteristics
3.2. Association between Maternal Dietary Factors and VSD in Offspring
3.3. Association between Infant MTHFR Gene Polymorphisms and the Risk of VSD
3.4. Interaction of Infant MTHFR Genetic Polymorphisms and Maternal Dietary Habits
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Triedman, J.K.; Newburger, J.W. Trends in Congenital Heart Disease: The Next Decade. Circulation 2016, 133, 2716–2733. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Zou, Z.; Hay, S.I.; Liu, Y.; Li, S.; Chen, H.; Naghavi, M.; Zimmerman, M.S.; Martin, G.R.; Wilner, L.B.; et al. Global, Regional, and National Time Trends in Mortality for Congenital Heart Disease, 1990–2019: An Age-Period-Cohort Analysis for the Global Burden of Disease 2019 Study. eClinicalMedicine 2022, 43, 101249. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, L.; Yang, T.; Wang, T.; Zhang, S.; Chen, L.; Ye, Z.; Luo, L.; Qin, J. Birth Prevalence of Congenital Heart Disease in China, 1980–2019: A Systematic Review and Meta-Analysis of 617 Studies. Eur. J. Epidemiol. 2020, 35, 631–642. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Dou, Z.; Su, Z.; Shen, H.; Mok, T.-N.; Zhang, C.J.P.; Huang, J.; Ming, W.-K.; Li, S. Inpatient Costs of Congenital Heart Surgery in China: Results from the National Centre for Cardiovascular Diseases. Lancet Reg. Health West. Pac. 2023, 31, 100623. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Yang, Y.; Wang, L.; Liu, H.; Wang, X.; Ouyang, C.; Pan, J.; Hu, X. Study on the Trend of Congenital Heart Disease Inpatient Costs and Its Influencing Factors in Economically Underdeveloped Areas of China, 2015–2020: A Case Study of Gansu Province. Front. Public Health 2024, 12, 1303515. [Google Scholar] [CrossRef] [PubMed]
- van der Bom, T.; Zomer, A.C.; Zwinderman, A.H.; Meijboom, F.J.; Bouma, B.J.; Mulder, B.J.M. The Changing Epidemiology of Congenital Heart Disease. Nat. Rev. Cardiol. 2011, 8, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.; Carson, J.; Lo, C. Genetics of Congenital Heart Disease. Biomolecules 2019, 9, 879. [Google Scholar] [CrossRef] [PubMed]
- Lyu, G.; Zhang, C.; Ling, T.; Liu, R.; Zong, L.; Guan, Y.; Huang, X.; Sun, L.; Zhang, L.; Li, C.; et al. Genome and Epigenome Analysis of Monozygotic Twins Discordant for Congenital Heart Disease. BMC Genom. 2018, 19, 428. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Wu, Q.; Huang, Y.; Wang, L.; Su, Z.; Ye, H. The Role of DNA Methylation in Syndromic and Non-Syndromic Congenital Heart Disease. Clin. Epigenetics 2021, 13, 93. [Google Scholar] [CrossRef]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A.; et al. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef]
- Sun, M.; Wang, T.; Huang, P.; Diao, J.; Zhang, S.; Li, J.; Luo, L.; Li, Y.; Chen, L.; Liu, Y.; et al. Association Analysis of Maternal MTHFR Gene Polymorphisms and the Occurrence of Congenital Heart Disease in Offspring. BMC Cardiovasc. Disord. 2021, 21, 298. [Google Scholar] [CrossRef] [PubMed]
- Zhong, T.; Song, X.; Liu, Y.; Sun, M.; Zhang, S.; Chen, L.; Diao, J.; Li, J.; Li, Y.; Shu, J.; et al. Association of Methylenetetrahydrofolate Reductase Gene Polymorphisms and Maternal Folic Acid Use with the Risk of Congenital Heart Disease. Front. Pediatr. 2022, 10, 939119. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Diao, J.; Li, J.; Luo, L.; Zhao, L.; Zhang, S.; Wang, T.; Chen, L.; Yang, T.; Chen, L.; et al. Association of Maternal Dietary Intakes and CBS Gene Polymorphisms with Congenital Heart Disease in Offspring. Int. J. Cardiol. 2021, 322, 121–128. [Google Scholar] [CrossRef]
- Shi, H.; Yang, S.; Liu, Y.; Huang, P.; Lin, N.; Sun, X.; Yu, R.; Zhang, Y.; Qin, Y.; Wang, L. Study on Environmental Causes and SNPs of MTHFR, MS and CBS Genes Related to Congenital Heart Disease. PLoS ONE 2015, 10, e0128646. [Google Scholar] [CrossRef]
- Sarwar, S.; Ehsan, F.; Shabana; Tahir, A.; Jamil, M.; Shahid, S.U.; Khan, A.; Hasnain, S. First Report of Polymorphisms in MTRR, GATA4, VEGF, and ISL1 Genes in Pakistani Children with Isolated Ventricular Septal Defects (VSD). Ital. J. Pediatr. 2021, 47. [Google Scholar] [CrossRef]
- Petrone, I.; Bernardo, P.S.; Dos Santos, E.C.; Abdelhay, E. MTHFR C677T and A1298C Polymorphisms in Breast Cancer, Gliomas and Gastric Cancer: A Review. Genes 2021, 12, 587. [Google Scholar] [CrossRef]
- Azzini, E.; Ruggeri, S.; Polito, A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int. J. Mol. Sci. 2020, 21, 1421. [Google Scholar] [CrossRef] [PubMed]
- Zarembska, E.; Ślusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- Xinxiu, X.; Kang, J.; Abha, B.; Wenjuan, Z.; Hisato, Y.; Timothy, F.; Phong, N.; Joseph, C.; Xiaoqin, L.; Gisela, B.; et al. Uncompensated Mitochondrial Oxidative Stress Underlies Heart Failure in an iPSC-Derived Model of Congenital Heart Disease. Cell Stem Cell 2022, 29. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Gong, F.; Zhu, W.; Fu, S. MTHFR C677T Polymorphism and Risk of Congenital Heart Defects: Evidence from 29 Case-Control and TDT Studies. PLoS ONE 2013, 8, e58041. [Google Scholar] [CrossRef]
- Kuciene, R.; Dulskiene, V. Selected Environmental Risk Factors and Congenital Heart Defects. Medicina 2008, 44, 827–832. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, S.; Chen, R.; Tong, X.; Wu, Z.; Mo, X. Maternal Folic Acid Supplementation and the Risk of Congenital Heart Defects in Offspring: A Meta-Analysis of Epidemiological Observational Studies. Sci. Rep. 2015, 5, 8506. [Google Scholar] [CrossRef]
- González-Peña, S.M.; Calvo-Anguiano, G.; Martínez-de-Villarreal, L.E.; Ancer-Rodríguez, P.R.; Lugo-Trampe, J.J.; Saldivar-Rodríguez, D.; Hernández-Almaguer, M.D.; Calzada-Dávila, M.; Guerrero-Orjuela, L.S.; Campos-Acevedo, L.D. Maternal Folic Acid Intake and Methylation Status of Genes Associated with Ventricular Septal Defects in Children: Case-Control Study. Nutrients 2021, 13, 2071. [Google Scholar] [CrossRef]
- Song, X.; Wei, J.; Shu, J.; Liu, Y.; Sun, M.; Zhu, P.; Qin, J. Association of Polymorphisms of FOLR1 Gene and FOLR2 Gene and Maternal Folic Acid Supplementation with Risk of Ventricular Septal Defect: A Case-Control Study. Eur. J. Clin. Nutr. 2022, 76, 1273–1280. [Google Scholar] [CrossRef]
- El Robrini, N.; Etchevers, H.C.; Ryckebüsch, L.; Faure, E.; Eudes, N.; Niederreither, K.; Zaffran, S.; Bertrand, N. Cardiac Outflow Morphogenesis Depends on Effects of Retinoic Acid Signaling on Multiple Cell Lineages. Dev. Dyn. 2016, 245, 388–401. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Y.; Cheng, Y.; Zeng, L.; Yan, H.; Dang, S. Maternal Dietary Patterns during Pregnancy and Congenital Heart Defects: A Case-Control Study. Int. J. Env. Res. Public Health 2019, 16, 2957. [Google Scholar] [CrossRef]
- Wang, S.; Lay, S.; Yu, H.; Shen, S. Dietary Guidelines for Chinese Residents (2016): Comments and Comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef]
- Taylor, K.; Wootton, R.E.; Yang, Q.; Oddie, S.; Wright, J.; Yang, T.C.; Magnus, M.; Andreassen, O.A.; Borges, M.C.; Caputo, M.; et al. The Effect of Maternal BMI, Smoking and Alcohol on Congenital Heart Diseases: A Mendelian Randomisation Study. BMC Med. 2023, 21, 35. [Google Scholar] [CrossRef]
- Amini-Rarani, M.; Vahedi, S.; Borjali, M.; Nosratabadi, M. Socioeconomic Inequality in Congenital Heart Diseases in Iran. Int. J. Equity Health 2021, 20, 251. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, B.; Sun, Y.; Du, Y.; Santillan, M.K.; Santillan, D.A.; Snetselaar, L.G.; Bao, W. Association of Maternal Prepregnancy Diabetes and Gestational Diabetes Mellitus with Congenital Anomalies of the Newborn. Diabetes Care 2020, 43, 2983–2990. [Google Scholar] [CrossRef]
- Brodwall, K.; Greve, G.; Øyen, N. Preeclampsia and Congenital Heart Defects. JAMA 2016, 315, 1167–1168. [Google Scholar] [CrossRef]
- Xu, J.; Li, X.; Zhou, Q. Nationwide-Free Preconception Care Strategy: Experience from China. Front. Public. Health 2022, 10, 934983. [Google Scholar] [CrossRef]
- Adibi, J.J.; Layden, A.J.; Birru, R.L.; Miragaia, A.; Xun, X.; Smith, M.C.; Yin, Q.; Millenson, M.E.; O’Connor, T.G.; Barrett, E.S.; et al. First Trimester Mechanisms of Gestational Sac Placental and Foetal Teratogenicity: A Framework for Birth Cohort Studies. Hum. Reprod. Update 2021, 27, 747–770. [Google Scholar] [CrossRef]
- Gao, L.-R.; Wang, G.; Zhang, J.; Li, S.; Chuai, M.; Bao, Y.; Hocher, B.; Yang, X. High Salt-Induced Excess Reactive Oxygen Species Production Resulted in Heart Tube Malformation during Gastrulation. J. Cell Physiol. 2018, 233, 7120–7133. [Google Scholar] [CrossRef]
- Tsheko, T.; Gu, J.; Tong, W.; Zhou, R.; Li, D. Effects of Consuming Red Furu (Fermented Bean Curd) on Serum Vitamin B-12, Homocysteine and Other Cardiometabolic Risk Factors in Young Healthy Volunteers: A Randomized Controlled Trial. Asia Pac. J. Clin. Nutr. 2020, 29, 288–298. [Google Scholar] [CrossRef]
- Rosenquist, T.H.; Finnell, R.H. Genes, Folate and Homocysteine in Embryonic Development. Proc. Nutr. Soc. 2001, 60, 53–61. [Google Scholar] [CrossRef]
- Cai, Y.; Yang, X.; Chen, S.; Tian, K.; Xu, S.; Deng, R.; Chen, M.; Yang, Y.; Liu, T. Regular Consumption of Pickled Vegetables and Fermented Bean Curd Reduces the Risk of Diabetes: A Prospective Cohort Study. Front. Public Health 2023, 11, 1155989. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Laranjo, M.; Alves, S.; Fernandes, M.H.; Agulheiro-Santos, A.C.; Fernandes, M.J.; Potes, M.E.; Elias, M. Dry-Cured Meat Products According to the Smoking Regime: Process Optimization to Control Polycyclic Aromatic Hydrocarbons. Foods 2020, 9, 91. [Google Scholar] [CrossRef]
- Mallah, M.A.; Mallah, M.A.; Liu, Y.; Xi, H.; Wang, W.; Feng, F.; Zhang, Q. Relationship Between Polycyclic Aromatic Hydrocarbons and Cardiovascular Diseases: A Systematic Review. Front. Public Health 2021, 9, 763706. [Google Scholar] [CrossRef]
- da Silva Junior, F.C.; Felipe, M.B.; de Castro, D.E.; da Silva Araújo, S.C.; Sisenando, H.C.; de Medeiros, S.R. A Look beyond the Priority: A Systematic Review of the Genotoxic, Mutagenic, and Carcinogenic Endpoints of Non-Priority PAHs. Environ. Pollut. 2021, 278, 116838. [Google Scholar] [CrossRef]
- Li, N.; Mu, Y.; Liu, Z.; Deng, Y.; Guo, Y.; Zhang, X.; Li, X.; Yu, P.; Wang, Y.; Zhu, J. Assessment of Interaction between Maternal Polycyclic Aromatic Hydrocarbons Exposure and Genetic Polymorphisms on the Risk of Congenital Heart Diseases. Sci. Rep. 2018, 8, 3075. [Google Scholar] [CrossRef]
- Gill, V.; Kumar, V.; Singh, K.; Kumar, A.; Kim, J.-J. Advanced Glycation End Products (AGEs) May Be a Striking Link Between Modern Diet and Health. Biomolecules 2019, 9, 888. [Google Scholar] [CrossRef] [PubMed]
- Sisay, M.; Edessa, D.; Ali, T.; Mekuria, A.N.; Gebrie, A. The Relationship between Advanced Glycation End Products and Gestational Diabetes: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0240382. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, S.; Shi, Y.; Wang, P.; Wu, Y.; Li, G. Dietary Advanced Glycation End Products (dAGEs): An Insight between Modern Diet and Health. Food Chem. 2023, 415, 135735. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Huang, Q.; Liu, W.; Zhou, X. Advanced Glycation End Products via Skin Autofluorescence as a New Biomarker for Major Adverse Cardiovascular Events: A Meta-Analysis of Prospective Studies. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1083–1092. [Google Scholar] [CrossRef]
- Ota, K.; Yamagishi, S.; Kim, M.; Dambaeva, S.; Gilman-Sachs, A.; Beaman, K.; Kwak-Kim, J. Elevation of Soluble Form of Receptor for Advanced Glycation End Products (sRAGE) in Recurrent Pregnancy Losses (RPL): Possible Participation of RAGE in RPL. Fertil. Steril. 2014, 102, 782–789. [Google Scholar] [CrossRef]
- Govindaraju, I.; Sana, M.; Chakraborty, I.; Rahman, M.H.; Biswas, R.; Mazumder, N. Dietary Acrylamide: A Detailed Review on Formation, Detection, Mitigation, and Its Health Impacts. Foods 2024, 13, 556. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chu, X.; Du, P.; He, H.; He, F.; Liu, Y.; Wang, W.; Ma, Y.; Wen, L.; Wang, Y.; et al. Unveiling Heterocyclic Aromatic Amines (HAAs) in Thermally Processed Meat Products: Formation, Toxicity, and Strategies for Reduction—A Comprehensive Review. Food Chem. X 2023, 19, 100833. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, J.; Tang, W.; Liu, L. Methylenetetrahydrofolate Reductase C677T (Ala>Val, Rs1801133 C>T) Polymorphism Decreases the Susceptibility of Hepatocellular Carcinoma: A Meta-Analysis Involving 12,628 Subjects. Biosci. Rep. 2020, 40, BSR20194229. [Google Scholar] [CrossRef]
- Sarwar, S.; Shabana; Tahir, A.; Liaqat, Z.; Naseer, S.; Seme, R.S.; Mehmood, S.; Shahid, S.U.; Hasnain, S. Study of Variants Associated with Ventricular Septal Defects (VSDs) Highlights the Unique Genetic Structure of the Pakistani Population. Ital. J. Pediatr. 2022, 48, 124. [Google Scholar] [CrossRef]
- Ali, S.I.; Khan, O.Y.; Naveed, N.; Ahmad, H.; Patel, N.; Arif, A. Congenital Septal Defects in Karachi, Pakistan: An Update of Mutational Screening by High-Resolution Melting (HRM) Analysis of MTHFR C677T. Hum Genom. 2024, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.S.; Choi, Y.J.; Cho, J.; Lee, H.; Lee, H.; Park, S.J.; Park, J.S.; Hong, Y.C. Environmental and Genetic Risk Factors of Congenital Anomalies: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Korean Med. Sci. 2021, 36, e183. [Google Scholar] [CrossRef] [PubMed]
Variables | Control Group (%) | VSD Group (%) | Univariable Analysis |
---|---|---|---|
Sex | χ2 = 13.839, p < 0.001 | ||
Female | 213 (34.4) | 205 (45.8) | |
Male | 407 (65.6) | 243 (54.2) | |
Maternal age at pregnancy | Z = 0.734, p = 0.654 | ||
<25 | 124 (20) | 110 (24.6) | |
25–29 | 261 (42.1) | 183 (40.8) | |
30–34 | 152 (24.5) | 94 (21) | |
≥35 | 83 (13.4) | 61 (13.6) | |
Residence | χ2 = 22.977, p < 0.001 | ||
Rural | 342 (55.2) | 312 (69.6) | |
Urban | 278 (44.8) | 136 (30.4) | |
Last year’s household income (RMB) | Z = 8.051, p < 0.001 | ||
≤50,000 | 179 (28.9) | 353 (78.8) | |
60,000–100,000 | 267 (43.1) | 66 (14.7) | |
110,000–150,000 | 57 (9.2) | 9 (2) | |
≥160,000 | 117 (18.9) | 20 (45) | |
Maternal schooling years | Z = 5.774, p < 0.001 | ||
<9 | 7 (1.1) | 43 (9.6) | |
9–12 | 117 (18.9) | 207 (46.2) | |
13–16 | 217 (35) | 122 (27.2) | |
≥17 | 279 (45) | 76 (17) | |
Pregestational BMI (kg/m2) | χ2 = 15.064, p = 0.005 | ||
<18.5 | 157 (25.3) | 82 (18.3) | |
18.5–23.9 | 343 (55.3) | 292 (65.2) | |
24.0–27.9 | 78 (12.6) | 46 (10.3) | |
≥28.0 | 42 (6.8) | 28 (6.2) | |
History of adverse pregnancy outcomes | χ2 = 18.775, p < 0.001 | ||
No | 349 (56.3) | 192 (42.9) | |
Yes | 271 (43.7) | 256 (57.1) | |
History of familial congenital malformations | χ2 = 12.494, p < 0.001 | ||
No | 618 (99.7) | 435 (97.1) | |
Yes | 2 (0.3) | 13 (2.9) | |
Consanguineous marriages | χ2 = 11.582, p = 0.001 | ||
No | 617 (99.5) | 434 (96.9) | |
Yes | 3 (0.5) | 14 (3.1) | |
Gestational hypertension | χ2 = 29.240, p < 0.001 | ||
No | 611 (98.5) | 411 (91.7) | |
Yes | 9 (1.5) | 37 (8.3) | |
Gestational diabetes mellitus | χ2 = 26.537, p < 0.001 | ||
No | 603 (97.3) | 402 (89.7) | |
Yes | 17 (2.7) | 46 (10.3) | |
Smoking during the first trimester of pregnancy | χ2 = 12.190, p < 0.001 | ||
No | 614 (99) | 429 (95.8) | |
Yes | 6 (1) | 19 (4.2) | |
Drinking alcohol during the first trimester of pregnancy | χ2 = 12.843, p < 0.001 | ||
No | 598 (96.5) | 409 (91.3) | |
Yes | 22 (3.5) | 39 (8.7) | |
Pregestational folic acid supplementation | χ2 = 3.325, p = 0.068 | ||
No | 43 (6.9) | 45 (10) | |
Yes | 577 (93.1) | 403 (90) | |
Pregestational exposure to antibiotics | χ2 = 17.135, p < 0.001 | ||
No | 601 (96.9) | 408 (91.1) | |
Yes | 19 (3.1) | 40 (8.9) |
SNPs | Major Allele | Minor Allele | Chromosome | Group | Genotype Frequency n (%) | HWE Test p | ||
---|---|---|---|---|---|---|---|---|
AA | AB | BB | ||||||
rs2274976 | C | T | Chr1:11790870 | Control | 522 (84.2) | 91 (14.7) | 7 (1.1) | 0.1856 |
Case | 358 (79.9) | 80 (17.9) | 10 (2.2) | |||||
rs4846052 | C | T | Chr1:11797894 | Control | 505 (81.5) | 105 (16.9) | 10 (1.6) | 0.1012 |
Case | 353 (78.8) | 80 (17.9) | 15 (3.3) | |||||
rs1476413 | C | T | Chr1:11792243 | Control | 437 (70.5) | 164 (26.5) | 19 (3.1) | 0.4532 |
Case | 270 (60.3) | 157 (35.0) | 21 (4.7) | |||||
rs2066470 | G | A | Chr1:11803000 | Control | 515 (83.1) | 98 (15.8) | 7 (1.1) | 0.3425 |
Case | 333 (74.3) | 90 (20.1) | 25 (5.6) | |||||
rs1801133 | G | A | Chr1:11796321 | Control | 286 (46.1) | 275 (44.4) | 59 (9.5) | 0.5431 |
Case | 195 (43.5) | 189 (42.2) | 64 (14.3) | |||||
rs1801131 | T | G | Chr1:11794419 | Control | 457 (73.7) | 149 (24.0) | 14 (2.3) | 0.6536 |
Case | 271 (60.5) | 153 (34.2) | 24 (5.4) |
Dietary Habits | rs2066470 | rs1801133 | rs1801131 | |||
---|---|---|---|---|---|---|
aOR (95%CI) | FDR_p | aOR (95%CI) | FDR_p | aOR (95%CI) | FDR_p | |
Corned foods | 0.74 (0.33–1.66) | 0.661 | 3.10 (1.08–8.89) | 0.116 | 1.81 (1.50–2.18) | <0.001 |
Fermented bean curd | 0.89 (0.41–1.94) | 0.777 | 6.25 (2.04–19.12) | 0.010 | 1.60 (1.39–1.83) | <0.001 |
Fried foods | 1.37 (1.14–1.64) | 0.005 | 1.20 (0.43–3.36) | 0.801 | 1.64 (1.39–1.95) | <0.001 |
Fumatory foods | 0.65 (0.25–1.71) | 0.650 | 2.26 (1.21–4.25) | 0.055 | 1.02 (0.57–2.13) | 0.859 |
Fresh meat | 1.62 (0.72–3.62) | 0.242 | 2.28 (1.06–4.93) | 0.061 | 0.65 (0.31–1.37) | 0.257 |
Fresh fruit | 0.67 (0.57–3.62) | 0.197 | 0.56 (0.29–1.11) | 0.095 | 0.51 (0.34–2.52) | 0.614 |
Grilled foods | 1.23 (1.03–1.49) | 0.083 | 0.60 (0.31–1.17) | 0.222 | 2.78 (1.38–5.57) | 0.010 |
Fish and shrimp | 0.98 (0.84–1.02) | 0.275 | 1.05 (0.91–1.21) | 0.631 | 0.72 (0.22–2.33) | 0.724 |
Fresh eggs | 1.09 (0.92–1.30) | 0.636 | 1.13 (0.97–1.30) | 0.111 | 0.48 (0.08–2.98) | 0.723 |
Fresh vegetables | 0.82 (0.71–1.03) | 0.653 | 1.11 (0.94–1.37) | 0.143 | 0.89 (0.75–1.56) | 0.999 |
Soy products | 0.97 (0.88–1.08) | 0.675 | 1.10 (0.96–1.26) | 0.251 | 1.55 (0.48–4.97) | 0.666 |
Dairy products | 0.97 (0.88–1.07) | 0.676 | 0.96 (0.86–1.15) | 0.960 | 0.46 (0.17–1.28) | 0.278 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruan, X.; Li, Z.; Zhong, T.; Lei, R.; Luo, M.; Sun, M.; Qin, J. Association of Maternal Dietary Habits and Infant MTHFR Gene Polymorphisms with Ventricular Septal Defect in Offspring: A Case–Control Study. Nutrients 2024, 16, 2005. https://doi.org/10.3390/nu16132005
Ruan X, Li Z, Zhong T, Lei R, Luo M, Sun M, Qin J. Association of Maternal Dietary Habits and Infant MTHFR Gene Polymorphisms with Ventricular Septal Defect in Offspring: A Case–Control Study. Nutrients. 2024; 16(13):2005. https://doi.org/10.3390/nu16132005
Chicago/Turabian StyleRuan, Xiaorui, Ziye Li, Taowei Zhong, Ridan Lei, Manjun Luo, Mengting Sun, and Jiabi Qin. 2024. "Association of Maternal Dietary Habits and Infant MTHFR Gene Polymorphisms with Ventricular Septal Defect in Offspring: A Case–Control Study" Nutrients 16, no. 13: 2005. https://doi.org/10.3390/nu16132005