Chemical Conversations
Abstract
:1. Introduction
2. Chemical Languages of Microorganisms
2.1. Communication Between Cells Belonging to the Same Population
2.2. Chemical Communication of Competitors and Predators
2.3. Cooperative Chemical Signaling
2.4. Chemical Communication and Cell Differentiation of Microorganisms
3. Chemical Languages of Plants and Animals
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lyons, N.A.; Kolter, R. On the evolution of bacterial multicellularity. Curr. Opin. Microbiol. 2015, 24, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Tong, K.; Bozdag, G.O.; Ratcliff, W.C. Selective drivers of simple multicellularity. Curr. Opin. Microbiol. 2022, 67, 102141. [Google Scholar] [CrossRef] [PubMed]
- Giannakara, M.; Koumandou, V.L. Evolution of two-component quorum sensing systems. Access Microbiol. 2022, 4, 000303. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.B.; Bassler, B.L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef]
- Hense, B.A.; Schuster, M. Core Principles of Bacterial Autoinducer Systems. Microbiol. Mol. Biol. Rev. 2015, 79, 153–169. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Pan, Y.; Zhang, S.; Yang, T.; Li, Z.; Wang, B.; Sun, H.; Zhang, M.; Li, X. Quorum sensing: Cell-to-cell communication in Saccharomyces cerevisiae. Front. Microbiol. 2023, 14, 1250151. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, N.; Tan, P.; Ma, X. Quorum sensing mediates gut bacterial communication and host-microbiota interaction. Crit. Rev. Food Sci. Nutr. 2024, 64, 3751–3763. [Google Scholar] [CrossRef]
- Jagtap, S.S.; Bedekar, A.A.; Rao, C.V. Quorum Sensing in Yeast. In Quorum Sensing: Microbial Rules of Life; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2020; Volume 1374, pp. 235–250. [Google Scholar]
- Charlesworth, J.; Beloe, C.; Watters, C.; Burns, B. Quorum Sensing in Archaea: Recent Advances and Emerging Directions; Springer: Berlin/Heidelberg, Germany, 2017; pp. 119–132. [Google Scholar]
- Tobias, N.J.; Brehm, J.; Kresovic, D.; Brameyer, S.; Bode, H.B.; Heermann, R. New vocabulary for bacterial communication. ChemBioChem 2019, 21, 759–768. [Google Scholar] [CrossRef]
- Fan, Q.; Wang, H.; Mao, C.; Li, J.; Zhang, X.; Grenier, D.; Yi, L.; Wang, Y. Structure and Signal Regulation Mechanism of Interspecies and Interkingdom Quorum Sensing System Receptors. J. Agric. Food Chem. 2022, 70, 429–445. [Google Scholar] [CrossRef]
- He, Y.-W.; Deng, Y.; Miao, Y.; Chatterjee, S.; Tran, T.M.; Tian, J.; Lindow, S. DSF-family quorum sensing signal-mediated intraspecies, interspecies, and inter-kingdom communication. Trends Microbiol. 2023, 31, 36–50. [Google Scholar] [CrossRef]
- Khalid, S.; Keller, N.P. Chemical signals driving bacterial–fungal interactions. Environ. Microbiol. 2021, 23, 1334–1347. [Google Scholar] [CrossRef]
- Singh, B.N. Toxic Effects of Certain Bacterial Metabolic Products on Soil Protozoa. Nature 1942, 149, 168. [Google Scholar] [CrossRef]
- Gloer, J.B. Antiinsectan natural products from fungal sclerotia. Acc. Chem. Res. 1995, 28, 343–350. [Google Scholar] [CrossRef]
- Burkepile, D.E.; Parker, J.D.; Woodson, C.B.; Mills, H.J.; Kubanek, J.; Sobecky, P.A.; Hay, M.E. Chemically mediated competition between microbes and animals: Microbes as consumers in food webs. Ecology 2006, 87, 2821–2831. [Google Scholar] [CrossRef] [PubMed]
- Kendrick, B. Biology of toxigenic anamorphs. Pure Appl. Chem. 1986, 58, 211–218. [Google Scholar] [CrossRef]
- Scott, J.E.; Li, K.; Filkins, L.M.; Zhu, B.; Kuchma, S.L.; Schwartzman, J.D.; O’Toole, G.A. Pseudomonas aeruginosa Can Inhibit Growth of Streptococcal Species via Siderophore Production. J. Bacteriol. 2019, 201, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Traxler, M.F.; Seyedsayamdost, M.R.; Clardy, J.; Kolter, R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol. 2012, 86, 628–644. [Google Scholar] [CrossRef]
- Lamont, I.L.; Beare, P.A.; Ochsner, U.; Vasil, A.I.; Vasil, M.L. Siderophore-mediated signaling regulates virulence factor production in Pseudomonasaeruginosa. Proc. Natl. Acad. Sci. USA 2002, 99, 7072–7077. [Google Scholar] [CrossRef]
- Romero, D.; Traxler, M.F.; López, D.; Kolter, R. Antibiotics as Signal Molecules. Chem. Rev. 2011, 111, 5492–5505. [Google Scholar] [CrossRef] [PubMed]
- De Jong, M.; Alto, N.M. Toxins, mutations and adaptations. eLife 2021, 10, e66676. [Google Scholar] [CrossRef]
- Karthik, C.; Shu, Q. Current insights on rice (Oryza sativa L.) bakanae disease and exploration of its management strategies. J. Zhejiang Univ.-Sci. B 2023, 24, 755–778. [Google Scholar] [CrossRef]
- Popoff, M.R.; Poulain, B. Bacterial Toxins and the Nervous System: Neurotoxins and Multipotential Toxins Interacting with Neuronal Cells. Toxins 2010, 2, 683–737. [Google Scholar] [CrossRef] [PubMed]
- Farmen, K.; Tofiño-Vian, M.; Wellfelt, K.; Olson, L.; Iovino, F. Spatio-temporal brain invasion pattern of Streptococcus pneumoniae and dynamic changes in the cellular environment in bacteremia-derived meningitis. Neurobiol. Dis. 2024, 195, 106484. [Google Scholar] [CrossRef]
- Ferreira, G.; Cardozo, R.; Sastre, S.; Costa, C.; Santander, A.; Chavarría, L.; Guizzo, V.; Puglisi, J.; Nicolson, G.L. Bacterial toxins and heart function: Heat-labile Escherichia coli enterotoxin B promotes changes in cardiac function with possible relevance for sudden cardiac death. Biophys. Rev. 2023, 15, 447–473. [Google Scholar] [CrossRef] [PubMed]
- Beckerson, W.C.; Krider, C.; Mohammad, U.A.; de Bekker, C. 28 minutes later: Investigating the role of aflatrem-like compounds in Ophiocordyceps parasite manipulation of zombie ants. Anim. Behav. 2023, 203, 225–240. [Google Scholar] [CrossRef]
- Araújo, J.P.M.; Evans, H.C.; Kepler, R.; Hughes, D.P. Zombie-ant fungi across continents: 15 new species and new combinations within Ophiocordyceps. I. Myrmecophilous hirsutelloid species. Stud. Mycol. 2018, 90, 119–160. [Google Scholar] [CrossRef] [PubMed]
- Woolley, V.C.; Teakle, G.R.; Prince, G.; de Moor, C.H.; Chandler, D. Cordycepin, a metabolite of Cordyceps militaris, reduces immune-related gene expression in insects. J. Invertebr. Pathol. 2020, 177, 107480. [Google Scholar] [CrossRef] [PubMed]
- Herbert, E.E.; Goodrich-Blair, H. Friend and foe: The two faces of Xenorhabdus nematophila. Nat. Rev. Microbiol. 2007, 5, 634–646. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Cendra, M.d.M.; Torrents, E. Pseudomonas aeruginosa biofilms and their partners in crime. Biotechnol. Adv. 2021, 49, 107734. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Wang, W.; Yao, Y.; Li, H.; Wang, Q.; Niu, B. Microbial interactions within beneficial consortia promote soil health. Sci. Total Environ. 2023, 900, 165801. [Google Scholar] [CrossRef] [PubMed]
- Granada Agudelo, M.; Ruiz, B.; Capela, D.; Remigi, P. The role of microbial interactions on rhizobial fitness. Front. Plant Sci. 2023, 14, 1277262. [Google Scholar] [CrossRef]
- Ball, O.J.; Prestidge, R.A.; Sprosen, J.M. Interrelationships between Acremonium lolii, Peramine, and Lolitrem B in Perennial Ryegrass. Appl. Environ. Microbiol. 1995, 61, 1527–1533. [Google Scholar] [CrossRef]
- Fernando, K.; Reddy, P.; Vassiliadis, S.; Spangenberg, G.C.; Rochfort, S.J.; Guthridge, K.M. The Known Antimammalian and Insecticidal Alkaloids Are Not Responsible for the Antifungal Activity of Epichloë Endophytes. Plants 2021, 10, 2486. [Google Scholar] [CrossRef] [PubMed]
- Ezenwa, V.O.; Williams, A.E. Microbes and animal olfactory communication: Where do we go from here? Bioessays 2014, 36, 847–854. [Google Scholar] [CrossRef] [PubMed]
- Theis, K.R.; Venkataraman, A.; Dycus, J.A.; Koonter, K.D.; Schmitt-Matzen, E.N.; Wagner, A.P.; Holekamp, K.E.; Schmidt, T.M. Symbiotic bacteria appear to mediate hyena social odors. Proc. Natl. Acad. Sci. USA 2013, 110, 19832–19837. [Google Scholar] [CrossRef] [PubMed]
- Nyholm, S.V.; McFall-Ngai, M.J. A lasting symbiosis: How the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 2021, 19, 666–679. [Google Scholar] [CrossRef]
- Osadchiy, V.; Martin, C.R.; Mayer, E.A. The Gut–Brain Axis and the Microbiome: Mechanisms and Clinical Implications. Clin. Gastroenterol. Hepatol. 2019, 17, 322–332. [Google Scholar] [CrossRef]
- Chong, T.N.; Shapiro, L. Bacterial cell differentiation enables population level survival strategies. mBio 2024, 15, e00758-24. [Google Scholar] [CrossRef]
- Khalid, S.J.; Ain, Q.; Khan, S.J.; Jalil, A.; Siddiqui, M.F.; Ahmad, T.; Badshah, M.; Adnan, F. Targeting Acyl Homoserine Lactones (AHLs) by the quorum quenching bacterial strains to control biofilm formation in Pseudomonas aeruginosa. Saudi J. Biol. Sci. 2022, 29, 1673–1682. [Google Scholar] [CrossRef]
- Thoendel, M.; Horswill, A.R. Biosynthesis of Peptide Signals in Gram-Positive Bacteria; Elsevier: Amsterdam, The Netherlands, 2010; pp. 91–112. [Google Scholar]
- Sun, J.; Daniel, R.; Wagner-Döbler, I.; Zeng, A.-P. Is autoinducer-2 a universal signal for interspecies communication: A comparative genomic and phylogenetic analysis of the synthesis and signal transduction pathways. BMC Evol. Biol. 2004, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Septer, A.N.; Visick, K.L. Lighting the way: How the Vibrio fischeri model microbe reveals the complexity of Earth’s “simplest” life forms. J. Bacteriol. 2024, 206, e00035-24. [Google Scholar] [CrossRef] [PubMed]
- Pérez, P.D.; Weiss, J.T.; Hagen, S.J. Noise and crosstalk in two quorum-sensing inputs of Vibrio fischeri. BMC Syst. Biol. 2011, 5, 153. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Tian, J.; Zhang, Y.; Wu, R.; Li, L.; Zhang, B.; He, Y. Dissecting signal molecule AI-2 mediated biofilm formation and environmental tolerance in Lactobacillus plantarum. J. Biosci. Bioeng. 2021, 131, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Suppiger, A.; Eshwar, A.K.; Stephan, R.; Kaever, V.; Eberl, L.; Lehner, A. The DSF type quorum sensing signalling system RpfF/R regulates diverse phenotypes in the opportunistic pathogen Cronobacter. Sci. Rep. 2016, 6, 18753. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Chattopadhyay, M.K.; Grossart, H.-P. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front. Microbiol. 2013, 4, 47. [Google Scholar] [CrossRef] [PubMed]
- Madhani, H.D. Interplay of intrinsic and extrinsic signals in yeast differentiation. Proc. Natl. Acad. Sci. USA 2000, 97, 13461–13463. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Harashima, T.; Heitman, J. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr. Opin. Microbiol. 2000, 3, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Calvo, A.M.; Wilson, R.A.; Bok, J.W.; Keller, N.P. Relationship between Secondary Metabolism and Fungal Development. Microbiol. Mol. Biol. Rev. 2002, 66, 447–459. [Google Scholar] [CrossRef]
- Lee, J.; Son, H.; Lee, S.; Park, A.R.; Lee, Y.-W. Development of a Conditional Gene Expression System Using a Zearalenone-Inducible Promoter for the Ascomycete Fungus Gibberella zeae. Appl. Environ. Microbiol. 2010, 76, 3089–3096. [Google Scholar] [CrossRef]
- Shi, T.-T.; Li, G.-H.; Zhao, P.-J. Appressoria—Small but Incredibly Powerful Structures in Plant–Pathogen Interactions. Int. J. Mol. Sci. 2023, 24, 2141. [Google Scholar] [CrossRef] [PubMed]
- Beppu, T. Secondary metabolites as chemical signals for cellular differentiation. Gene 1992, 115, 159–165. [Google Scholar] [CrossRef]
- Shiina, T.; Nakagawa, K.; Fujisaki, Y.; Ozaki, T.; Liu, C.; Toyomasu, T.; Hashimoto, M.; Koshino, H.; Minami, A.; Kawaide, H.; et al. Biosynthetic study of conidiation-inducing factor conidiogenone: Heterologous production and cyclization mechanism of a key bifunctional diterpene synthase. Biosci. Biotechnol. Biochem. 2019, 83, 192–201. [Google Scholar] [CrossRef]
- Roncal, T.S.; CordobéS, S.; Sterner, O.; Ugalde, U. Conidiation in Penicillium cyclopium Is Induced by Conidiogenone, an Endogenous Diterpene. Eukaryot. Cell 2002, 1, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Park, B.S.; Bhatia, S.K.; Seo, H.-M.; Jeon, J.-M.; Kim, H.-J.; Yi, D.-H.; Lee, J.-H.; Choi, K.-Y.; Park, H.-Y.; et al. Production of Rapamycin in Streptomyces hygroscopicus from Glycerol-Based Media Optimized by Systemic Methodology. J. Microbiol. Biotechnol. 2014, 24, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Yamaguchi, Y.; Okabe-Kado, J.; Kasukabe, T.; Honma, Y. Induction of differentiation of human myeloid leukemia cells by immunosuppressant macrolides (rapamycin and FK506) and calcium/calmodulin-dependent kinase inhibitors. Exp. Hematol. 2001, 29, 582–588. [Google Scholar] [CrossRef]
- Combarnous, Y.; Nguyen, T.M.D. Cell Communications among Microorganisms, Plants, and Animals: Origin, Evolution, and Interplays. Int. J. Mol. Sci. 2020, 21, 8052. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Liu, Y.; Zhang, N.; Xun, W.; Feng, H.; Miao, Y.; Shao, J.; Shen, Q.; Zhang, R. Chemical communication in plant–microbe beneficial interactions: A toolbox for precise management of beneficial microbes. Curr. Opin. Microbiol. 2023, 72, 102269. [Google Scholar] [CrossRef] [PubMed]
- Karban, R. Plant Communication. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 1–24. [Google Scholar] [CrossRef]
- Baeckens, S. Evolution of animal chemical communication: Insights from non-model species and phylogenetic comparative methods. Belg. J. Zool. 2019, 149, 63–93. [Google Scholar] [CrossRef]
- Wyatt, T.D. How Animals Communicate Via Pheromones. Am. Sci. 2015, 103, 114–121. [Google Scholar] [CrossRef]
- Loreto, F.; D’Auria, S. How do plants sense volatiles sent by other plants? Trends Plant Sci. 2022, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, M.; Wu, M.; Li, X.; Liu, H.; Niu, N.; Li, S.; Chen, L. Volatile organic compounds (VOCs) from plants: From release to detection. TrAC Trends Anal. Chem. 2023, 158, 116872. [Google Scholar] [CrossRef]
- Macabuhay, A.; Arsova, B.; Walker, R.; Johnson, A.; Watt, M.; Roessner, U. Modulators or facilitators? Roles of lipids in plant root–microbe interactions. Trends Plant Sci. 2022, 27, 180–190. [Google Scholar] [CrossRef]
- Li, J.-H.; Fan, L.-F.; Zhao, D.-J.; Zhou, Q.; Yao, J.-P.; Wang, Z.-Y.; Huang, L. Plant electrical signals: A multidisciplinary challenge. J. Plant Physiol. 2021, 261, 153418. [Google Scholar] [CrossRef]
- Landrein, B.; Ingram, G. Connected through the force: Mechanical signals in plant development. J. Exp. Bot. 2019, 70, 3507–3519. [Google Scholar] [CrossRef]
- Bais, H.P.; Park, S.-W.; Weir, T.L.; Callaway, R.M.; Vivanco, J.M. How plants communicate using the underground information superhighway. Trends Plant Sci. 2004, 9, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Rizaludin, M.S.; Stopnisek, N.; Raaijmakers, J.M.; Garbeva, P. The Chemistry of Stress: Understanding the ‘Cry for Help’ of Plant Roots. Metabolites 2021, 11, 357. [Google Scholar] [CrossRef]
- Stassen, M.J.J.; Hsu, S.-H.; Pieterse, C.M.J.; Stringlis, I.A. Coumarin Communication Along the Microbiome–Root–Shoot Axis. Trends Plant Sci. 2021, 26, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E.; Dobson, A.J. New Synthesis: Animal Communication Mediated by Microbes: Fact or Fantasy? J. Chem. Ecol. 2013, 39, 1149. [Google Scholar] [CrossRef]
- Schulte, B.A.; Freeman, E.W.; Goodwin, T.E.; Hollister-Smith, J.; Rasmussen, L.E.L. Honest signalling through chemicals by elephants with applications for care and conservation. Appl. Anim. Behav. Sci. 2007, 102, 344–363. [Google Scholar] [CrossRef]
Signaling Molecule | Producer Organism | Key Functions |
---|---|---|
Acyl-homoserine lactones (AHLs) | Gram-negative bacteria (e.g., Pseudomonas aeruginosa) | Quorum sensing in Gram-negative bacteria |
γ-Butyrolactones | Streptomyces sp. | Regulation of secondary metabolite production |
Autoinducing peptides (AIPs) | Gram-positive bacteria (e.g., Staphylococcus aureus) | Quorum sensing in Gram-positive bacteria |
AI-2 (furanosyl borate diester) | Both Gram-negative and Gram-positive bacteria | Universal quorum sensing molecule |
Competence-stimulating peptide (CSP) | Various bacteria (e.g., Streptococcus, Bacillus) | Regulation of competence |
Nisin | Lactococcus sp. | Antibacterial role |
c-di-GMP | Various bacteria | Second messenger |
Cyclic di-AMP (c-di-AMP) | Various bacteria | Second messenger |
Cyclic AMP (cAMP) | Various bacteria | Second messenger |
Diffusible signaling factor (DSF) | Gram-negative bacteria (e.g., Xanthomonas) | Biofilm formation, virulence |
Pseudomonas quinolone signal (PQS) | Pseudomonas aeruginosa | Regulation of quorum sensing |
Pyocyanin | Pseudomonas aeruginosa | Redox signaling |
Indole | Various bacteria | Intercellular signal molecule, biofilm formation, antibiotic resistance |
Farnesol | Candida albicans | Inhibits filamentous growth and regulates morphogenesis |
Tyrosol | Candida albicans | Promotes yeast-to-hyphal transition and biofilm formation |
Farnesoic acid | Various fungi | Hyphal growth inhibition |
Indole-3-acetic acid (IAA) | Various fungi | Plant hormone mimicry, promotes plant–microbe interactions |
1-Phenylethanol | Saccharomyces cerevisiae | Biofilm formation |
Oxylipins | Various fungi | Regulation of fungal reproduction and signaling |
Pheromones: a-factor, α-factor | Saccharomyces cerevisiae | Mating type coordination |
Volatile compounds | Candida albicans | Filamentation regulation |
Tryptophol | Candida albicans | Autoantibiotic action, filamentation inhibition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michailidu, J.; Maťátková, O.; Čejková, A.; Masák, J. Chemical Conversations. Molecules 2025, 30, 431. https://doi.org/10.3390/molecules30030431
Michailidu J, Maťátková O, Čejková A, Masák J. Chemical Conversations. Molecules. 2025; 30(3):431. https://doi.org/10.3390/molecules30030431
Chicago/Turabian StyleMichailidu, Jana, Olga Maťátková, Alena Čejková, and Jan Masák. 2025. "Chemical Conversations" Molecules 30, no. 3: 431. https://doi.org/10.3390/molecules30030431
APA StyleMichailidu, J., Maťátková, O., Čejková, A., & Masák, J. (2025). Chemical Conversations. Molecules, 30(3), 431. https://doi.org/10.3390/molecules30030431