The Good News, the Bad News, and the Ugly Truth: A Review on the 3D Interaction of Light Field Displays
Abstract
:1. Introduction
2. Historical Overview and State-of-the-Art Research of Light Field Visualization
3. Use Cases of Light Field Visualization
3.1. Passive Use Cases
3.1.1. Prototype Review
3.1.2. Medical Imaging
3.1.3. Resource Exploration
3.1.4. Training and Education
3.1.5. Digital Signage
3.1.6. Cultural Heritage Exhibition
3.1.7. Traffic Control
3.1.8. Driver Assistance Systems
3.1.9. Defense Applications
3.1.10. Telepresence
3.1.11. Home Multimedia Entertainment
3.1.12. Cinematography
3.2. Active Use Cases
3.2.1. Prototype Review
3.2.2. Medical Imaging
3.2.3. Resource Exploration
3.2.4. Training and Education
3.2.5. Digital Signage
3.2.6. Cultural Heritage Exhibitions
3.2.7. Traffic Control
3.2.8. Driver Assistance Systems
3.2.9. Defense Applications
3.2.10. Telepresence
3.2.11. Home Multimedia Entertainment
3.2.12. Gaming
3.2.13. Metaverse
4. Research on 3D Light Field Interactions
5. Discussion
5.1. The Good News
5.2. The Bad News
5.3. The Ugly Truth
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AR | Augmented Reality |
FoLD | Field of Light Display |
FOV | Field of View |
FP | Full Parallax |
HCI | Human–Computer Interaction |
HMD | Head-Mounted Display |
HVS | Human Visual System |
HOP | Horizontal-Only Parallax |
IBR | Image-Based Rendering |
IEC | International Electrotechnical Commission |
ISO | International Organization for Standardization |
JPEG | Joint Photographic Experts Group |
QoE | Quality of Experience |
S3D | Stereoscopic 3D |
SMV | Super Multi-View |
TLX | Task Load Index |
TUI | Touchless User Interface |
UEQ | User Experience Questionnaire |
V2X | Vehicle-to-Everything |
VOP | Vertical-Only Parallax |
VVA | Valid Viewing Area |
VR | Virtual Reality |
References
- Wheatstone, C. XVIII. Contributions to the physiology of vision—Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 1838, 128, 371–394. [Google Scholar]
- Brewster, D., II. Description of several new and simple stereoscopes for exhibiting, as solids, one or more representations of them on a plane. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1852, 3, 16–26. [Google Scholar] [CrossRef]
- Brewster, D. The Stereoscope; Its History, Theory, and Construction: With Its Application to the Fine and Useful Arts and to Education; John Murray: London, UK, 1856. [Google Scholar]
- Holmes, O.W. The stereoscope and the stereograph. Atl. Mon. 1859, 3, 1–8. [Google Scholar]
- Dennis, G. A new microscopic principle. Nature 1948, 161, 777–778. [Google Scholar]
- Gabor, D. Microscopy by reconstructed wave-fronts. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1949, 197, 454–487. [Google Scholar] [CrossRef]
- Gabor, D. Holography, 1948–1971. Science 1972, 177, 299–313. [Google Scholar] [CrossRef]
- Haine, M.; Mulvey, T. The formation of the diffraction image with electrons in the Gabor diffraction microscope. JOSA 1952, 42, 763–773. [Google Scholar] [CrossRef]
- Blundell, B.G.; Schwarz, A.J. The classification of volumetric display systems: Characteristics and predictability of the image space. IEEE Trans. Vis. Comput. Graph. 2002, 8, 66–75. [Google Scholar] [CrossRef]
- Gately, M.; Zhai, Y.; Yeary, M.; Petrich, E.; Sawalha, L. A three-dimensional swept volume display based on LED arrays. J. Disp. Technol. 2011, 7, 503–514. [Google Scholar] [CrossRef]
- Sawalha, L.; Tull, M.P.; Gately, M.B.; Sluss, J.J.; Yeary, M.; Barnes, R.D. A large 3D swept-volume video display. J. Disp. Technol. 2012, 8, 256–268. [Google Scholar] [CrossRef]
- Asahina, R.; Nomoto, T.; Yoshida, T.; Watanabe, Y. Realistic 3D swept-volume display with hidden-surface removal using physical materials. In Proceedings of the 2021 IEEE Virtual Reality and 3D User Interfaces (VR), Lisboa, Portugal, 27 March–1 April 2021; pp. 113–121. [Google Scholar]
- Hardy, A.C. A study of the persistence of vision. Proc. Natl. Acad. Sci. USA 1920, 6, 221–224. [Google Scholar] [CrossRef]
- Dhruv, A.; Shah, D.; Shah, D.; Raikar, A.; Bhattacharjee, S. Wireless Remote Controlled POV Display. Int. J. Comput. Appl. 2015, 115, 4–9. [Google Scholar] [CrossRef]
- Al-Natsheh, W.H.; Hammad, B.K.; Zaid, M.A.A. Design and implementation of a cylindrical persistence of vision display. In Proceedings of the 2019 6th International Conference on Electrical and Electronics Engineering (ICEEE), Istanbul, Turkey, 16–17 April 2019; pp. 215–219. [Google Scholar]
- Langhans, K.; Guill, C.; Rieper, E.; Oltmann, K.; Bahr, D. Solid Felix: A static volume 3D-laser display. In Proceedings of the Stereoscopic Displays and Virtual Reality Systems X, Santa Clara, CA, USA, 20–24 January 2003; SPIE: Bellingham, DC, USA, 2013; Volume 5006, pp. 161–174. [Google Scholar]
- Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189. [Google Scholar] [CrossRef]
- Lam, M.L.; Chen, B.; Lam, K.Y.; Huang, Y. 3D fog display using parallel linear motion platforms. In Proceedings of the 2014 International Conference on Virtual Systems & Multimedia (VSMM), Hong Kong, China, 9–12 December 2014; pp. 234–237. [Google Scholar]
- Lam, M.L.; Huang, Y.; Chen, B. Interactive volumetric fog display. In SIGGRAPH Asia 2015 Emerging Technologies; Association for Computing Machinery: New York, NY, USA, 2015; pp. 1–2. [Google Scholar]
- Lam, M.L.; Chen, B.; Huang, Y. A novel volumetric display using fog emitter matrix. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 4452–4457. [Google Scholar]
- Vasconcelos, R.; Zeuner, J.; Greganti, C. Laser light field display. In Proceedings of the Advances in Display Technologies XII, San Francisco, CA, USA, 3 March 2022; SPIE: Bellingham, DC, USA, 2022; Volume 12024, pp. 33–41. [Google Scholar]
- Son, J.Y.; Lee, H.; Lee, B.R.; Byeon, J.; Park, M.C. Holographic and light field displays: What are the differences? In Proceedings of the 2017 16th Workshop on Information Optics (WIO), Interlaken, Switzerland, 3–7 July 2017; pp. 1–2. [Google Scholar]
- Abileah, A. 65-3: Invited Paper: Light-Field, Holographic and Volumetric Display Measurements. In Proceedings of the SID Symposium Digest of Technical Papers, San Francisco, CA, USA, 22–27 May 2016; Wiley Online Library; Volume 47, pp. 888–891. [Google Scholar]
- Bichal, A.; Burnett, T. 15-2: Metrology for Field-of-Light Displays. In Proceedings of the SID Symposium Digest of Technical Papers, Los Angeles, CA, USA, 21–25 May 2018; Wiley Online Library; Volume 49, pp. 165–168. [Google Scholar]
- Hamilton, M.; Wells, N.; Soares, A. On Requirements for Field of Light Displays to Pass the Visual Turing Test. In Proceedings of the 2022 IEEE International Symposium on Multimedia (ISM), Naples, Italy, 5–7 December 2022; pp. 86–87. [Google Scholar]
- Boev, A.; Bregovic, R.; Gotchev, A. Signal processing for stereoscopic and multi-view 3D displays. In Handbook of Signal Processing Systems; Springer: New York, NY, USA, 2013; pp. 3–47. [Google Scholar]
- Yang, L.; Sang, X.; Yu, X.; Liu, B.; Yan, B.; Wang, K.; Yu, C. A crosstalk-suppressed dense multi-view light-field display based on real-time light-field pickup and reconstruction. Opt. Express 2018, 26, 34412–34427. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sang, X.; Yu, X.; Gao, X.; Yan, B.; Liu, B.; Liu, L.; Gao, C.; Le, Y.; Li, Y.; et al. Demonstration of a low-crosstalk super multi-view light field display with natural depth cues and smooth motion parallax. Opt. Express 2019, 27, 34442–34453. [Google Scholar] [CrossRef] [PubMed]
- Wan, W.; Qiao, W.; Pu, D.; Chen, L. Super multi-view display based on pixelated nanogratings under an illumination of a point light source. Opt. Lasers Eng. 2020, 134, 106258. [Google Scholar] [CrossRef]
- Ueno, T.; Takaki, Y. Super multi-view near-eye display to solve vergence–accommodation conflict. Opt. Express 2018, 26, 30703–30715. [Google Scholar] [CrossRef]
- Liu, L.; Cai, J.; Pang, Z.; Teng, D. Super multi-view near-eye 3D display with enlarged field of view. Opt. Eng. 2021, 60, 085103. [Google Scholar] [CrossRef]
- Liu, L.; Ye, Q.; Pang, Z.; Huang, H.; Lai, C.; Teng, D. Polarization enlargement of FOV in Super Multi-view display based on near-eye timing-apertures. Opt. Express 2022, 30, 1841–1859. [Google Scholar] [CrossRef]
- Balogh, T. The HoloVizio system. In Proceedings of the Stereoscopic Displays and Virtual Reality Systems XIII, San Jose, CA, USA, 28 January–1 February 2006; SPIE: Bellingham, DC, USA, 2006; Volume 6055, pp. 279–290. [Google Scholar]
- Balogh, T.; Kovács, P.T.; Barsi, A. Holovizio 3D display system. In Proceedings of the 2007 3DTV Conference, Kos, Greece, 7–9 May 2007; pp. 1–4. [Google Scholar]
- Balogh, T.; Kovács, P.T.; Dobrányi, Z.; Barsi, A.; Megyesi, Z.; Gaál, Z.; Balogh, G. The Holovizio system–New opportunity offered by 3D displays. In Proceedings of the TMCE, Izmir, Turkey, 21–25 April 2008; pp. 79–89. [Google Scholar]
- Balogh, T.; Barsi, A.; Kara, P.A.; Guindy, M.; Simon, A.; Nagy, Z. 3D light field LED wall. In Proceedings of the Digital Optical Technologies 2021, Online, 20 June 2021; SPIE: Bellingham, DC, USA, 2021; Volume 11788, pp. 180–190. [Google Scholar]
- Teng, D.; Liu, L. P-95: Full Resolution 3D Display on Computer Screen Free from Accommodation-convergence Conflict. In Proceedings of the SID Symposium Digest of Technical Papers, Los Angeles, CA, USA, 21–26 May 2017; Wiley Online Library; Volume 48, pp. 1607–1609. [Google Scholar]
- Alpaslan, Z.Y.; El-Ghoroury, H.S. Small form factor full parallax tiled light field display. In Proceedings of the Stereoscopic Displays and Applications XXVI, San Francisco, CA, USA, 17 March 2015; SPIE: Bellingham, DC, USA, 2015; Volume 9391, pp. 92–101. [Google Scholar]
- Lanman, D.; Wetzstein, G.; Hirsch, M.; Heidrich, W.; Raskar, R. Polarization fields: Dynamic light field display using multi-layer LCDs. In Proceedings of the SA’11: SIGGRAPH Asia 2011, Hong Kong, China, 12–15 December 2011; ACM: New York, NY, USA, 2011; pp. 1–10. [Google Scholar]
- Zhao, W.X.; Wang, Q.H.; Wang, A.H.; Li, D.H. Autostereoscopic display based on two-layer lenticular lenses. Opt. Lett. 2010, 35, 4127–4129. [Google Scholar] [CrossRef]
- Yu, X.; Sang, X.; Gao, X.; Chen, Z.; Chen, D.; Duan, W.; Yan, B.; Yu, C.; Xu, D. Large viewing angle three-dimensional display with smooth motion parallax and accurate depth cues. Opt. Express 2015, 23, 25950–25958. [Google Scholar] [CrossRef]
- Lee, B.; Park, J.H.; Min, S.W. Three-dimensional display and information processing based on integral imaging. In Digital Holography and Three-Dimensional Display: Principles and Applications; Springer: New York, NY, USA, 2006; pp. 333–378. [Google Scholar]
- Zhong, Q.; Chen, B.; Li, H.; Liu, X.; Xia, J.; Wang, B.; Xu, H. Multi-projector-type immersive light field display. Chin. Opt. Lett. 2014, 12, 060009. [Google Scholar] [CrossRef]
- Shim, H.; Lee, D.; Park, J.; Yoon, S.; Kim, H.; Kim, K.; Heo, D.; Kim, B.; Hahn, J.; Kim, Y.; et al. Development of a scalable tabletop display using projection-based light field technology. J. Inf. Disp. 2021, 22, 285–292. [Google Scholar] [CrossRef]
- Jang, W.; Shim, H.; Lee, D.; Park, J.; kyu Yoon, S.; Kim, H.; Chun, S.; Lee, K. Development of High Performance 35” Tabletop Display using Projection-based Light Field Technology. In Proceedings of the Digital Holography and Three-Dimensional Imaging, Bordeaux, France, 19–23 May 2019; Optica Publishing Group: Washington, DC, USA, 2019; p. M3A.5. [Google Scholar]
- Kara, P.A.; Martini, M.G.; Nagy, Z.; Barsi, A. Cinema as large as life: Large-scale light field cinema system. In Proceedings of the 2017 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11–12 December 2017; pp. 1–8. [Google Scholar]
- Balogh, T.; Nagy, Z.; Kovács, P.T.; Adhikarla, V.K. Natural 3D content on glasses-free light-field 3D cinema. In Proceedings of the Stereoscopic Displays and Applications XXIV, Burlingame, CA, USA, 12 March 2013; SPIE: Bellingham, DC, USA, 2013; Volume 8648, pp. 103–110. [Google Scholar]
- Yang, S.; Sang, X.; Yu, X.; Gao, X.; Liu, L.; Liu, B.; Yang, L. 162-inch 3D light field display based on aspheric lens array and holographic functional screen. Opt. Express 2018, 26, 33013–33021. [Google Scholar] [CrossRef] [PubMed]
- Gotsch, D.; Zhang, X.; Merritt, T.; Vertegaal, R. TeleHuman2: A Cylindrical Light Field Teleconferencing System for Life-size 3D Human Telepresence. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; Volume 18, p. 552. [Google Scholar]
- Cserkaszky, A.; Barsi, A.; Nagy, Z.; Puhr, G.; Balogh, T.; Kara, P.A. Real-time light-field 3D telepresence. In Proceedings of the 2018 7th European Workshop on Visual Information Processing (EUVIP), Tampere, Finland, 26–28 November 2018; pp. 1–5. [Google Scholar]
- Zhang, X.; Braley, S.; Rubens, C.; Merritt, T.; Vertegaal, R. LightBee: A self-levitating light field display for hologrammatic telepresence. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–10. [Google Scholar]
- Pittarello, F.; Dumitriu, A.; Piazza, E. 3D interaction with mouse-keyboard, gamepad and leap motion: A comparative study. In Proceedings of the Smart Objects and Technologies for Social Good: Third International Conference, GOODTECHS 2017, Pisa, Italy, 29–30 November 2017; Proceedings 3. Springer: Berlin/Heidelberg, Germany, 2018; pp. 122–131. [Google Scholar]
- Ardito, C.; Buono, P.; Costabile, M.F.; Lanzilotti, R.; Simeone, A.L. Comparing low cost input devices for interacting with 3D Virtual Environments. In Proceedings of the 2009 2nd Conference on Human System Interactions, Catania, Italy, 21–23 May 2009; pp. 292–297. [Google Scholar]
- Perret, J.; Vander Poorten, E. Touching virtual reality: A review of haptic gloves. In Proceedings of the ACTUATOR 2018; 16th International Conference on New Actuators, Bremen, Germany, 25–27 June 2018; VDE: Berlin, Germany, 2018; pp. 1–5. [Google Scholar]
- Shigapov, M.; Kugurakova, V.; Zykov, E. Design of digital gloves with feedback for VR. In Proceedings of the 2018 IEEE East-West Design & Test Symposium (EWDTS), Kazan, Russia, 14–17 September 2018; pp. 1–5. [Google Scholar]
- Shor, D.; Zaaijer, B.; Ahsmann, L.; Immerzeel, S.; Weetzel, M.; Eikelenboom, D.; Hartcher-O’Brien, J.; Aschenbrenner, D. Designing Haptics: Comparing Two Virtual Reality Gloves with Respect to Realism, Performance and Comfort. In Proceedings of the 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Munich, Germany, 16–20 October 2018; pp. 318–323. [Google Scholar]
- Civelek, T.; Fuhrmann, A. Virtual Reality Learning Environment with Haptic Gloves. In Proceedings of the 2022 3rd International Conference on Education Development and Studies, Hilo, HI, USA, 9–11 March 2022; pp. 32–36. [Google Scholar]
- Kim, S.; Gu, S.; Kim, J. Variable Shape and Stiffness Feedback System for VR Gloves Using SMA Textile Actuator. Fibers Polym. 2022, 23, 836–842. [Google Scholar] [CrossRef]
- Perret, J.; Vander Poorten, E. Commercial haptic gloves. In Proceedings of the 15th Annual EuroVR Conference, London, UK, 22 October 2018; VTT Technology: Espoo, Finland, 2018; pp. 39–48. [Google Scholar]
- Caeiro-Rodríguez, M.; Otero-González, I.; Mikic-Fonte, F.A.; Llamas-Nistal, M. A systematic review of commercial smart gloves: Current status and applications. Sensors 2021, 21, 2667. [Google Scholar] [CrossRef]
- Lippman, G. La photographie integrale. Comptes-Rendus Acad. Des Sci. 1908, 146, 446–451. [Google Scholar]
- Gershun, A. The light field. J. Math. Phys. 1939, 18, 51–151. [Google Scholar] [CrossRef]
- Faraday, M. LIV. Thoughts on ray-vibrations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1846, 28, 345–350. [Google Scholar] [CrossRef]
- Adelson, E.H.; Bergen, J.R. The plenoptic function and the elements of early vision. Comput. Model. Vis. Process. 1991, 1, 3–20. [Google Scholar]
- McMillan, L.; Bishop, G. Plenoptic modeling: An image-based rendering system. In Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, Los Angeles, CA, USA, 15 September 1995; pp. 39–46. [Google Scholar]
- Levoy, M.; Hanrahan, P. Light field rendering. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 31–42. [Google Scholar]
- Gortler, S.J.; Grzeszczuk, R.; Szeliski, R.; Cohen, M.F. The lumigraph. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4–9 August 1996; pp. 43–54. [Google Scholar]
- Yang, J.C.; Everett, M.; Buehler, C.; McMillan, L. A real-time distributed light field camera. Render. Tech. 2002, 2002, 3. [Google Scholar]
- Jones, A.; McDowall, I.; Yamada, H.; Bolas, M.; Debevec, P. Rendering for an interactive 360° light field display. In ACM SIGGRAPH 2007 Papers; Association for Computing Machinery: New York, NY, USA, 2007; pp. 1–10. [Google Scholar]
- Lanman, D.; Hirsch, M.; Kim, Y.; Raskar, R. Content-adaptive parallax barriers: Optimizing dual-layer 3D displays using low-rank light field factorization. In ACM SIGGRAPH Asia 2010 Papers; Association for Computing Machinery: New York, NY, USA, 2010; pp. 1–10. [Google Scholar]
- Wetzstein, G.; Lanman, D.; Heidrich, W.; Raskar, R. Layered 3D: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. In ACM SIGGRAPH 2011 Papers; Association for Computing Machinery: New York, NY, USA, 2011; pp. 1–12. [Google Scholar]
- Wetzstein, G.; Lanman, D.R.; Hirsch, M.W.; Raskar, R. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 2012, 31, 1–11. [Google Scholar] [CrossRef]
- Ebrahimi, T.; Foessel, S.; Pereira, F.; Schelkens, P. JPEG Pleno: Toward an efficient representation of visual reality. IEEE Multimed. 2016, 23, 14–20. [Google Scholar] [CrossRef]
- Schelkens, P.; Alpaslan, Z.Y.; Ebrahimi, T.; Oh, K.J.; Pereira, F.M.; Pinheiro, A.M.; Tabus, I.; Chen, Z. JPEG Pleno: A standard framework for representing and signaling plenoptic modalities. In Proceedings of the Applications of Digital Image Processing XLI, San Diego, CA, USA, 23 August 2018; SPIE: Bellingham, DC, USA, 2018; Volume 10752, pp. 544–553. [Google Scholar]
- Schelkens, P.; Astola, P.; Da Silva, E.A.; Pagliari, C.; Perra, C.; Tabus, I.; Watanabe, O. JPEG Pleno light field coding technologies. In Proceedings of the Applications of Digital Image Processing XLII, San Diego, CA, USA, 12–15 August 2019; SPIE: Bellingham, DC, USA, 2019; Volume 11137, pp. 391–401. [Google Scholar]
- Magnor, M.; Girod, B. Data compression for light-field rendering. IEEE Trans. Circuits Syst. Video Technol. 2000, 10, 338–343. [Google Scholar] [CrossRef]
- Liu, D.; Wang, L.; Li, L.; Xiong, Z.; Wu, F.; Zeng, W. Pseudo-sequence-based light field image compression. In Proceedings of the 2016 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Seattle, WA, USA, 11–15 July 2016; pp. 1–4. [Google Scholar]
- Chen, J.; Hou, J.; Chau, L.P. Light field compression with disparity-guided sparse coding based on structural key views. IEEE Trans. Image Process. 2017, 27, 314–324. [Google Scholar] [CrossRef]
- Jiang, X.; Le Pendu, M.; Farrugia, R.A.; Guillemot, C. Light field compression with homography-based low-rank approximation. IEEE J. Sel. Top. Signal Process. 2017, 11, 1132–1145. [Google Scholar] [CrossRef]
- Jiang, X.; Le Pendu, M.; Guillemot, C. Light field compression using depth image based view synthesis. In Proceedings of the 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Hong Kong, China, 10–14 July 2017; pp. 19–24. [Google Scholar]
- Dricot, A.; Jung, J.; Cagnazzo, M.; Pesquet, B.; Dufaux, F.; Kovács, P.T.; Adhikarla, V.K. Subjective evaluation of Super Multi-View compressed contents on high-end light-field 3D displays. Signal Process. Image Commun. 2015, 39, 369–385. [Google Scholar] [CrossRef]
- Viola, I.; Řeřábek, M.; Bruylants, T.; Schelkens, P.; Pereira, F.; Ebrahimi, T. Objective and subjective evaluation of light field image compression algorithms. In Proceedings of the 2016 Picture Coding Symposium (PCS), Nuremberg, Germany, 4–7 December 2016; pp. 1–5. [Google Scholar]
- Viola, I.; Řeřábek, M.; Ebrahimi, T. Comparison and evaluation of light field image coding approaches. IEEE J. Sel. Top. Signal Process. 2017, 11, 1092–1106. [Google Scholar] [CrossRef]
- Paudyal, P.; Battisti, F.; Sjöström, M.; Olsson, R.; Carli, M. Towards the perceptual quality evaluation of compressed light field images. IEEE Trans. Broadcast. 2017, 63, 507–522. [Google Scholar] [CrossRef]
- Viola, I.; Takahashi, K.; Fujii, T.; Ebrahimi, T. Rendering-dependent compression and quality evaluation for light field contents. In Proceedings of the Applications of Digital Image Processing XLII, San Diego, CA, USA, 12–15 August 2019; SPIE: Bellingham, DC, USA, 2019; Volume 11137, pp. 414–426. [Google Scholar]
- Bakir, N.; Fezza, S.A.; Hamidouche, W.; Samrouth, K.; Déforges, O. Subjective evaluation of light field image compression methods based on view synthesis. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2–6 September 2019; pp. 1–5. [Google Scholar]
- Viola, I.; Ebrahimi, T. An in-depth analysis of single-image subjective quality assessment of light field contents. In Proceedings of the 2019 Eleventh International Conference on Quality of Multimedia Experience (QoMEX), Berlin, Germany, 5–7 June 2019; pp. 1–6. [Google Scholar]
- PhiCong, H.; Perry, S.; Cheng, E.; HoangVan, X. Objective quality assessment metrics for light field image based on textural features. Electronics 2022, 11, 759. [Google Scholar] [CrossRef]
- Tamboli, R.R.; Kara, P.A.; Bisht, N.; Barsi, A.; Martini, M.G.; Jana, S. Objective quality assessment of 2D synthesized views for light-field visualization. In Proceedings of the 2018 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 5–6 December 2018; pp. 1–7. [Google Scholar]
- Shi, L.; Zhou, W.; Chen, Z.; Zhang, J. No-reference light field image quality assessment based on spatial-angular measurement. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 4114–4128. [Google Scholar] [CrossRef]
- Shan, L.; An, P.; Meng, C.; Huang, X.; Yang, C.; Shen, L. A no-reference image quality assessment metric by multiple characteristics of light field images. IEEE Access 2019, 7, 127217–127229. [Google Scholar] [CrossRef]
- Paudyal, P.; Battisti, F.; Carli, M. Reduced reference quality assessment of light field images. IEEE Trans. Broadcast. 2019, 65, 152–165. [Google Scholar] [CrossRef]
- Luo, Z.; Zhou, W.; Shi, L.; Chen, Z. No-reference light field image quality assessment based on micro-lens image. In Proceedings of the 2019 Picture Coding Symposium (PCS), Ningbo, China, 12–15 November 2019; pp. 1–5. [Google Scholar]
- Zhou, W.; Shi, L.; Chen, Z.; Zhang, J. Tensor oriented no-reference light field image quality assessment. IEEE Trans. Image Process. 2020, 29, 4070–4084. [Google Scholar] [CrossRef] [PubMed]
- Rerabek, M.; Ebrahimi, T. New light field image dataset. In Proceedings of the 8th International Conference on Quality of Multimedia Experience (QoMEX), number CONF, Lisbon, Portugal, 6–8 June 2016. [Google Scholar]
- Paudyal, P.; Olsson, R.; Sjöström, M.; Battisti, F.; Carli, M. SMART: A light field image quality dataset. In Proceedings of the 7th International Conference on Multimedia Systems, Klagenfurt, Austria, 10–13 May 2016; pp. 1–6. [Google Scholar]
- Murgia, F.; Giusto, D. A database for evaluating the quality of experience in light field applications. In Proceedings of the 2016 24th Telecommunications Forum (TELFOR), Belgrade, Serbia, 22–23 November 2016; pp. 1–4. [Google Scholar]
- Shekhar, S.; Kunz Beigpour, S.; Ziegler, M.; Chwesiuk, M.; Paleń, D.; Myszkowski, K.; Keinert, J.; Mantiuk, R.; Didyk, P. Light-field intrinsic dataset. In Proceedings of the British Machine Vision Conference 2018 (BMVC), Newcastle, UK, 3–6 September 2018; British Machine Vision Association: Durham, UK, 2018. [Google Scholar]
- Tamboli, R.R.; Reddy, M.S.; Kara, P.A.; Martini, M.G.; Channappayya, S.S.; Jana, S. A high-angular-resolution turntable data-set for experiments on light field visualization quality. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Cagliari, Italy, 29 May–1 June 2018; pp. 1–3. [Google Scholar]
- Zakeri, F.S.; Durmush, A.; Ziegler, M.; Bätz, M.; Keinert, J. Non-planar inside-out dense light-field dataset and reconstruction pipeline. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1059–1063. [Google Scholar]
- Moreschini, S.; Gama, F.; Bregovic, R.; Gotchev, A. CIVIT dataset: Horizontal-parallax-only densely-sampled light-fields. In Proceedings of the European Light Field Imaging Workshop, Borovets, Bulgaria, 4–6 June 2019; Volume 6. [Google Scholar]
- Gul, M.S.K.; Wolf, T.; Bätz, M.; Ziegler, M.; Keinert, J. A high-resolution high dynamic range light-field dataset with an application to view synthesis and tone-mapping. In Proceedings of the 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Guindy, M.; Adhikarla, V.K.; Kara, P.A.; Balogh, T.; Simon, A. CLASSROOM: Synthetic high dynamic range light field dataset. In Proceedings of the Applications of Digital Image Processing XLV, San Diego, CA, USA, 21–26 August 2022; SPIE: Bellingham, DC, USA, 2022; Volume 12226, pp. 153–162. [Google Scholar]
- Wang, S.; Ong, K.S.; Surman, P.; Yuan, J.; Zheng, Y.; Sun, X.W. Quality of experience measurement for light field 3D displays on multilayer LCDs. J. Soc. Inf. Disp. 2016, 24, 726–740. [Google Scholar] [CrossRef]
- Tamboli, R.R.; Appina, B.; Channappayya, S.S.; Jana, S. Achieving high angular resolution via view synthesis: Quality assessment of 3D content on super multiview lightfield display. In Proceedings of the 2017 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11–12 December 2017; pp. 1–8. [Google Scholar]
- Cserkaszky, A.; Barsi, A.; Kara, P.A.; Martini, M.G. To interpolate or not to interpolate: Subjective assessment of interpolation performance on a light field display. In Proceedings of the 2017 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), Hong Kong, China, 10–14 July 2017; pp. 55–60. [Google Scholar]
- Perra, C.; Song, W.; Liotta, A. Effects of light field subsampling on the quality of experience in refocusing applications. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Cagliari, Italy, 29 May–1 June 2018; pp. 1–3. [Google Scholar]
- Perra, C. Assessing the quality of experience in viewing rendered decompressed light fields. Multimed. Tools Appl. 2018, 77, 21771–21790. [Google Scholar] [CrossRef]
- Yue, D.; Gul, M.S.K.; Bätz, M.; Keinert, J.; Mantiuk, R. A benchmark of light field view interpolation methods. In Proceedings of the 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), London, UK, 6–10 July 2020; pp. 1–6. [Google Scholar]
- Min, X.; Zhou, J.; Zhai, G.; Le Callet, P.; Yang, X.; Guan, X. A metric for light field reconstruction, compression, and display quality evaluation. IEEE Trans. Image Process. 2020, 29, 3790–3804. [Google Scholar] [CrossRef]
- Kovács, P.T.; Lackner, K.; Barsi, A.; Balázs, Á.; Boev, A.; Bregović, R.; Gotchev, A. Measurement of perceived spatial resolution in 3D light-field displays. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 768–772. [Google Scholar]
- Tamboli, R.R.; Appina, B.; Channappayya, S.; Jana, S. Super-multiview content with high angular resolution: 3D quality assessment on horizontal-parallax lightfield display. Signal Process. Image Commun. 2016, 47, 42–55. [Google Scholar] [CrossRef]
- Alpaslan, Z.Y.; El-Ghoroury, H.S.; Cai, J. P-32: Parametric Characterization of Perceived Light Field Display Resolution. In Proceedings of the SID Symposium Digest of Technical Papers, San Francisco, CA, USA, 22–27 May 2016; Wiley Online Library; Volume 47, pp. 1241–1245. [Google Scholar]
- Kara, P.A.; Cserkaszky, A.; Barsi, A.; Papp, T.; Martini, M.G.; Bokor, L. The interdependence of spatial and angular resolution in the quality of experience of light field visualization. In Proceedings of the 2017 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11–12 December 2017; pp. 1–8. [Google Scholar]
- Viola, I.; Řeřábek, M.; Ebrahimi, T. Impact of interactivity on the assessment of quality of experience for light field content. In Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 31 May–2 June 2017; pp. 1–6. [Google Scholar]
- Huang, Z.; Yu, M.; Xu, H.; Song, Y.; Jiang, H.; Jiang, G. New quality assessment method for dense light fields. In Proceedings of the Optoelectronic Imaging and Multimedia Technology V, Beijing, China, 2 November 2018; SPIE: Bellingham, DC, USA, 2018; Volume 10817, pp. 292–301. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Cserkaszky, A.; Martini, M.G.; Barsi, A.; Bokor, L. The viewing conditions of light-field video for subjective quality assessment. In Proceedings of the 2018 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 5–6 December 2018; pp. 1–8. [Google Scholar]
- Viola, I.; Ebrahimi, T. Comparison of Interactive Subjective Methodologies for Light Field Quality Evaluation. In Proceedings of the 2018 26th European Signal Processing Conference (EUSIPCO), Rome, Italy, 3–7 September 2018; pp. 1865–1869. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Cserkaszky, A.; Barsi, A.; Simon, A.; Kusz, A.; Bokor, L.; Martini, M.G. Objective and subjective assessment of binocular disparity for projection-based light field displays. In Proceedings of the 2019 International Conference on 3D Immersion (IC3D), Brussels, Belgium, 11 December 2019; pp. 1–8. [Google Scholar]
- Kara, P.A.; Barsi, A.; Tamboli, R.R.; Guindy, M.; Martini, M.G.; Balogh, T.; Simon, A. Recommendations on the viewing distance of light field displays. In Proceedings of the Digital Optical Technologies 2021, Online, 21–24 June 2021; SPIE: Bellingham, DC, USA, 2021; Volume 11788, pp. 166–179. [Google Scholar]
- Paudyal, P.; Gutierrez, J.; Le Callet, P.; Carli, M.; Battisti, F. Characterization and selection of light field content for perceptual assessment. In Proceedings of the 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, 31 May–2 June 2017; pp. 1–6. [Google Scholar]
- Tamboli, R.R.; Appina, B.; Kara, P.A.; Martini, M.G.; Channappayya, S.S.; Jana, S. Effect of primitive features of content on perceived quality of light field visualization. In Proceedings of the 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX), Cagliari, Italy, 29 May–1 June 2018; pp. 1–3. [Google Scholar]
- Simon, A.; Kara, P.A.; Guindy, M.; Qiu, X.; Szy, L.; Balogh, T. One step closer to a better experience: Analysis of the suitable viewing distance ranges of light field visualization usage contexts for observers with reduced visual capabilities. In Proceedings of the Novel Optical Systems, Methods, and Applications XXV, San Diego, CA, USA, 21–26 August 2022; SPIE: Bellingham, DC, USA, 2022; Volume 12216, pp. 133–143. [Google Scholar]
- Simon, A.; Guindy, M.; Kara, P.A.; Balogh, T.; Szy, L. Through a different lens: The perceived quality of light field visualization assessed by test participants with imperfect visual acuity and color blindness. In Proceedings of the Big Data IV: Learning, Analytics, and Applications, Orlando, FL, USA, 31 May 2022; SPIE: Bellingham, DC, USA, 2022; Volume 12097, pp. 212–221. [Google Scholar]
- Paudyal, P.; Battisti, F.; Carli, M. Effect of visualization techniques on subjective quality of light field images. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 196–200. [Google Scholar]
- Guindy, M.; Barsi, A.; Kara, P.A.; Adhikarla, V.K.; Balogh, T.; Simon, A. Camera animation for immersive light field imaging. Electronics 2022, 11, 2689. [Google Scholar] [CrossRef]
- Kara, P.A.; Guindy, M.; Xinyu, Q.; Szakal, V.A.; Balogh, T.; Simon, A. The effect of angular resolution and 3D rendering on the perceived quality of the industrial use cases of light field visualization. In Proceedings of the 16th International Conference on Signal Image Technology & Internet based Systems (SITIS), Dijon, France, 19–21 October 2022. [Google Scholar]
- Kara, P.A.; Tamboli, R.R.; Shafiee, E.; Martini, M.G.; Simon, A.; Guindy, M. Beyond Perceptual Thresholds and Personal Preference: Towards Novel Research Questions and Methodologies of Quality of Experience Studies on Light Field Visualization. Electronics 2022, 11, 953. [Google Scholar] [CrossRef]
- Balogh, T.; Kovács, P. Holovizio: The next generation of 3D oil & gas visualization. In Proceedings of the 70th EAGE Conference and Exhibition-Workshops and Fieldtrips. European Association of Geoscientists & Engineers, Rome, Italy, 9–12 June 2008. [Google Scholar]
- Favalora, G.E. Progress in volumetric three-dimensional displays and their applications. In Proceedings of the Frontiers in Optics, San Jose, CA, USA, 11–15 October 2009; Optica Publishing Group: Washington, DC, USA, 2009. [Google Scholar]
- Diewald, S.; Möller, A.; Roalter, L.; Kranz, M. DriveAssist-A V2X-Based Driver Assistance System for Android. In Proceedings of the Mensch & Computer Workshopband; Oldenbourg Wissenschaftsverlag: Munich, Germany, 2012; pp. 373–380. [Google Scholar]
- Olaverri-Monreal, C.; Jizba, T. Human factors in the design of human–machine interaction: An overview emphasizing V2X communication. IEEE Trans. Intell. Veh. 2016, 1, 302–313. [Google Scholar] [CrossRef]
- Xu, T.; Jiang, R.; Wen, C.; Liu, M.; Zhou, J. A hybrid model for lane change prediction with V2X-based driver assistance. Phys. A Stat. Mech. Its Appl. 2019, 534, 122033. [Google Scholar] [CrossRef]
- Hirai, T.; Murase, T. Performance evaluations of PC5-based cellular-V2X mode 4 for feasibility analysis of driver assistance systems with crash warning. Sensors 2020, 20, 2950. [Google Scholar] [CrossRef]
- Kara, P.A.; Wippelhauser, A.; Balogh, T.; Bokor, L. How I met your V2X sensor data: Analysis of projection-based light field visualization for vehicle-to-everything communication protocols and use cases. Sensors 2023, 23, 1284. [Google Scholar] [CrossRef] [PubMed]
- Kara, P.A.; Balogh, T.; Guindy, M.; Simon, A. 3D battlespace visualization and defense applications on commercial and use-case-dedicated light field displays. In Proceedings of the Big Data IV: Learning, Analytics, and Applications, Orlando, FL, USA, 31 May 2022; SPIE: Bellingham, DC, USA, 2022; Volume 12097, pp. 183–191. [Google Scholar]
- Blackwell, C.J.; Khan, J.; Chen, X. 54-6: Holographic 3D Telepresence System with Light Field 3D Displays and Depth Cameras over a LAN. In Proceedings of the SID Symposium Digest of Technical Papers, Virtual, 17–21 May 2021; Wiley Online Library; Volume 52, pp. 761–763. [Google Scholar]
- Fattal, D. Lightfield displays: A window into the metaverse. In Proceedings of the SPIE AR, VR, MR Industry Talks 2022, San Francisco, CA, USA, 8 March 2022; SPIE: Bellingham, DC, USA, 2022; Volume 11932. [Google Scholar]
- Stephenson, N. Snow Crash; Bantam Books: New York, NY, USA, 1992. [Google Scholar]
- Adhikarla, V.K.; Jakus, G.; Sodnik, J. Design and evaluation of freehand gesture interaction for light field display. In Proceedings of the International Conference on Human-Computer Interaction, Los Angeles, CA, USA, 2–7 August 2015; Springer: Cham, Switzerland, 2015; pp. 54–65. [Google Scholar]
- Adhikarla, V.K.; Sodnik, J.; Szolgay, P.; Jakus, G. Exploring direct 3D interaction for full horizontal parallax light field displays using leap motion controller. Sensors 2015, 15, 8642–8663. [Google Scholar] [CrossRef]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in Psychology; Elsevier: Amsterdam, The Netherlands, 1988; Volume 52, pp. 139–183. [Google Scholar]
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and evaluation of a user experience questionnaire. In Proceedings of the HCI and Usability for Education and Work: 4th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Computer Society, USAB 2008, Graz, Austria, 20–21 November 2008; Proceedings 4. Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–76. [Google Scholar]
- Adhikarla, V.K.; Woźniak, P.; Barsi, A.; Singhal, D.; Kovács, P.T.; Balogh, T. Freehand interaction with large-scale 3D map data. In Proceedings of the 2014 3DTV-Conference: The True Vision-Capture, Transmission and Display of 3D Video (3DTV-CON), Budapest, Hungary, 2–4 July 2014; pp. 1–4. [Google Scholar]
- Yamaguchi, M.; Higashida, R. 3D touchable holographic light-field display. Appl. Opt. 2016, 55, A178–A183. [Google Scholar] [CrossRef]
- Yamaguchi, M. Full-parallax holographic light-field 3-D displays and interactive 3-D touch. Proc. IEEE 2017, 105, 947–959. [Google Scholar] [CrossRef]
- Chavarría, I.A.S.S.; Nakamura, T.; Yamaguchi, M. Interactive optical 3D-touch user interface using a holographic light-field display and color information. Opt. Express 2020, 28, 36740–36755. [Google Scholar] [CrossRef]
- Chavarría, I.A.S.S.; Nakamura, T.; Yamaguchi, M. Automatic registration of gesture-sensor data and light-field for aerial 3D-touch interface. In Proceedings of the 3D Image Acquisition and Display: Technology, Perception and Applications, Washington, DC, USA, 19–23 July 2021; Optica Publishing Group: Washington, DC, USA, 2021. [Google Scholar]
- Chavarría, I.A.S.S.; Shimomura, K.; Takeyama, S.; Yamaguchi, M. Interactive 3D touch and gesture capable holographic light field display with automatic registration between user and content. J. Soc. Inf. Disp. 2022, 30, 877–893. [Google Scholar] [CrossRef]
- Yoshida, T.; Shimizu, K.; Kurogi, T.; Kamuro, S.; Minamizawa, K.; Nii, H.; Tachi, S. RePro3D: Full-parallax 3D display with haptic feedback using retro-reflective projection technology. In Proceedings of the 2011 IEEE International Symposium on VR Innovation, Singapore, 19–20 March 2011; pp. 49–54. [Google Scholar]
- Minamizawa, K.; Fukamachi, S.; Kajimoto, H.; Kawakami, N.; Tachi, S. Gravity grabber: Wearable haptic display to present virtual mass sensation. In ACM SIGGRAPH 2007 Emerging Technologies; Association for Computing Machinery: New York, NY, USA, 2007; pp. 1–4. [Google Scholar]
- Huang, Y.P.; Wang, G.Z.; Ma, M.C.; Tung, S.Y.; Huang, S.Y.; Tseng, H.W.; Kuo, C.H.; Li, C.H. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor. In Proceedings of the Three-Dimensional Imaging, Visualization, and Display, Orlando, FL, USA, 27–28 April 2011; SPIE: Bellingham, DC, USA, 2011; Volume 8043, pp. 183–200. [Google Scholar]
- Wang, G.Z.; Huang, Y.P.; Chang, T.S.; Chen, T.H. Bare finger 3D air-touch system using an embedded optical sensor array for mobile displays. J. Disp. Technol. 2013, 10, 13–18. [Google Scholar] [CrossRef]
- Hu, J.; Li, G.; Xie, X.; Lv, Z.; Wang, Z. Bare-fingers touch detection by the button’s distortion in a projector–camera system. IEEE Trans. Circuits Syst. Video Technol. 2013, 24, 566–575. [Google Scholar]
- Matsubayashi, A.; Makino, Y.; Shinoda, H. Direct finger manipulation of 3D object image with ultrasound haptic feedback. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow Scotland, UK, 4–9 May 2019; pp. 1–11. [Google Scholar]
- Yasui, M.; Watanabe, Y.; Ishikawa, M. Occlusion-robust sensing method by using the light-field of a 3D display system toward interaction with a 3D image. Appl. Opt. 2019, 58, A209–A227. [Google Scholar] [CrossRef]
- Sang, X.; Gao, X.; Yu, X.; Xing, S.; Li, Y.; Wu, Y. Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing. Opt. Express 2018, 26, 8883–8889. [Google Scholar] [CrossRef]
- Tamboli, R.R.; Kara, P.A.; Cserkaszky, A.; Barsi, A.; Martini, M.G.; Jana, S. Canonical 3D object orientation for interactive light-field visualization. In Proceedings of the Applications of Digital Image Processing XLI, San Diego, CA, USA, 17 September 2018; International Society for Optics and Photonics: Bellingham, DC, USA; Volume 10752, pp. 77–83. [Google Scholar]
- Kolly, S.M.; Wattenhofer, R.; Welten, S. A personal touch: Recognizing users based on touch screen behavior. In Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones, Toronto, ON, Canada, 6 November 2012; pp. 1–5. [Google Scholar]
- Teh, P.S.; Zhang, N.; Teoh, A.B.J.; Chen, K. Recognizing your touch: Towards strengthening mobile device authentication via touch dynamics integration. In Proceedings of the 13th International Conference on Advances in Mobile Computing and Multimedia, Brussels, Belgium, 11–13 December 2015; pp. 108–116. [Google Scholar]
- Alzubaidi, A.; Kalita, J. Authentication of smartphone users using behavioral biometrics. IEEE Commun. Surv. Tutor. 2016, 18, 1998–2026. [Google Scholar] [CrossRef]
- Alghamdi, S.J.; Elrefaei, L.A. Dynamic authentication of smartphone users based on touchscreen gestures. Arab. J. Sci. Eng. 2018, 43, 789–810. [Google Scholar] [CrossRef]
- Bevan, C.; Fraser, D.S. Different strokes for different folks? Revealing the physical characteristics of smartphone users from their swipe gestures. Int. J. Hum.-Comput. Stud. 2016, 88, 51–61. [Google Scholar] [CrossRef]
- Antal, M.; Bokor, Z.; Szabó, L.Z. Information revealed from scrolling interactions on mobile devices. Pattern Recognit. Lett. 2015, 56, 7–13. [Google Scholar] [CrossRef]
- Miguel-Hurtado, O.; Stevenage, S.V.; Bevan, C.; Guest, R. Predicting sex as a soft-biometrics from device interaction swipe gestures. Pattern Recognit. Lett. 2016, 79, 44–51. [Google Scholar] [CrossRef]
- Jain, A.; Kanhangad, V. Gender recognition in smartphones using touchscreen gestures. Pattern Recognit. Lett. 2019, 125, 604–611. [Google Scholar] [CrossRef]
- Guarino, A.; Lettieri, N.; Malandrino, D.; Zaccagnino, R.; Capo, C. Adam or Eve? Automatic users’ gender classification via gestures analysis on touch devices. Neural Comput. Appl. 2022, 34, 18473–18495. [Google Scholar] [CrossRef]
- Vatavu, R.D.; Anthony, L.; Brown, Q. Child or adult? Inferring Smartphone users’ age group from touch measurements alone. In Proceedings of the Human-Computer Interaction–INTERACT 2015: 15th IFIP TC 13 International Conference, Bamberg, Germany, 14–18 September 2015; Proceedings, Part IV 15. Springer: Berlin/Heidelberg, Germany, 2015; pp. 1–9. [Google Scholar]
- Acien, A.; Morales, A.; Fierrez, J.; Vera-Rodriguez, R.; Hernandez-Ortega, J. Active detection of age groups based on touch interaction. IET Biom. 2019, 8, 101–108. [Google Scholar] [CrossRef]
- Cheng, Y.; Ji, X.; Li, X.; Zhang, T.; Malebary, S.; Qu, X.; Xu, W. Identifying child users via touchscreen interactions. ACM Trans. Sens. Netw. 2020, 16, 1–25. [Google Scholar] [CrossRef]
- Lee, G.Y.; Hong, J.Y.; Hwang, S.; Moon, S.; Kang, H.; Jeon, S.; Kim, H.; Jeong, J.H.; Lee, B. Metasurface eyepiece for augmented reality. Nat. Commun. 2018, 9, 4562. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Kravchenko, I.I.; Wang, H.; Zheng, H.; Gu, G.; Valentine, J. Multifunctional metaoptics based on bilayer metasurfaces. Light. Sci. Appl. 2019, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lin, P.; Huang, Y.W.; Park, J.S.; Chen, W.T.; Shi, Z.; Qiu, C.W.; Cheng, J.X.; Capasso, F. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv. 2021, 7, eabe4458. [Google Scholar] [CrossRef]
- Ou, K.; Wan, H.; Wang, G.; Zhu, J.; Dong, S.; He, T.; Yang, H.; Wei, Z.; Wang, Z.; Cheng, X. Advances in Meta-Optics and Metasurfaces: Fundamentals and Applications. Nanomaterials 2023, 13, 1235. [Google Scholar] [CrossRef]
- Wei, Z.; Cao, Y.; Su, X.; Gong, Z.; Long, Y.; Li, H. Highly efficient beam steering with a transparent metasurface. Opt. Express 2013, 21, 10739–10745. [Google Scholar] [CrossRef]
- Huang, Y.W.; Chen, W.T.; Tsai, W.Y.; Wu, P.C.; Wang, C.M.; Sun, G.; Tsai, D.P. Aluminum plasmonic multicolor meta-hologram. Nano Lett. 2015, 15, 3122–3127. [Google Scholar] [CrossRef]
- Hakobyan, D.; Magallanes, H.; Seniutinas, G.; Juodkazis, S.; Brasselet, E. Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces. Adv. Opt. Mater. 2016, 4, 306–312. [Google Scholar] [CrossRef]
- Overvig, A.C.; Shrestha, S.; Malek, S.C.; Lu, M.; Stein, A.; Zheng, C.; Yu, N. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light. Sci. Appl. 2019, 8, 92. [Google Scholar] [CrossRef]
- Hu, Y.; Li, L.; Wang, Y.; Meng, M.; Jin, L.; Luo, X.; Chen, Y.; Li, X.; Xiao, S.; Wang, H.; et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface. Nano Lett. 2019, 20, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Amaya, C.; Fasold, S.; Muravsky, A.A.; Murauski, A.A.; Pertsch, T.; Staude, I. Multiresponsive dielectric metasurfaces. ACS Photonics 2021, 8, 1775–1783. [Google Scholar] [CrossRef]
- Hoßfeld, T.; Egger, S.; Schatz, R.; Fiedler, M.; Masuch, K.; Lorentzen, C. Initial delay vs. interruptions: Between the devil and the deep blue sea. In Proceedings of the 2012 Fourth International Workshop on Quality of Multimedia Experience, Melbourne, VIC, Australia, 5–7 July 2012; pp. 1–6. [Google Scholar]
- Kara, P.A.; Martini, M.G.; Rossi, S. One spoonful or multiple drops: Investigation of stalling distribution and temporal information for quality of experience over time. In Proceedings of the 2016 International Conference on Telecommunications and Multimedia (TEMU), Heraklion, Greece, 25–27 July 2016; pp. 1–6. [Google Scholar]
- Yoon, Y.; Jeon, H.G.; Yoo, D.; Lee, J.Y.; Kweon, I.S. Light-field image super-resolution using convolutional neural network. IEEE Signal Process. Lett. 2017, 24, 848–852. [Google Scholar] [CrossRef]
- Zhang, S.; Lin, Y.; Sheng, H. Residual networks for light field image super-resolution. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 11046–11055. [Google Scholar]
- Wang, Y.; Wang, L.; Yang, J.; An, W.; Yu, J.; Guo, Y. Spatial-angular interaction for light field image super-resolution. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; Proceedings, Part XXIII 16. Springer: Berlin/Heidelberg, Germany, 2020; pp. 290–308. [Google Scholar]
- Wang, Y.; Yang, J.; Wang, L.; Ying, X.; Wu, T.; An, W.; Guo, Y. Light field image super-resolution using deformable convolution. IEEE Trans. Image Process. 2020, 30, 1057–1071. [Google Scholar] [CrossRef] [PubMed]
Use | Interaction | Time | Simultaneous | Simultaneous | Input |
---|---|---|---|---|---|
Case | Type | Sensitivity | Users | Input | Accuracy |
Prototype review | View-related | No | Yes | No | Low importance |
Medical imaging | View-related | Potential | Potential | No | High importance * |
Resource exploration | View-related | No | Yes | No | Low importance |
Training and education | Both | Potential | Potential | Potential | High importance |
Digital signage | Content-related | No | Yes | No | Low importance |
Cultural heritage exhibition | Both | No | Yes | Potential | High importance |
Traffic control | Both | Yes | Potential | No | High importance |
Driver assistance systems | Content-related | Yes | No | No | High importance |
Defense applications | Both | Yes | Yes | No | High importance |
Telepresence | Both | No | Potential | No | Low importance |
Home multimedia entertainment | Content-related | No | Potential | No | Low importance |
Gaming | Content-related | Yes | Potential | Potential | High importance |
Metaverse | Content-related | Yes | Potential | Potential | High importance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, P.A.; Simon, A. The Good News, the Bad News, and the Ugly Truth: A Review on the 3D Interaction of Light Field Displays. Multimodal Technol. Interact. 2023, 7, 45. https://doi.org/10.3390/mti7050045
Kara PA, Simon A. The Good News, the Bad News, and the Ugly Truth: A Review on the 3D Interaction of Light Field Displays. Multimodal Technologies and Interaction. 2023; 7(5):45. https://doi.org/10.3390/mti7050045
Chicago/Turabian StyleKara, Peter A., and Aniko Simon. 2023. "The Good News, the Bad News, and the Ugly Truth: A Review on the 3D Interaction of Light Field Displays" Multimodal Technologies and Interaction 7, no. 5: 45. https://doi.org/10.3390/mti7050045
APA StyleKara, P. A., & Simon, A. (2023). The Good News, the Bad News, and the Ugly Truth: A Review on the 3D Interaction of Light Field Displays. Multimodal Technologies and Interaction, 7(5), 45. https://doi.org/10.3390/mti7050045