Identification of Kynurenic Acid-Induced Apoptotic Biomarkers in Gastric Cancer-Derived AGS Cells through Next-Generation Transcriptome Sequencing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. Isolation of RNA for Sequencing
2.3. Library Preparation and Sequencing
2.4. Transcriptome Data Analysis
2.4.1. Filtering and Sequence Alignment
2.4.2. Gene-Expression Estimation
2.4.3. Gene Ontology (GO) Analysis
2.4.4. Differentially Expressed Gene (DEG) Analysis
2.5. STRING Network and Enrichment Pathway Analysis
2.6. Drug and Disease Association Analysis
2.7. Molecular Docking Analysis
2.8. Analysis of Protein Expression by Western Blot
2.9. Statistical Analysis
3. Results
3.1. Identification of Genes and DEGs
3.2. Functional and Enrichment Analysis
3.3. Protein–Protein Interaction (PPI) and Enrichment Pathway of DEGs
3.4. Expression Comparison of AP-1 Factors and Molecular Docking with KYNA
3.5. Validation of AP-1 Factor Expression Using Western Blot Analysis
3.6. Therapeutic Drug and Disease Association and Molecular Docking Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.C.; Nilsson, M.; Grabsch, H.I.; van Grieken, N.C.; Lordick, F. Gastric cancer. Lancet 2020, 396, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Casaretto, L.; Sousa, P.L.; Mari, J.J. Chemotherapy versus support cancer treatment in advanced gastric cancer: A meta-analysis. Braz. J. Med. Biol. Res. 2006, 39, 431–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sastre, J.; Garcia-Saenz, J.A.; Diaz-Rubio, E. Chemotherapy for gastric cancer. World J. Gastroenterol. 2006, 12, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Baretton, G.B.; Aust, D.E. Current biomarkers for gastric cancer. Pathologe 2017, 38, 93–97. [Google Scholar] [CrossRef]
- Ang, T.L.; Fock, K.M. Clinical epidemiology of gastric cancer. Singap. Med. J. 2014, 55, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [Green Version]
- Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef] [Green Version]
- Sia, D.; Villanueva, A.; Friedman, S.L.; Llovet, J.M. Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 2017, 152, 745–761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, X.; Zhou, W.; Cheng, G.; Wu, J.; Guo, S.; Jia, S.; Liu, Y.; Li, B.; Zhang, X.; et al. A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci. Rep. 2020, 10, 11448. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, L.; Wang, D.; Liu, J.; Yu, X.; Wei, Y.; Ouyang, Z. Transcriptome analysis and identification of key genes involved in 1-deoxynojirimycin biosynthesis of mulberry (Morus alba L.). PeerJ 2018, 6, e5443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, N.; Ding, Y.; Wild, C.; Shen, Q.; Zhou, J. Small molecule inhibitors targeting activator protein 1 (AP-1). J. Med. Chem. 2014, 57, 6930–6948. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.F.; Eferl, R. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 2005, 208, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Mar, A.C.; Chu, C.H.; Lee, H.J.; Chien, C.W.; Cheng, J.J.; Yang, S.H.; Jiang, J.K.; Lee, T.C. Interleukin-1 Receptor Type 2 Acts with c-Fos to Enhance the Expression of Interleukin-6 and Vascular Endothelial Growth Factor A in Colon Cancer Cells and Induce Angiogenesis. J. Biol. Chem. 2015, 290, 22212–22224. [Google Scholar] [CrossRef] [Green Version]
- Verde, P.; Casalino, L.; Talotta, F.; Yaniv, M.; Weitzman, J.B. Deciphering AP-1 function in tumorigenesis: Fra-ternizing on target promoters. Cell Cycle 2007, 6, 2633–2639. [Google Scholar] [CrossRef] [Green Version]
- Walczak, K.; Turski, W.A.; Rajtar, G. Kynurenic acid inhibits colon cancer proliferation in vitro: Effects on signaling pathways. Amino Acids 2014, 46, 2393–2401. [Google Scholar] [CrossRef] [Green Version]
- Walczak, K.; Zurawska, M.; Kis, J.; Starownik, R.; Zgrajka, W.; Bar, K.; Turski, W.A.; Rzeski, W. Kynurenic acid in human renal cell carcinoma: Its antiproliferative and antimigrative action on Caki-2 cells. Amino Acids 2012, 43, 1663–1670. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Sun, J.; Nishiyama, T.; Shimizu, K.; Kadota, K. TCC: An R package for comparing tag count data with robust normalization strategies. BMC Bioinform. 2013, 14, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.H.; Jeong, S.H.; Ha, S.E.; Park, M.Y.; Bhosale, P.B.; Abusaliya, A.; Won, C.K.; Heo, J.D.; Kim, H.W.; Kim, G.S. Cellular Regulation of Kynurenic Acid-Induced Cell Apoptosis Pathways in AGS Cells. Int. J. Mol. Sci. 2022, 23, 8894. [Google Scholar] [CrossRef]
- Ren, H.; Zhu, J.; Yu, H.; Bazhin, A.V.; Westphalen, C.B.; Renz, B.W.; Jacob, S.N.; Lampert, C.; Werner, J.; Angele, M.K.; et al. Angiogenesis-Related Gene Expression Signatures Predicting Prognosis in Gastric Cancer Patients. Cancers 2020, 12, 3685. [Google Scholar] [CrossRef]
- Byron, S.A.; Van Keuren-Jensen, K.R.; Engelthaler, D.M.; Carpten, J.D.; Craig, D.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016, 17, 257–271. [Google Scholar] [CrossRef]
- Sakle, N.S.; More, S.A.; Mokale, S.N. A network pharmacology-based approach to explore potential targets of Caesalpinia pulcherima: An updated prototype in drug discovery. Sci. Rep. 2020, 10, 17217. [Google Scholar] [CrossRef]
- Vesely, P.W.; Staber, P.B.; Hoefler, G.; Kenner, L. Translational regulation mechanisms of AP-1 proteins. Mutat. Res. 2009, 682, 7–12. [Google Scholar] [CrossRef]
- Zarubin, T.; Han, J. Activation and signaling of the p38 MAP kinase pathway. Cell Res. 2005, 15, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Grausz, J.D.; Fradelizi, D.; Dautry, F.; Monier, R.; Lehn, P. Modulation of c-fos and c-myc mRNA levels in normal human lymphocytes by calcium ionophore A23187 and phorbol ester. Eur. J. Immunol. 1986, 16, 1217–1221. [Google Scholar] [CrossRef]
- Jin, S.P.; Kim, J.H.; Kim, M.A.; Yang, H.K.; Lee, H.E.; Lee, H.S.; Kim, W.H. Prognostic significance of loss of c-fos protein in gastric carcinoma. Pathol. Oncol. Res. 2007, 13, 284–289. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Model List of Essential Medicines: 21st List 2019. 2019. Available online: https://apps.who.int/iris/handle/10665/325771 (accessed on 8 February 2022).
- Turski, M.P.; Turska, M.; Zgrajka, W.; Bartnik, M.; Kocki, T.; Turski, W.A. Distribution, synthesis, and absorption of kynurenic acid in plants. Planta Med. 2011, 77, 858–864. [Google Scholar] [CrossRef] [PubMed]
- Glavin, G.B.; Pinsky, C. Kynurenic acid attenuates experimental ulcer formation and basal gastric acid secretion in rats. Res. Commun. Chem. Pathol. Pharmacol. 1989, 64, 111–119. [Google Scholar] [PubMed]
No | Name | Type | Reads | Bases | Bases (Gb) | GC | N | Q30 |
---|---|---|---|---|---|---|---|---|
1 | Control | Raw | 41,131,670 (100%) | 6,210,882,170 (100%) | 6.21 | 3,103,637,588 (49.97%) | 33,918 (0%) | 5,558,401,799 (89.49%) |
1 | Control | Clean | 39,692,472 (96.5%) | 5,845,982,692 (94.12%) | 5.85 | 2,891,132,459 (49.46%) | 32,209 (0%) | 5,314,657,230 (90.91%) |
2 | Test | Raw | 43,673,272 (100%) | 6,594,664,072 (100%) | 6.59 | 3,299,521,366 (50.03%) | 35,186 (0%) | 6,041,568,334 (91.61%) |
2 | Test | Clean | 42,815,932 (98.04%) | 6,224,436,097 (94.39%) | 6.22 | 3,100,915,971 (49.82%) | 34,024 (0%) | 5,764,074,214 (82.6%) |
(A) Molecular Function | ||
Gene ID | Term | z-score |
GO:0005201 | extracellular matrix structural constituent | −5.422 |
GO:0046982 | protein heterodimerization activity | −2.366 |
GO:0005200 | structural constituent of cytoskeleton | −1.732 |
GO:0051018 | protein kinase A binding | −1.342 |
GO:0005501 | retinoid binding | −1.342 |
GO:0005516 | calmodulin binding | −0.728 |
GO:0005267 | potassium channel activity | −0.535 |
GO:0030506 | ankyrin binding | 0 |
GO:0008296 | 3′-5′-exodeoxyribonuclease activity | 0.447 |
GO:0016829 | lyase activity | 1.732 |
(B) Biological Process | ||
Gene ID | Term | z-score |
GO:0007565 | female pregnancy | −3.457 |
GO:0045814 | negative regulation of gene expression, epigenetic | −1.043 |
GO:0031639 | plasminogen activation | −0.707 |
GO:0006334 | nucleosome assembly | −0.688 |
GO:0009812 | flavonoid metabolic process | −0.447 |
GO:0006335 | DNA replication-dependent nucleosome assembly | −0.408 |
GO:0050665 | hydrogen peroxide biosynthetic process | −0.378 |
GO:0000226 | microtubule cytoskeleton organization | −0.305 |
GO:0032200 | telomere organization | −0.229 |
GO:0000183 | chromatin silencing at rDNA | 0.557 |
(C) Cellular Component | ||
Gene ID | Term | z-score |
GO:0005576 | extracellular region | −4.899 |
GO:0045211 | postsynaptic membrane | −1.841 |
GO:0060076 | excitatory synapse | −1.807 |
GO:0045177 | apical part of cell | −1.457 |
GO:0043034 | costamere | −1.0 |
GO:0043194 | axon initial segment | −0.775 |
GO:0000788 | nuclear nucleosome | −0.408 |
GO:0000786 | nucleosome | −0.119 |
GO:0000228 | nuclear chromosome | 0.0 |
GO:0030016 | myofibril | 1.789 |
Up-regulation DEGs | |||
KEGG Pathways | Description | Strength | FDR |
hsa04014 | Ras signaling pathway | 1.27 | 0.0000138 |
hsa04151 | PI3K-AKT signaling pathway | 1.15 | 0.00000999 |
hsa04218 | Cellular senescence | 1.15 | 0.0194 |
hsa05202 | Transcriptional misregulation in cancer | 1.09 | 0.0268 |
hsa04727 | GABAergic synapse | 1.75 | 0.00000000998 |
hsa04926 | Relaxin signaling pathway | 1.58 | 0.0000000247 |
hsa04728 | Dopaminergic synapse | 1.58 | 0.0000000247 |
hsa04371 | Apelin signaling pathway | 1.57 | 0.0000000247 |
hsa04062 | Chemokine signaling pathway | 1.42 | 0.000000192 |
Wiki pathways | Description | Strength | FDR |
WP1545 | miRNAs involved in DNA damage response | 1.97 | 0.0149 |
WP2516 | ATM signaling pathway | 1.73 | 0.002 |
WP4016 | DNA IR-damage and cellular response via ATR | 1.66 | 0.0000131 |
WP3959 | DNA IR-double-strand breaks and cellular response via ATM | 1.59 | 0.0045 |
WP4172 | PI3K-AKT signaling pathway | 1.16 | 0.0000347 |
WP3932 | Focal adhesion: PI3K-AKT-mTOR signaling pathway | 1.14 | 0.0003 |
Reactome pathways | Description | Strength | FDR |
HAS-392851 | Prostacyclin signaling through prostacyclin receptor | 2.34 | 0.000000000201 |
HAS-8964616 | G beta: gamma signaling through CDC42 | 2.32 | 0.000000000227 |
HAS-418217 | G beta: gamma signaling through PLC beta | 2.32 | 0.000000000227 |
HAS-202040 | G-protein activation | 2.24 | 0.0000000000383 |
HAS-392451 | G beta: gamma signaling through PI3Kgamma | 2.22 | 0.000000000441 |
HAS-6803204 | TP53 regulates transcription of genes involved in cytochrome C release | 1.87 | 0.0096 |
HSA-69473 | G2/M DNA damage checkpoint | 1.55 | 0.00018 |
HSA-2559580 | Oxidative stress-induced senescence | 1.35 | 0.0082 |
HSA-73894 | DNA repair | 1.31 | 0.0000000205 |
HSA-69620 | Cell-cycle checkpoints | 1.11 | 0.0012 |
Annotated keywords | Description | Strength | FDR |
KW-0233 | DNA recombination | 1.45 | 0.0316 |
KW-0255 | Endonuclease | 1.43 | 0.0316 |
KW-0013 | ADP-ribosylation | 1.32 | 0.0406 |
KW-0234 | DNA repair | 1.24 | 0.00000466 |
KW-0227 | DNA damage | 1.22 | 0.00000156 |
Down-regulation DEGs | |||
KEGG pathways | Description | Strength | FDR |
hsa00630 | Glyoxylate and dicarboxylate metabolism | 2.06 | 0.00043 |
hsa03030 | DNA replication | 1.98 | 0.00043 |
hsa00260 | Glycine, serine, and threonine metabolism | 1.96 | 0.00043 |
hsa04610 | Complement and coagulation cascades | 1.85 | 0.00000307 |
hsa4724 | Glutamatergic synapse | 1.62 | 0.00043 |
hsa01200 | Carbon metabolism | 1.47 | 0.008 |
Wiki pathways | Description | Strength | FDR |
WP4705 | Pathways of nucleic acid metabolism and innate immune sensing | 2.33 | 0.00018 |
WP4875 | Disruption of postsynaptic signaling by CNV | 2.03 | 0.00079 |
Reactome pathways | Description | Strength | FDR |
HAS-140837 | Intrinsic pathway of fibrin clot formation | 2.06 | 0.02940 |
HAS-442982 | Ras activation upon Ca2+ influx through NMDA receptor | 1.57 | 0.0011 |
HAS-8957275 | Post-translational protein phosphorylation | 1.51 | 0.024 |
Annotated keywords | Description | Strength | FDR |
KW-0225 | Disease mutation | 0.56 | 0.0102 |
Gene ID | Symbol | RPKM | |
---|---|---|---|
C | T | ||
ENSG00000075426 | FOS L2 | 14.98 | 13.7 |
ENSG00000125740 | FOS B | 0.6 | 0.34 |
ENSG00000130522 | JUN D | 53.29 | 48.77 |
ENSG00000170345 | FOS | 5.06 | 4.84 |
ENSG00000171223 | JUN B | 21.87 | 19.96 |
ENSG00000175592 | FOS L1 | 24.33 | 22.91 |
ENSG00000177606 | JUN | 51.06 | 48.78 |
ENSG00000140044 | JDP 2 | 2.41 | 2.17 |
ENSG00000115966 | ATF 2 | 11.32 | 10.56 |
ENSG00000170653 | ATF 7 | 9.38 | 8.82 |
Compound-Protein | Interacting Amino Acid Residues | Final Intermolecular Energy |
---|---|---|
Kynurenic acid | ALA281, ALA168, ALA169, ALA185, GLU192, ASN165, LYS166, GLN189, GLU191, CYS285, LYS284, ARG288, ARG164, ASP188 | −6.3 kcal/mol |
Gene Set | Description | Size | Expect | Ratio | p-Value |
---|---|---|---|---|---|
DB04953 | Ezogabine | 10 | 0.017071 | 117.16 | 0.00010437 |
DB01095 | Fluvastatin | 18 | 0.030727 | 65.089 | 0.0035292 |
DB00586 | Diclofenac | 28 | 0.047798 | 41.843 | 0.00086596 |
DB00197 | Troglitazone | 30 | 0.051212 | 39.053 | 0.00099517 |
DB00633 | Dexmedetomidine | 5 | 0.0085353 | 117.16 | 0.0085120 |
DB00740 | Riluzole | 5 | 0.0085353 | 117.16 | 0.0085120 |
DB00851 | Dacarbazine | 5 | 0.0085353 | 117.16 | 0.0085120 |
DB00889 | Granisetron | 5 | 0.0085353 | 117.16 | 0.0085120 |
DB04905 | Tesmilifene | 5 | 0.0085353 | 117.16 | 0.0085120 |
DB06089 | ICA-105665 | 5 | 0.0085353 | 117.16 | 0.0085120 |
Compound-Protein | Interacting Amino Acid Residues | Final Intermolecular Energy |
---|---|---|
Dacarbazine | GLU191, GLU193, GLU192, ASP188, GLN189, ALA185, ARG288, LYS166, ASN165, ALA169, LYS284, CYS285, CYS172, ALA168, ALA281 | −5.2 kcal/mol |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.H.; Ha, S.E.; Park, M.Y.; Jeong, S.H.; Bhosale, P.B.; Abusaliya, A.; Won, C.K.; Heo, J.D.; Ahn, M.; Seong, J.K.; et al. Identification of Kynurenic Acid-Induced Apoptotic Biomarkers in Gastric Cancer-Derived AGS Cells through Next-Generation Transcriptome Sequencing Analysis. Nutrients 2023, 15, 193. https://doi.org/10.3390/nu15010193
Kim HH, Ha SE, Park MY, Jeong SH, Bhosale PB, Abusaliya A, Won CK, Heo JD, Ahn M, Seong JK, et al. Identification of Kynurenic Acid-Induced Apoptotic Biomarkers in Gastric Cancer-Derived AGS Cells through Next-Generation Transcriptome Sequencing Analysis. Nutrients. 2023; 15(1):193. https://doi.org/10.3390/nu15010193
Chicago/Turabian StyleKim, Hun Hwan, Sang Eun Ha, Min Yeong Park, Se Hyo Jeong, Pritam Bhagwan Bhosale, Abuyaseer Abusaliya, Chung Kil Won, Jeong Doo Heo, Meejung Ahn, Je Kyung Seong, and et al. 2023. "Identification of Kynurenic Acid-Induced Apoptotic Biomarkers in Gastric Cancer-Derived AGS Cells through Next-Generation Transcriptome Sequencing Analysis" Nutrients 15, no. 1: 193. https://doi.org/10.3390/nu15010193