Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on Immune Parameters in Healthy Adults—A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Sample Size
2.4. Randomization, Allocation, and Blinding
2.5. Intervention
2.6. Outcomes
2.7. Preparation of Peripheral Blood Mononuclear Cells (PBMCs)
2.8. FACS Analysis
2.9. Cell Culture
2.10. RNA Extraction and Quantitative Real-Time PCR
2.11. Safety Assessment
2.12. Statistical Analysis
3. Results
3.1. Study Flow and Baseline Characteristics of Participants
3.2. Effects on the Activation Markers on pDCs and mDCs
3.3. Effects on the Activity of Neutrophils and NK Cells
3.4. Effects on the Immune Response of PBMCs against Cpg2216
3.5. Safety Assessment
4. Discussion
5. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heikkinen, T.; Jarvinen, A. The common cold. Lancet 2003, 361, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Passioti, M.; Maggina, P.; Megremis, S.; Papadopoulos, N.G. The common cold: Potential for future prevention or cure. Curr. Allergy Asthma Rep. 2014, 14, 413. [Google Scholar] [CrossRef] [PubMed]
- Taubenberger, J.K.; Kash, J.C. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010, 7, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Winther, B. Rhinovirus infections in the upper airway. Proc. Am. Thorac. Soc. 2011, 8, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Janeway, C.A., Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 1989, 54 Pt 1, 1–13. [Google Scholar] [CrossRef]
- Janeway, C.A., Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol. Today 1992, 13, 11–16. [Google Scholar] [CrossRef]
- Hajishengallis, G.; Lambris, J.D. Microbial manipulation of receptor crosstalk in innate immunity. Nat. Rev. Immunol. 2011, 11, 187–200. [Google Scholar] [CrossRef]
- Pradeu, T.; Cooper, E.L. The danger theory: 20 years later. Front. Immunol. 2012, 3, 287. [Google Scholar] [CrossRef]
- Wimmers, F.; Schreibelt, G.; Skold, A.E.; Figdor, C.G.; De Vries, I.J. Paradigm shift in dendritic cell-based immunotherapy: From in vitro generated monocyte-derived DCs to naturally circulating DC subsets. Front. Immunol. 2014, 5, 165. [Google Scholar] [CrossRef]
- Sato, K.; Fujita, S. Dendritic cells: Nature and classification. Allergol. Int. 2007, 56, 183–191. [Google Scholar] [CrossRef]
- Blasius, A.L.; Beutler, B. Intracellular toll-like receptors. Immunity 2010, 32, 305–315. [Google Scholar] [CrossRef]
- Siegal, F.P.; Kadowaki, N.; Shodell, M.; Fitzgerald-Bocarsly, P.A.; Shah, K.; Ho, S.; Antonenko, S.; Liu, Y.J. The nature of the principal type 1 interferon-producing cells in human blood. Science 1999, 284, 1835–1837. [Google Scholar] [CrossRef]
- Stetson, D.B.; Medzhitov, R. Type I interferons in host defense. Immunity 2006, 25, 373–381. [Google Scholar] [CrossRef]
- Marengo, R.; Ciceran, A.; Navarro, B.D.R. Upper respiratory tract infections in children and adults: Burden and management. A narrative summary of selected presentations that took place on 11–12 May 2017, as part of the encuentro latinoamericano de infecciones respiratorias recurrentes (ELAIR) edu-cational event in Mexico City, Mexico. EMJ Respir. 2017, 5, 22–28. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Latvala, S.; Lehtinen, M.J. Role of probiotics in stimulating the immune system in viral respiratory tract infections: A narrative review. Nutrients 2020, 12, 3163. [Google Scholar] [CrossRef]
- Zhao, Y.; Dong, B.R.; Hao, Q. Probiotics for preventing acute upper respiratory tract infections. Cochrane Database Syst. Rev. 2022, 8, CD006895. [Google Scholar] [CrossRef]
- van Baarlen, P.; Wells, J.M.; Kleerebezem, M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013, 34, 208–215. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The international scientific association of probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Mehta, J.P.; Ayakar, S.; Singhal, R.S. The potential of paraprobiotics and postbiotics to modulate the immune system: A Review. Microbiol. Res. 2023, 275, 127449. [Google Scholar] [CrossRef] [PubMed]
- Oe, M.; Yamashita, S.; Tanaka, T.; Kimura, M.; Seino, S.; Kajiyama, D.; Okuyama, Y.; Matsuoka, R.; Morishita, R.; Tsukinoki, K. Effect of Gluconacetobacter hansenii GK-1 on physical condition maintenance by regulating IFN-α-An eight-week double-blinded, placebo-controlled study. Jpn. Pharmacol. Ther. 2022, 50, 2249–2256. [Google Scholar]
- Sugimura, T.; Takahashi, H.; Jounai, K.; Ohshio, K.; Kanayama, M.; Tazumi, K.; Tanihata, Y.; Miura, Y.; Fujiwara, D.; Yamamoto, N. Effects of oral intake of plasmacytoid dendritic cells-stimulative lactic acid bacterial strain on pathogenesis of influenza-like illness and immunological response to influenza virus. Br. J. Nutr. 2015, 114, 727–733. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kanayama, M.; Fujii, T.; Fujiwara, D. Effects of the beverage containing Lactococcus lactis subsp. lactis JCM5805 on anti-viral immune responses and maintainance of physical conditions-a randomized, double-blind, placebo-controlled, parallel-group trial. Jpn. Pharmacol. Ther. 2015, 43, 1465–1472. [Google Scholar]
- Tanaka, T.; Oe, M.; Yamashita, S.; Kimura, M.; Seino, S.; Kajiyama, D.; Okuyama, Y.; Matsuoka, R.; Morishita, R.; Tsukinoki, K. Immunomodulatory Effect of Acetic Acid Bacteria (Gluconacetobacter hansenii GK-1) on Plasmacytoid Dendritic Cells -A Double-blinded Placebo-controlled Study. Jpn. Pharmacol. Ther. 2022, 50, 2237–2248. [Google Scholar]
- Arai, S.; Iwabuchi, N.; Takahashi, S.; Xiao, J.Z.; Abe, F.; Hachimura, S. Orally administered heat-killed Lactobacillus paracasei MCC1849 enhances antigen-specific IgA secretion and induces follicular helper T cells in mice. PLoS ONE 2018, 13, e0199018. [Google Scholar] [CrossRef] [PubMed]
- Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 2003, 3, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Kondo, J.; Iwabuchi, N.; Takahashi, S.; Yamauchi, K.; Abe, F.; Miura, K. Effects of paraprobiotic Lactobacillus paracasei MCC1849 supplementation on symptoms of the common cold and mood states in healthy adults. Benef. Microbes 2018, 9, 855–864. [Google Scholar] [CrossRef]
- Sato, S.; Arai, S.; Iwabuchi, N.; Tanaka, M.; Hase, R.; Sakane, N. Effects of heat-killed Lacticaseibacillus paracasei MCC1849 on the maintenance of physical condition in healthy adults: A randomized, double-blind, placebo-controlled, parallel-group study. Nutrients 2023, 15, 3450. [Google Scholar] [CrossRef]
- Sasai, M.; Kano, C.; Sakano, K.; Sawada, D.; Hirota, T. The effect of Lactobacillus acidophilus L-92 on the Subjective Symptoms of Physical Condition and the Immune parameters in Healthy Adults -Randamaized, Double-blind, Placebo-controlled, Parallel-group Studies. Jpn. Pharmacol. Ther. 2021, 49, 1261–1271. [Google Scholar]
- Oda, H.; Wakabayashi, H.; Tanaka, M.; Yamauchi, K.; Sugita, C.; Yoshida, H.; Abe, F.; Sonoda, T.; Kurokawa, M. Effects of lactoferrin on infectious diseases in Japanese summer: A randomized, double-blinded, placebo-controlled trial. J. Microbiol. Immunol. Infect. 2021, 54, 566–574. [Google Scholar] [CrossRef]
- Sugimura, T.; Jounai, K.; Ohshio, K.; Tanaka, T.; Suwa, M.; Fujiwara, D. Immunomodulatory effect of Lactococcus lactis JCM5805 on human plasmacytoid dendritic cells. Clin. Immunol. 2013, 149, 509–518. [Google Scholar] [CrossRef]
- Munk, R.B.; Sugiyama, K.; Ghosh, P.; Sasaki, C.Y.; Rezanka, L.; Banerjee, K.; Takahashi, H.; Sen, R.; Longo, D.L. Antigen-independent IFN-γ production by human naïve CD4 T cells activated by IL-12 plus IL-18. PLoS ONE 2011, 6, e18553. [Google Scholar] [CrossRef] [PubMed]
- Mathan, T.S.; Figdor, C.G.; Buschow, S.I. Human plasmacytoid dendritic cells: From molecules to intercellular communication network. Front Immunol 2013, 4, 372. [Google Scholar] [CrossRef] [PubMed]
- Drénou, B.; Amiot, L.; Setterblad, N.; Taque, S.; Guilloux, V.; Charron, D.; Fauchet, R.; Mooney, N. MHC class II signaling function is regulated during maturation of plasmacytoid dendritic cells. J. Leukoc. Biol. 2005, 77, 560–567. [Google Scholar] [CrossRef]
- Komano, Y.; Shimada, K.; Naito, H.; Fukao, K.; Ishihara, Y.; Fujii, T.; Kokubo, T.; Daida, H. Efficacy of heat-killed Lactococcus lactis JCM 5805 on immunity and fatigue during consecutive high intensity exercise in male athletes: A randomized, placebo-controlled, double-blinded trial. J. Int. Soc. Sports Nutr. 2018, 15, 39. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Tognon, M.; Martini, F.; Torreggiani, E.; Rotondo, J.C. Probiotics mechanism of action on immune cells and beneficial effects on human health. Cells 2023, 12, 184. [Google Scholar] [CrossRef] [PubMed]
- Jounai, K.; Sugimura, T.; Ohshio, K.; Fujiwara, D. Oral administration of Lactococcus lactis subsp. lactis JCM5805 enhances lung immune response resulting in protection from murine parainfluenza virus infection. PLoS ONE 2015, 10, e0119055. [Google Scholar] [CrossRef] [PubMed]
- Yanagihara, S.; Kanaya, T.; Fukuda, S.; Nakato, G.; Hanazato, M.; Wu, X.R.; Yamamoto, N.; Ohno, H. Uromodulin-SlpA binding dictates lactobacillus acidophilus uptake by intestinal epithelial M cells. Int. Immunol. 2017, 29, 357–363. [Google Scholar] [CrossRef]
- Bencze, D.; Fekete, T.; Pazmandi, K. Type I interferon production of plasmacytoid dendritic cells under control. Int. J. Mol. Sci. 2021, 22, 4190. [Google Scholar] [CrossRef]
- Kawai, T.; Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011, 34, 637–650. [Google Scholar] [CrossRef]
- Takagi, H.; Fukaya, T.; Eizumi, K.; Sato, Y.; Sato, K.; Shibazaki, A.; Otsuka, H.; Hijikata, A.; Watanabe, T.; Ohara, O.; et al. Plasmacytoid dendritic cells are crucial for the initiation of inflammation and T cell immunity in vivo. Immunity 2011, 35, 958–971. [Google Scholar] [CrossRef]
- Swiecki, M.; Colonna, M. The multifaceted biology of plasmacytoid dendritic cells. Nat. Rev. Immunol. 2015, 15, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Fujii, T.; Jounai, K.; Horie, A.; Takahashi, H.; Suzuki, H.; Ohshio, K.; Fujiwara, D.; Yamamoto, N. Effects of heat-killed lactococcus lactis subsp. lactis JCM 5805 on mucosal and systemic immune parameters, and antiviral reactions to influenza virus in healthy adults; a randomized controlled double-blind study. J. Funct. Foods 2017, 35, 513–521. [Google Scholar] [CrossRef]
- Sasai, M.; Kano, C.; Sakano, K.; Ishikawa, S.; Sawada, D.; Hirota, T. Effect of oral intake of Lactobacillus acidophilus L-92 on systemic and intestinal immune parameters-a randomized, double-blind, placebo-controlled, parallel-group trial. Jpn. Pharmacol. Ther. 2022, 50, 1699–1707. [Google Scholar]
- Takeo, S.; Masaya, K.; Munetaka, H.; Shuhei, F.; Takashige, O.; Kenji, S.; Nobutaka, M.; Tomoko, K.; Mayumi, I.; Mayu, K.; et al. Lactococcus lactis JCM5805 activates anti-viral immunity and reduces symptoms of common cold and influenza in healthy adults in a randomized controlled trial. J. Funct. Foods 2016, 24, 492–500. [Google Scholar] [CrossRef]
- Schoenborn, J.R.; Wilson, C.B. Regulation of interferon-gamma during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [CrossRef]
- Vivier, E.; Tomasello, E.; Baratin, M.; Walzer, T.; Ugolini, S. Functions of natural killer cells. Nat. Immunol. 2008, 9, 503–510. [Google Scholar] [CrossRef]
- Harbige, L.S.; Pinto, E.; Allgrove, J.; Thomas, L.V. Immune Response of Healthy Adults to the Ingested Probiotic Lactobacillus casei Shirota. Scand. J. Immunol. 2016, 84, 353–364. [Google Scholar] [CrossRef]
Parameter | Placebo Group | MCC1849 Group | p Value |
---|---|---|---|
Number (Male/Female) | 47 (14/33) | 49 (14/35) | 1.000 |
Age (y) | 43.4 ± 11.0 | 44.3 ± 10.6 | 0.669 |
Height (cm) | 163.2 ± 8.3 | 163.8 ± 8.6 | 0.744 |
Weight (kg) | 58.3 ± 10.2 | 60.0 ± 11.2 | 0.431 |
BMI (kg/m2) | 21.8 ± 2.8 | 22.2 ± 2.8 | 0.453 |
Baseline | 4 Weeks | |||||
---|---|---|---|---|---|---|
Group | n | Mean (SE) | Mean (SE) | p Value | ||
pDCs | CD86 MFI | Placebo | 47 | 1732.0 (74.7) | 1665.9 (48.4) | 0.037 |
MCC1849 | 48 | 1674.5 (51.2) | 1764.6 (53.4) | |||
pDCs | HLA-DR MFI | Placebo | 47 | 76,190.9 (3667.8) | 80,225.3 (3925.4) * | 0.933 |
MCC1849 | 48 | 78,657.8 (4191.1) | 82,813.9 (4427.6) * | |||
mDCs | CD86 MFI | Placebo | 47 | 8512.8 (289.9) | 9376.2 (184.3) * | 0.243 |
MCC1849 | 48 | 8505.0 (289.6) | 9094.3 (192.2) * | |||
mDCs | HLA-DR MFI | Placebo | 47 | 150,305.9 (6179.8) | 143,595.4 (7363.0) | 0.358 |
MCC1849 | 48 | 145,741.5 (5594.2) | 145,990.5 (6663.1) |
Baseline | 4 Weeks | ||||
---|---|---|---|---|---|
n | Mean (SE) | Mean (SE) | p Value | ||
Neutrophil phagocytic capacity (%) | Placebo | 47 | 84.6 (1.2) | 84.3 (1.6) | 0.987 |
MCC1849 | 49 | 84.5 (1.5) | 84.2 (1.9) | ||
Neutrophil oxidative burst activity (%) | Placebo | 47 | 95.1 (1.2) | 95.1 (1.4) | 0.986 |
MCC1849 | 49 | 94.9 (1.2) | 95.0 (1.2) | ||
NK cell activity (%) | Placebo | 47 | 58.2 (15.8) | 58.8 (18.2) | 0.317 |
MCC1849 | 49 | 60.3 (17.7) | 58.4 (19.6) |
Baseline | 4 Weeks | |||||
---|---|---|---|---|---|---|
n | Median (IQR) | n | Median (IQR) | p Value #2 | ||
IFN-α | Placebo | 44 | 49.6 (14.5–105.7) | 47 | 13.8 (6.1–27.2) | <0.001 |
MCC1849 | 47 | 42.7 (17.6–178.0) | 48 | 21.7 (11.8–38.3) | <0.001 | |
p value #1 | 0.237 | 0.026 | ||||
IFN-β | Placebo | 44 | 66.3 (33.5–140.9) | 47 | 36.2 (14.7–57.2) | <0.001 |
MCC1849 | 47 | 64.3 (30.6–237.2) | 48 | 49.7 (27.8–82.3) | <0.001 | |
p value #1 | 0.368 | 0.045 | ||||
IFN-γ | Placebo | 44 | 3.4 (2.2–6.7) | 47 | 2.7 (1.7–5.4) | 0.062 |
MCC1849 | 47 | 4.2 (2.3–7.4) | 48 | 4.1 (2.5–6.7) | 0.863 | |
p value #1 | 0.330 | 0.017 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, K.; Arai, S.; Sato, S.; Iwabuchi, N.; Takara, T.; Tanaka, M. Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on Immune Parameters in Healthy Adults—A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2024, 16, 216. https://doi.org/10.3390/nu16020216
Kato K, Arai S, Sato S, Iwabuchi N, Takara T, Tanaka M. Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on Immune Parameters in Healthy Adults—A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients. 2024; 16(2):216. https://doi.org/10.3390/nu16020216
Chicago/Turabian StyleKato, Kumiko, Satoshi Arai, Soichiro Sato, Noriyuki Iwabuchi, Tsuyoshi Takara, and Miyuki Tanaka. 2024. "Effects of Heat-Killed Lacticaseibacillus paracasei MCC1849 on Immune Parameters in Healthy Adults—A Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study" Nutrients 16, no. 2: 216. https://doi.org/10.3390/nu16020216