Amplifying Photochromic Response in Tungsten Oxide Films with Titanium Oxide and Polyvinylpyrrolidone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of WO3 Nanoparticles
2.3. Synthesis of the Composite
2.4. Fabrication of Photochromic Film
2.5. Characterization and Measurement
3. Results and Discussion
3.1. Characterization of the Synthesized Tungsten Oxide
3.2. Characterization of Tungsten Oxide with Titanium Oxide and Polyvinylpyrrolidone
3.3. Dispersibility Analysis in Organic Solvents for Solution-Based Film Fabrication
3.4. Reflectance for Confirming Enhanced Photochromic Properties
3.5. Photochromic Properties in Film
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deb, S.K. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 2006, 27, 801–822. [Google Scholar] [CrossRef]
- Wang, S.; Fan, W.; Liu, Z.; Yu, A.; Jiang, X. Advances on tungsten oxide based photochromic materials: Strategies to improve their photochromic properties. J. Mater. Chem. C 2018, 6, 191–212. [Google Scholar] [CrossRef]
- Dong, X.; Lu, Y.; Liu, X.; Zhang, L.; Tong, Y. Nanostructured tungsten oxide as photochromic material for smart devices, energy conversion, and environmental remediation. J. Photochem. Photobiol. C Photochem. Rev. 2022, 53, 100555. [Google Scholar] [CrossRef]
- Cong, S.; Geng, F.; Zhao, Z. Tungsten Oxide Materials for Optoelectronic Applications. Adv. Mater. 2016, 28, 10518–10528. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, Y.; Yu, R. Multidimensional Tungsten Oxides for Efficient Solar Energy Conversion. Small Struct. 2021, 3, 2100130. [Google Scholar] [CrossRef]
- Ataalla, M.; Afify, A.S.; Hassan, M.; Abdallah, M.; Milanova, M.; Aboul-Enein, H.Y.; Mohamed, A. Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: A review. J. Non-Cryst. Solids 2018, 491, 43–54. [Google Scholar] [CrossRef]
- Akbari, A.; Amini, M.; Tarassoli, A.; Eftekhari-Sis, B.; Ghasemian, N.; Jabbari, E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Struct. Nano-Objects 2018, 14, 19–48. [Google Scholar] [CrossRef]
- Pachón, L.D.; Rothenberg, G. Transition-metal nanoparticles: Synthesis, stability and the leaching issue. Appl. Organomet. Chem. 2008, 22, 288–299. [Google Scholar] [CrossRef]
- Badour, Y.; Pedros, M.; Gaudon, M.; Danto, S. Hybrid organic–inorganic PMMA optical fibers functionalized with photochromic active WO3 nanoparticles: From materials design to photochromic fabrics. Adv. Opt. Mater. 2024, 12, 2301717. [Google Scholar] [CrossRef]
- Tang, J.; Gu, H.; Zhao, Y.; Tan, M.; Zhao, W.; Ma, R.; Zhang, S.; Hu, D. Coupling Ti doping with oxygen vacancies in tungsten oxide for high-performance photochromism applications. Chem. Commun. 2023, 59, 6060–6063. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.N.; Yang, S. Responsive Smart Windows from Nanoparticle-Polymer Composites. Adv. Funct. Mater. 2020, 30, 1902597. [Google Scholar] [CrossRef]
- Zeb, S.; Sun, G.; Nie, Y.; Xu, H.; Cui, Y.; Jiang, X. Advanced developments in nonstoichiometric tungsten oxides for electrochromic applications. Mater. Adv. 2021, 2, 6839–6884. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Xu, Y.; Chen, T.; Liu, M.; Niu, F.; Wei, S.; Liu, J. Simultaneous Synthesis of WO3−x Quantum Dots and Bundle-Like Nanowires Using a One-Pot Template-Free Solvothermal Strategy and Their Versatile Applications. Small 2017, 13, 1603689. [Google Scholar] [CrossRef]
- Lee, T.; Lee, Y.; Jang, W.; Soon, A. Understanding the advantage of hexagonal WO3 as an efficient photoanode for solar water splitting: A first-principles perspective. J. Mater. Chem. A 2016, 4, 11498–11506. [Google Scholar] [CrossRef]
- Jiang, H.; Hong, J.J.; Wu, X.; Surta, T.W.; Qi, Y.; Dong, S.; Li, Z.; Leonard, D.P.; Holoubek, J.J.; Wong, J.C.; et al. Insights on the Proton Insertion Mechanism in the Electrode of Hexagonal Tungsten Oxide Hydrate. J. Am. Chem. Soc. 2018, 140, 11556–11559. [Google Scholar] [CrossRef]
- Shrestha, S.; Wang, B.; Dutta, P. Nanoparticle processing: Understanding and controlling aggregation. Adv. Colloid Interface Sci. 2020, 279, 102162. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Chen, G.; Yu, Y.; Hu, Y.; Feng, Y.; Sun, J. Urea-assisted synthesis of ultra-thin hexagonal tungsten trioxide photocatalyst sheets. J. Mater. Sci. 2015, 50, 8111–8119. [Google Scholar] [CrossRef]
- Sun, W.; Yeung, M.T.; Lech, A.T.; Lin, C.W.; Lee, C.; Li, T.; Duan, X.; Zhou, J.; Kaner, R.B. High Surface Area Tunnels in Hexagonal WO3. Nano Lett. 2015, 15, 4834–4838. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Liang, H.-W.; Yang, Y.; Yu, S.-H. Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev. 2018, 118, 3209–3250. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, D.; Hong, Q.; Gui, Y.; Cao, Y.; Ren, G.; Liang, Z. Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications—A review. J. Mol. Liq. 2023, 389, 122821. [Google Scholar] [CrossRef]
- Sun, X.; Wang, C.; Su, D.; Wang, G.; Zhong, Y. Application of photocatalytic materials in sensors. Adv. Mater. Technol. 2020, 5, 1900993. [Google Scholar] [CrossRef]
- Wang, K.; Wei, Z.; Colbeau-Justin, C.; Nitta, A.; Kowalska, E. P25 and its components-electronic properties and photocatalytic activities. Surf. Interfaces 2022, 31, 102057. [Google Scholar] [CrossRef]
- Pan, L.; Ai, M.; Huang, C.; Yin, L.; Liu, X.; Zhang, R.; Wang, S.; Jiang, Z.; Zhang, X.; Zou, J.-J. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. Nat. Commun. 2020, 11, 418. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, H.; Zhu, M.; Li, Y.; Li, W. Interfacial charge transport in 1D TiO2 based photoelectrodes for photoelectrochemical water splitting. Small 2021, 17, 1903378. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, H.K.; Yoon, J.H.; Kim, H.M.; Kim, Y.S.; Kim, J.P. Improving dispersibility of tungsten oxide particles with organic ligands for photochromic films. Colloids Surf. A Physicochem. Eng. Asp. 2024, 694, 134083. [Google Scholar] [CrossRef]
- Pang, H.-F.; Xiang, X.; Li, Z.-J.; Fu, Y.-Q.; Zu, X.-T. Hydrothermal synthesis and optical properties of hexagonal tungsten oxide nanocrystals assisted by ammonium tartrate. Phys. Status Solidi (A) 2012, 209, 537–544. [Google Scholar] [CrossRef]
- Gotić, M.; Ivanda, M.; Popović, S.; Musić, S. Synthesis of tungsten trioxide hydrates and their structural properties. Mater. Sci. Eng. B 2000, 77, 193–201. [Google Scholar] [CrossRef]
- Guo, C.; Yin, S.; Dong, Q.; Sato, T. Simple route to (NH4)(x)WO3 nanorods for near infrared absorption. Nanoscale 2012, 4, 3394–3398. [Google Scholar] [CrossRef]
- Barbosa, M.S.; Oliveira, F.M.; Meng, X.; Soavi, F.; Santato, C.; Orlandi, M.O. Tungsten oxide ion gel-gated transistors: How structural and electrochemical properties affect the doping mechanism. J. Mater. Chem. C 2018, 6, 1980–1987. [Google Scholar] [CrossRef]
- Giannuzzi, R.; Primiceri, V.; Scarfiello, R.; Pugliese, M.; Mariano, F.; Maggiore, A.; Prontera, C.T.; Carallo, S.; De Vito, C.; Carbone, L.; et al. Photochromic Textiles Based upon Aqueous Blends of Oxygen-Deficient WO3-x and TiO2 Nanocrystals. Textiles 2022, 2, 382–394. [Google Scholar] [CrossRef]
- Liao, Y.; Qian, J.; Xie, G.; Han, Q.; Dang, W.; Wang, Y.; Lv, L.; Zhao, S.; Luo, L.; Zhang, W. 2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts. Appl. Catal. B Environ. 2020, 273, 119054. [Google Scholar] [CrossRef]
- Liao, Y.; Lin, J.; Cui, B.; Xie, G.; Hu, S. Well-dispersed ultrasmall ruthenium on TiO2 (P25) for effective photocatalytic N2 fixation in ambient condition. J. Photochem. Photobiol. A Chem. 2020, 387, 112100. [Google Scholar] [CrossRef]
- Krasnikov, I.; Popov, A.; Seteikin, A.; Myllylä, R. Influence of titanium dioxide nanoparticles on skin surface temperature at sunlight irradiation. Biomed. Opt. Express 2011, 2, 3278–3283. [Google Scholar] [CrossRef]
- Belhomme, L.; Duttine, M.; Labrugère, C.; Coicaud, E.; Rougier, A.; Penin, N.; Dandre, A.; Ravaine, S.; Gaudon, M. Investigation of the Photochromism of WO3, TiO2, and Composite WO3–TiO2 Nanoparticles. Inorg. Chem. 2024, 63, 10079–10091. [Google Scholar] [CrossRef]
- Hwang, Y.; Lee, J.-K.; Lee, J.-K.; Jeong, Y.-M.; Cheong, S.-i.; Ahn, Y.-C.; Kim, S.H. Production and dispersion stability of nanoparticles in nanofluids. Powder Technol. 2008, 186, 145–153. [Google Scholar] [CrossRef]
- Sun, B.; Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 2005, 5, 2408–2413. [Google Scholar] [CrossRef]
- Khan, H.U.; Tariq, M.; Shah, M.; Ullah, S.; Ahsan, A.R.; Rahim, A.; Iqbal, J.; Pasricha, R.; Ismail, I. Designing and development of polyvinylpyrrolidone-tungsten trioxide (PVP-WO3) nanocomposite conducting film for highly sensitive, stable, and room temperature humidity sensing. Mater. Sci. Semicond. Process. 2021, 134, 106053. [Google Scholar] [CrossRef]
- Su, G.; Yang, C.; Zhu, J.J. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine. Langmuir 2015, 31, 817–823. [Google Scholar] [CrossRef]
- Wang, N.; Hsu, C.; Zhu, L.; Tseng, S.; Hsu, J.-P. Influence of metal oxide nanoparticles concentration on their zeta potential. J. Colloid Interface Sci. 2013, 407, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczyk, A.; Gajewicz, A.; Rasulev, B.; Schaeublin, N.; Maurer-Gardner, E.; Hussain, S.; Leszczynski, J.; Puzyn, T. Zeta potential for metal oxide nanoparticles: A predictive model developed by a nano-quantitative structure–property relationship approach. Chem. Mater. 2015, 27, 2400–2407. [Google Scholar] [CrossRef]
- Cheng, P.; Deng, C.; Dai, X.; Li, B.; Liu, D.; Xu, J. Enhanced energy conversion efficiency of TiO2 electrode modified with WO3 in dye-sensitized solar cells. J. Photochem. Photobiol. A Chem. 2008, 195, 144–150. [Google Scholar] [CrossRef]
- Sun, H.; Dong, B.; Su, G.; Gao, R.; Liu, W.; Song, L.; Cao, L. Modification of TiO2 nanotubes by WO3 species for improving their photocatalytic activity. Appl. Surf. Sci. 2015, 343, 181–187. [Google Scholar] [CrossRef]
- Hoffmann, F.M. Infrared reflection-absorption spectroscopy of adsorbed molecules. Surf. Sci. Rep. 1983, 3, 107–192. [Google Scholar] [CrossRef]
- Lotya, M.; Rakovich, A.; Donegan, J.F.; Coleman, J.N. Measuring the lateral size of liquid-exfoliated nanosheets with dynamic light scattering. Nanotechnology 2013, 24, 265703. [Google Scholar] [CrossRef]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef]
- Popov, A.L.; Zholobak, N.M.; Balko, O.I.; Balko, O.B.; Shcherbakov, A.B.; Popova, N.R.; Ivanova, O.S.; Baranchikov, A.E.; Ivanov, V.K. Photo-induced toxicity of tungsten oxide photochromic nanoparticles. J. Photochem. Photobiol. B 2018, 178, 395–403. [Google Scholar] [CrossRef]
- Popov, A.L.; Han, B.; Ermakov, A.M.; Savintseva, I.V.; Ermakova, O.N.; Popova, N.R.; Shcherbakov, A.B.; Shekunova, T.O.; Ivanova, O.S.; Kozlov, D.A.; et al. PVP-stabilized tungsten oxide nanoparticles: pH sensitive anti-cancer platform with high cytotoxicity. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110494. [Google Scholar] [CrossRef]
- Evdokimova, O.; Kusova, T.; Ivanova, O.; Shcherbakov, A.; Yorov, K.E.; Baranchikov, A.; Agafonov, A.; Ivanov, V. Highly reversible photochromism in composite WO3/nanocellulose films. Cellulose 2019, 26, 9095–9105. [Google Scholar] [CrossRef]
- Khan, H.; Rigamonti, M.G.; Patience, G.S.; Boffito, D.C. Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Appl. Catal. B Environ. 2018, 226, 311–323. [Google Scholar] [CrossRef]
Material | WO3 | WO3@PVP | WO3/TiO2 | WO3/TiO2@PVP |
---|---|---|---|---|
Average zeta potential (mV) | 28.8 | 70.2 | 28.4 | 68.3 |
Material | WO3 | WO3/PVP | WO3/TiO2 | WO3/TiO2/PVP |
---|---|---|---|---|
Distribution range (nm) | 48.8~2849 | 614.7~1417 | 361.3~1645.3 | 81.9~982.1 |
Size variation (nm) | 2800.2 | 802.3 | 1284 | 900.2 |
Sample | Hexagonal WO3 | h-WO3/PVP | h-WO3/TiO2 | h-WO3/TiO2/PVP | ||||
---|---|---|---|---|---|---|---|---|
Reflectance | %R (max) | %R (700 nm) | %R (max) | %R (700 nm) | %R (max) | %R (700 nm) | %R (max) | %R (700 nm) |
Initial state | 68.0 | 62.0 | 75.6 | 69.7 | 76.2 | 70.7 | 84.1 | 79.2 |
UV 1 min | 53.9 | 41.9 | 53.6 | 41.8 | 50.7 | 39.9 | 53.0 | 37.0 |
ΔR (%) | 14.1 | 20.1 | 22.0 | 27.9 | 25.5 | 30.8 | 31.1 | 42.2 |
Time | 0 min | 1 min | 3 min | 5 min | 10 min | 20 min |
---|---|---|---|---|---|---|
Transmittance (%) at 700 nm | 85.2 | 78.7 | 70.0 | 63.4 | 52.6 | 44.7 |
ΔT (%) | 85.2 | ΔT = 40.5 | 44.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, M.-S.; Yoon, J.-H.; Kim, H.-M.; Lee, D.-J.; Hirose, T.; Takeda, Y.; Kim, J.-P. Amplifying Photochromic Response in Tungsten Oxide Films with Titanium Oxide and Polyvinylpyrrolidone. Nanomaterials 2024, 14, 1121. https://doi.org/10.3390/nano14131121
Kim M-S, Yoon J-H, Kim H-M, Lee D-J, Hirose T, Takeda Y, Kim J-P. Amplifying Photochromic Response in Tungsten Oxide Films with Titanium Oxide and Polyvinylpyrrolidone. Nanomaterials. 2024; 14(13):1121. https://doi.org/10.3390/nano14131121
Chicago/Turabian StyleKim, Min-Sung, Jun-Ho Yoon, Hong-Mo Kim, Dong-Jun Lee, Tamaki Hirose, Yoshihiko Takeda, and Jae-Pil Kim. 2024. "Amplifying Photochromic Response in Tungsten Oxide Films with Titanium Oxide and Polyvinylpyrrolidone" Nanomaterials 14, no. 13: 1121. https://doi.org/10.3390/nano14131121
APA StyleKim, M. -S., Yoon, J. -H., Kim, H. -M., Lee, D. -J., Hirose, T., Takeda, Y., & Kim, J. -P. (2024). Amplifying Photochromic Response in Tungsten Oxide Films with Titanium Oxide and Polyvinylpyrrolidone. Nanomaterials, 14(13), 1121. https://doi.org/10.3390/nano14131121