Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental
2.2. Synthesis of Asterisk-Like, Urchin-Like and Spherical Shaped VO2 (M)
2.3. Synthesis of Nanotube Shaped VO2 (M)
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whittaker, L.; Zhang, H.; Banerjee, S. VO2 nanosheets exhibiting a well-defined metal–insulator phase transition. J. Mater. Chem. 2009, 19, 2968–2974. [Google Scholar] [CrossRef]
- Montero, J.; Ji, Y.-X.; Li, S.-Y.; Niklasson, G.A.; Granqvist, C.G. Sputter deposition of thermochromic VO2 films on In2O3:Sn, SnO2, and glass: Structure and composition versus oxygen partial pressure. J. Vac. Sci. Technol. B 2015, 33, 031805. [Google Scholar] [CrossRef]
- Davydov, D.A.; Gusev, A.I.; Rempel, A.A. Neutron diffraction analysis of a defect vanadium monoxide close to the equiatomic vanadium monoxide. JETP Lett. 2009, 89, 194–199. [Google Scholar] [CrossRef]
- Sun, Y.F.; Qu, B.Y.; Jiang, S.S.; Wu, C.Z.; Pan, B.C.; Xie, Y. Highly depressed temperature-induced metal-insulator transition in synthetic monodisperse 10-nm V2O3 pseudocubes enclosed by {012} facets. Nanoscale 2011, 3, 2609–2614. [Google Scholar] [CrossRef]
- Chine, M.K.; Sediri, F.; Gharbi, N. Hydrothermal Synthesis of V3O7. H2O Nanobelts and Study of Their Electrochemical Properties. Mater. Sci. Appl. 2011, 2, 964–970. [Google Scholar] [CrossRef] [Green Version]
- Soltane, L.; Sediri, F.; Gharbi, N. Hydrothermal synthesis of mesoporous VO2 center dot 1/2(H2O) nanosheets and study of their electrical properties. Mater. Res. Bull. 2012, 47, 1615–1620. [Google Scholar] [CrossRef]
- Wei, M.D.; Sugihara, H.; Honma, I.; Ichihara, M.; Zhou, H.S. A new metastable phase of crystallized V2O4 center dot 0.25H2O nanowires: Synthesis and electrochemical measurements. Adv. Mater. 2005, 17, 2964. [Google Scholar] [CrossRef]
- Wu, H.; Li, M.; Zhong, L.; Luo, Y.Y.; Li, G.H. Electrochemical synthesis of amorphous VO2 colloids and their rapid thermal transforming to VO2(M) nanoparticles with good thermochromic performance. Chem. A Eur. J. 2016, 22, 17627–17634. [Google Scholar] [CrossRef] [PubMed]
- Lukyanchuk, I.; Sharma, P.; Nakajima, T.; Okamura, S.; Scott, J.F.; Gruverman, A. High-symmetry polarization domains in low-symmetry ferroelectrics. Nano Lett. 2014, 14, 6931–6935. [Google Scholar] [CrossRef] [Green Version]
- Lysenko, S.; Rua, A.; Vikhnin, V.; Jimenez, J.; Fernandez, F.; Liu, H. Light-induced ultrafast phase transitions in VO2 thin film. Appl. Surf. Sci. 2006, 252, 5512–5515. [Google Scholar] [CrossRef]
- Chen, S.H.; Ma, H.; Yi, X.J.; Wang, H.C.; Tao, X.; Chen, M.X.; Li, X.W.; Ke, C.J. Optical switch based on va-nadium dioxide thin films. Infrared Phys. Technol. 2004, 45, 239–242. [Google Scholar] [CrossRef]
- Chen, C.; Yi, X.; Zhao, X.; Xiong, B. Characterizations of VO2-based uncooled microbolometer linear array. Sens. Actuators A Phys. 2001, 90, 212–214. [Google Scholar] [CrossRef]
- Chao, D.; Zhu, C.; Xia, X.; Liu, J.; Zhang, X.; Wang, J.; Liang, P.; Lin, J.; Zhang, H.; Shen, Z.X.; et al. Graphene quantum dots coated VO2 arrays for highly durable electrodes for li and Na Ion batteries. Nano Lett. 2015, 15, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Wee, B.-H.; Hong, J.-D. High performance flexible supercapacitor electrodes composed of ultralarge graphene sheets and vanadium dioxide. Adv. Energy Mater. 2015, 5. [Google Scholar] [CrossRef]
- Kim, B.-J.; Lee, Y.W.; Chae, B.-G.; Yun, S.J.; Oh, S.-Y.; Kim, H.-T.; Lim, Y.-S. Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor. Appl. Phys. Lett. 2007, 90, 023515. [Google Scholar] [CrossRef] [Green Version]
- Son, M.; Lee, J.; Park, J.; Shin, J.; Choi, G.; Jung, S.; Lee, W.; Kim, S.; Park, S.; Hwang, H. Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron. Device Lett. 2011, 32, 1579–1581. [Google Scholar] [CrossRef]
- Qazilbash, M.M.; Brehm, M.; Chae, B.-G.; Ho, P.-C.; Andreev, G.O.; Kim, B.-J.; Yun, S.J.; Balatsky, A.V.; Maple, M.B.; Keilmann, F.; et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007, 318, 1750–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Magdassi, S.; Gao, Y.F.; Long, Y. Hydrothermal Synthesis of VO2 Polymorphs: Advantages, Challenges and Pro-spects for the Application of Energy Efficient Smart Windows. Small 2017, 13, 1701147. [Google Scholar] [CrossRef]
- Gao, Y.; Luo, H.; Zhang, Z.; Kang, L.; Chen, Z.; Du, J.; Kanehira, M.; Cao, C. Nanoceramic VO2 thermochromic smart glass: A review on progress in solution processing. Nano Energy 2012, 1, 221–246. [Google Scholar] [CrossRef]
- Lee, S.; Hippalgaonkar, K.; Yang, F.; Hong, J.; Ko, C.; Suh, J.; Liu, K.; Wang, K.; Urban, J.J.; Zhang, X.; et al. Anomalously low electronic thermal conductivity in metallic vanadium dioxide. Science 2017, 355, 371–374. [Google Scholar] [CrossRef] [Green Version]
- Uslu, M.E.; Yalcin, R.A.; Misirlioglu, I.B.; Sendur, K. Morphology induced spectral reflectance lineshapes in VO2 thin films. J. Appl. Phys. 2019, 125, 223103. [Google Scholar] [CrossRef]
- Cui, Y.; Ramanathan, S. Substrate effects on metal-insulator transition characteristics of rf-sputtered epitaxial VO2 thin films. J. Vac. Sci. Technol. A 2011, 29, 041502. [Google Scholar] [CrossRef]
- Marvel, R.E.; Appavoo, K.; Choi, B.K.; Nag, J.; Haglund, R.F. Electron-beam deposition of vanadium dioxide thin films. Appl. Phys. A 2012, 111, 975–981. [Google Scholar] [CrossRef]
- Uslu, M.E.; Misirlioglu, I.B.; Sendur, K. Selective IR response of highly textured phase change VO2 nanostructures ob-tained via oxidation of electron beam deposited metallic V films. Opt. Mater. Express 2018, 8, 2035–2049. [Google Scholar] [CrossRef]
- Wang, M.; Cui, Z.; Xue, Y.; Zhang, R. Template-free Synthesis and Crystal Transition of Ring-like VO2 (M). Cryst. Growth Des. 2018, 18, 4220–4225. [Google Scholar] [CrossRef]
- Wang, M.; Xue, Y.; Cui, Z.; Zhang, R. Size-dependent crystal transition thermodynamics of nano-VO2(M). J. Phys. Chem. C 2018, 122, 8621–8627. [Google Scholar] [CrossRef]
- Denisov, D.V.; Dang, M.T.; Struth, B.; Zaccone, A.; Wegdam, G.H.; Schall, P. Sharp symmetry-change marks the mechanical failure transition of glasses. Sci. Rep. 2015, 5, 14359. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Kim, C.K.; Lee, I.; Lee, J.; Hamidian, M.H.; Firmo, I.A.; Mukhopadhyay, S.; Eisaki, H.; Uchida, S.; Lawler, M.J.; et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 2014, 344, 612–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Dwyer, C.; Lavayen, V.; Newcomb, S.B.; Benavente, E.; Santa Ana, M.A.; Gonzalez, G.; Torres, C.S. Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures. ECS Solid State Lett. 2007, 10, A111. [Google Scholar] [CrossRef] [Green Version]
- O’Dwyer, C.; Navas, D.; Lavayen, V.; Benavente, E.; Santa Ana, M.A.; Gonzalez, G.; Newcomb, S.B.; Sotomayor Torres, C.M. Nano-urchin: The formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chem. Mater. 2006, 18, 3016–3022. [Google Scholar] [CrossRef]
- Chen, W.; Li, Q.M.; Peng, J.F.; Xu, Q.; Zhu, Q.Y. FTIR study of vanadium oxide nanotubes from lamellar structure. J. Mater. Sci. 2004, 39, 2625–2627. [Google Scholar] [CrossRef]
- Li, H.-Y.; Qiu, X.; Dong, M.; Li, X.; Zhang, Y.X.; Xie, B. Tuned hydrothermal synthesis of vanadium dioxide nanotubes. Ceram. Int. 2015, 41, 13967–13973. [Google Scholar] [CrossRef]
- Mai, L.; Xu, L.; Han, C.; Xu, X.; Luo, Y.; Zhao, S.; Zhao, Y. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.Q.; Wu, H.B.; Yu, L.; Zhu, T.; Lou, X.W. Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 3874–3879. [Google Scholar] [CrossRef]
- Wang, J.; Cui, C.; Gao, G.; Zhou, X.; Wu, J.; Yang, H.; Li, Q.; Wu, G. A new method to prepare vanadium oxide nano-urchins as a cathode for lithium ion batteries. RSC Adv. 2015, 5, 47522–47528. [Google Scholar] [CrossRef]
- Fei, H.-L.; Shen, Z.-R.; Wang, J.-G.; Zhou, H.-J.; Ding, D.-T.; Chen, T.-H. Novel bi-cation intercalated vanadium bronze nano-structures for stable and high capacity cathode materials. Electrochem. Commun. 2008, 10, 1541–1544. [Google Scholar] [CrossRef]
- Yu, H.; Rui, X.; Tan, H.; Chen, J.; Huang, X.; Xu, C.; Liu, W.; Yu, D.Y.W.; Hng, H.H.; Hoster, H.E.; et al. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale 2013, 5, 4937–4943. [Google Scholar] [CrossRef]
- Shi, Q.; Huang, W.; Zhang, Y.; Yan, J.; Zhang, Y.; Mao, M.; Zhang, Y.; Tu, M. Giant phase transition properties at terahertz range in VO2 films deposited by sol-gel method. ACS Appl. Mater. Interfaces 2011, 3, 3523–3527. [Google Scholar] [CrossRef]
- Burkhardt, W.; Christmann, T.; Meyer, B.; Niessner, W.; Schalch, D.; Scharmann, A. W- and F-doped VO2 films studied by photoelectron spectrometry. Thin Solid Films 1999, 345, 229–235. [Google Scholar] [CrossRef]
- Su, Q.; Huang, C.; Wang, Y.; Fan, Y.; Lu, B.; Lan, W.; Liu, X. Formation of vanadium oxides with various morphologies by chemical vapor deposition. J. Alloy. Compd. 2009, 475, 518–523. [Google Scholar] [CrossRef]
- Manning, T.D.; Parkin, I.P.; Clark, R.J.H.; Sheel, D.; Pemble, M.E.; Vernadou, D. Intelligent window coatings: Atmospheric pressure chemical vapour deposition of vanadium oxides. J. Mater. Chem. 2002, 12, 2936–2939. [Google Scholar] [CrossRef]
- Chirayil, T.; Zavalij, P.Y.; Whittingham, M.S. Hydrothermal synthesis of vanadium oxides. Chem. Mater. 1998, 10, 2629–2640. [Google Scholar] [CrossRef]
- Minić, D.M.; Blagojević, V.A. Hydrothermal synthesis and controlled growth of vanadium oxide nanocrystals. CrystEngComm 2013, 15, 6617–6624. [Google Scholar] [CrossRef]
- Alie, D.; Gedvilas, L.; Wang, Z.; Tenent, R.; Engtrakul, C.; Yan, Y.; Shaheen, S.E.; Dillon, A.C.; Ban, C. Direct synthesis of thermochromic VO2 through hydrothermal reaction. J. Solid State Chem. 2014, 212, 237–241. [Google Scholar] [CrossRef]
- Luo, Y.; Li, M.; Li, G. Effect of annealing on metal-insulator transition of VO2 (M) nanorods. Int. J. Nanoparticles 2014, 7, 142–154. [Google Scholar] [CrossRef]
- Gui, Z.; Fan, R.; Mo, W.; Chen, X.; Yang, L.; Zhang, S.; Hu, Y.; Wang, Z.; Fan, W. Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chem. Mater. 2002, 14, 5053–5056. [Google Scholar] [CrossRef]
- Son, J.H.; Wei, J.; Cobden, D.; Cao, G.Z.; Xia, Y.N. Hydrothermal synthesis of monoclinic VO2 micro- and nano-crystals in one step and their use in fabricating inverse opals. Chem. Mater. 2010, 22, 3043–3050. [Google Scholar] [CrossRef]
- Santulli, A.C.; Xu, W.; Parise, J.B.; Wu, L.; Aronson, M.; Zhang, F.; Nam, C.-Y.; Black, C.T.; Tiano, A.L.; Wong, S.S. Synthesis and characterization of V2O3 nanorods. Phys. Chem. Chem. Phys. 2009, 11, 3718–3726. [Google Scholar] [CrossRef]
- Ji, S.D.; Zhang, F.; Jin, P. Preparation of high performance pure single phase VO2 nanopowder by hydrothermally reducing the V2O5 gel. Sol. Energy Mater. Sol. Cells 2011, 95, 3520–3526. [Google Scholar] [CrossRef]
- Li, W.; Ji, S.; Li, Y.; Huang, A.; Luo, H.; Jin, P. Synthesis of VO2 nanoparticles by a hydrothermal-assisted homogeneous precipitation approach for thermochromic applications. RSC Adv. 2014, 4, 13026–13033. [Google Scholar] [CrossRef]
- Chen, X.; Sun, X.; Li, Y. Self-assembling vanadium oxide nanotubes by organic molecular templates. Inorg. Chem. 2002, 41, 4524–4530. [Google Scholar] [CrossRef]
- Chandrappa, G.; Steunou, N.; Cassaignon, S.; Bauvais, C.; Livage, J. Hydrothermal synthesis of vanadium oxide nanotubes from V2O5 gels. Catal. Today 2003, 78, 85–89. [Google Scholar] [CrossRef]
- Tsang, C.; Manthiram, A. Synthesis of nanocrystalline VO2 and its electrochemical behavior in lithium batteries. J. Electrochem. Soc. 1997, 144, 520. [Google Scholar] [CrossRef]
- Gui, Z.; Fan, R.; Chen, X.; Wu, Y. A new metastable phase of needle-like nanocrystalline VO2·H2O and phase transformation. J. Solid State Chem. 2001, 157, 250–254. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, X.; Dai, J.; Yang, J.; Wu, Z.; Wei, S.; Xie, Y. Direct hydrothermal synthesis of monoclinic VO2 (M) single-domain nanorods on large scale displaying magnetocaloric effect. J. Mater. Chem. 2011, 21, 4509–4517. [Google Scholar] [CrossRef]
- Wu, X.; Tao, Y.; Dong, L.; Wang, Z.; Hu, Z. Preparation of VO2 nanowires and their electric characterization. Mater. Res. Bull. 2005, 40, 315–321. [Google Scholar] [CrossRef]
Morphology | Reducing Agent | Amount of Reducing Agent | Acid | Temperature (°C) | Time (h) |
---|---|---|---|---|---|
Asterisk-like * | N2H4.H2O | 0.17 mL | HCI | 200 | 24 |
Urchin-like | N2H4.H2O | 0.34 mL | HCI | 200 | 24 |
Multi faces spherical | N2H4.H2O | 0.51 0.68 and 0.84 mL | HCI | 200 | 24 |
Nanotube | Dodecylamine | 0.9 g | - | 150 | 120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karahan, O.; Tufani, A.; Unal, S.; Misirlioglu, I.B.; Menceloglu, Y.Z.; Sendur, K. Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method. Nanomaterials 2021, 11, 752. https://doi.org/10.3390/nano11030752
Karahan O, Tufani A, Unal S, Misirlioglu IB, Menceloglu YZ, Sendur K. Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method. Nanomaterials. 2021; 11(3):752. https://doi.org/10.3390/nano11030752
Chicago/Turabian StyleKarahan, Ozlem, Ali Tufani, Serkan Unal, I. Burc Misirlioglu, Yusuf Z. Menceloglu, and Kursat Sendur. 2021. "Synthesis and Morphological Control of VO2 Nanostructures via a One-Step Hydrothermal Method" Nanomaterials 11, no. 3: 752. https://doi.org/10.3390/nano11030752